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Abstract 

Doppler echocardiography is a crucial image acquisition technique in fetal medicine that generates 

spectrums of blood velocities. The current pipeline for its segmentation is very reliant on manual 

quantification steps, resulting labour-intensive and time expensive.  

Given the rise of Deep Learning in the medical image segmentation field, some initial Deep 

Learning based models have been trained and tested for its automatic segmentation. A project in 

the scope of a grant awarded by the Bill and Melinda Gates Foundation's Global Health program, 

has obtained some initial good results. Their baseline solution proposed uses a W-net with 6 levels 

and a binary mask as data representation with values of 1 from the reference line to the curve 

position. However, these results could be improved. 

The aim of this project is to design Deep Learning based models using alternative data 

representations in order to find an alternative solution that overperforms the baseline solution. The 

dataset used contains 7063 fetal Doppler echocardiographic images which are split into training, 

validation and test sets. The model architectures used are U-net and W-net architectures with 

different levels, from 5 to 7. The data representations proposed are a binary mask around the curve 

position using different width values, and a linear regression. 24 models are trained combining all 

the architectures with the several data representations, using Dice loss for binary mask data 

representation models and mean square error (MSE) loss for models using linear regression. For 

the performance evaluation, different metrics are used when models predict unseen data from the 

test set.  

The results show that the baseline solution overperforms the alternative solutions tested in this 

project. It is observed that more complex and deep architectures with a data representation based 

on binary masks that generate big shapes work better for these images. Further alternative 

solutions can be studied in order to develop a much powerful segmentation tool.  
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1. Introduction 

Echocardiography is an image acquisition technique highly used in medicine as a diagnostic tool. 

It is based on the generation of ultrasound waves by a piezoelectric transducer. While applying 

short electrical pulses the piezoelectric transducer compresses generating these waves. The 

waves are reflected at layers between different tissues where there are acoustic impedance 

changes. The returning ultrasound waves arrive at the transducer triggering vibrations that are 

transformed into electric signals and then into a digital image. The main advantages of this 

technique are the quality and the security that offers, due to not being invasive and not irradiating 

the tissue. Thus, it is widely used and considered to be essential in fetal medicine.  

Several modalities of this technique exist: M-mode, 2D and 3D. M-mode is defined as time motion 

display of the ultrasound wave along a chosen ultrasound line and it provides a monodimensional 

view of the heart. 2D echocardiography displays a cross-sectional “slice” of the beating heart, 

including the chambers, valves and the major blood vessels that exit from the left and right ventricle. 

3D echocardiography displays a volume of the beating heart. 

Doppler echocardiography allows to obtain velocity profiles. These profiles can be obtained from 

tissue velocity or blood velocity depending on the frequencies used. The spectrum obtained from 

this imaging modality presents valuable information for the assessment of various cardiac 

pathologies. In the case of fetuses with compromised cardiovascular systems it has been 

demonstrated to be a vital diagnostic and monitoring tool through the usage of various modalities.   

 

Figure 3: Doppler echocardiography with velocity profile. 

Figure 1: M-mode echocardiography [40] Figure 2: 2D and 3D echocardiography [41] 
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The pipeline for analysing fetal images is, however, very reliant on manual quantification steps and 

labour-intensive, pivoting towards the markup of a series of control points on the image and the 

definition of the curve envelope for their posterior analysis.  

To tackle this problem, machine learning (ML) algorithms for image automatic quantification must 

be considered. These algorithms have proved to be powerful for several problems that rely on the 

use of structured data. However, ML requires complex feature engineering manually performed. 

This process, apart from being costly, also reduces generalization capacity. Models would only be 

able to analyse images obtained from the same orientation of the fetal heart (aortic, mitral valve, 

etc.) [1].  

Furthermore, analysing the complexity of the problem and the large amount of images available, 

deep learning (DL) could be a much more suitable option [2]. 

Given the rise and consolidation of DL based solutions on many industrial settings, the application 

of DL on fetal echocardiographic data is starting to be explored. This artificial intelligence (AI) 

branch has proven to be remarkably powerful regarding segmentation problems with large 

datasets. However, DL-based models are oftentimes regarded as black-box models that provide 

an output while hiding the decision process. This can have detrimental side effects such as bias in 

the decision process or due to processing data outside of the inherent variability of the training data 

pool. 

The development of an automatic segmentation tool for this type of medical images can bring 

substantial benefits. To begin with, the acquisition time and the working time of the professionals 

would be reduced leading to a larger number of tests being performed in the same period of time. 

Furthermore, human errors could be reduced as the tool performs the technical part of the 

diagnostic which allows to improve accuracy and reproducibility. Finally, this automatic tool would 

allow to obtain and analyse a bigger amount of information from the image. Currently, maximum 

velocity and the pulsatility index are the parameters measured, although other values such as 

shape or acceleration could contain important information that nowadays is not being considered.  

Based on the previous benefits observed, some initial DL models have been trained and tested in 

a project involving the processing and analysis of fetal flow waveforms to predict adverse perinatal 

outcomes with machine learning, in the scope of a grant awarded by the Bill and Melinda Gates 

Foundation's Global Health program, through Aga Khan University. The goal is to obtain a model 

with optimal performance to integrate it in a platform of fetal analisis [3].  

This project was devised as an opportunity to research alternative solutions to the existing pipeline 

in use, in collaboration with the project awarded by the Bill and Melinda Gates Foudation. The 

current solution, which will be detailed in section 4.1.1.3 presents a correct performance, but 

alternative data representations could have been employed. This project is based on implementing 

other approaches to this problem with the aim of addressing their potential as better and more 

optimal performing solutions. 
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1.1 Objective 
The initial hypothesis of this project is that exist different DL based algorithms for the segmentation 

of fetal Doppler echocardiographic images that improve the performance from the one already 

implemented.  

The main objective of this project is to develop several DL based algorithm that automatically 

delineates fetal Doppler echocardiography images for and evaluate their performance.  

In order to accomplish the first goal, secondary objectives have been stablished: 

• Design, train and evaluate the performance of different deep learning architectures. 

• Find an effective data representation. 

1.2 Description of the situation 
This project is developed as the final Biomedical Engineering degree project during its final year. It 

can be considered as a part of a research project by the Translational Computation in Cardiology 

group from Clinic-IDIBAPS. Concretely, it branches out form a project involving the processing and 

analysis of fetal flow waveforms to predict adverse perinatal outcomes with machine learning, in 

the scope of a grant awarded by the Bill and Melinda Gates Foundation's Global Health program, 

through Aga Khan University. 

As it is completely computational, the development of the project and the meetings are done online. 

This kind of workflow requires access to a computational environment with graphic processing units 

(GPU) such as the high performance computing (HPC) cluster from the University Pompeu Fabra 

(UPF) via VPN. 

Initially, this project was meant to be performed during the first semester, however the late start on 

the computational work made the project be postponed for the second semester. This was due to 

problems having access to the high performance computing environment which the University of 

Barcelona (UB) did not allow to access.  

Furthermore, with the aim of upgrading the initial knowledge around deep learning, some online 

courses were taken before starting the project: Introduction to Deep Learning (MIT 6.S191) and 

Intro to Deep Learning with Pytorch (Udacity). 

From a personal academic point of view, the main objective of this project is to get familiarized with 

artificial intelligence implementations and research. This would involve all the process from learning 

to use programming libraries such as PyTorch and data pre-processing metrics, to understanding 

all the steps from the design to the implementation of an artificial intelligence model. Furthermore, 

interacting with professionals share a common research goal is something really motivating.  

1.3 Scope and span 
The scope of this project is involved in different fields such as artificial intelligence (AI) algorithm 

development and diagnostic of fetal cardiac diseases.  

Doppler echocardiographic images contain velocity profiles that have valuable clinical information. 

This information is obtained by the delineation of this spectrum and obtaining a unidimensional 



10 
 

curve (Figure 4). Currently, this delineation is performed manually by professionals which is a 

tedious task. The development of this DL based algorithm would automatise the analysis of the 

spectrum and this would release the professionals from the manual segmentation task, leading to 

less human errors, and also allowing to obtain much more information and data that currently is not 

being obtained.  

 

Figure 4: Delineation of a doppler spectrum [4]. 

Spectral Doppler from echocardiography provides information about the velocity of blood flow over 

time. Therefore, it allows the measurement of maximal (highest point of the curve) and mean 

velocity. Doppler curves also provide valuable information about the timing of events, especially 

when relating the Doppler curves to the ECG tracing. For instance, it is possible to measure time 

intervals such as the ejection period, isovolumetric relaxation time, or diastolic filling time. Also, by 

viewing the slope of the curves (i.e. deceleration and acceleration times), velocity changes can be 

determined [5]. 

In order to develop this algorithm, the scope of the project encompasses: diving into the DL world 

and its applications related to echocardiographic images for fetal medicine, design of convenient 

data representation method in order to support better training, design of several DL architectures 

to be trained to achieve the purposed goal, evaluate the effectiveness of the models trained.  
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2. Background 

2.1 Echocardiography 
Echocardiography is a non-invasive test that uses sound waves to create moving pictures of the 

heart. Nowadays, it is a basic technique in fetal medicine to detect cardiovascular pathologies. 

Fetal echocardiography is used to diagnose cardiac conditions in the fetal stage, which are 

amongst the most common birth defects. The diagnosis of these conditions in the fetal stage is vital 

to clinically act as soon as possible and reduce harm in the fetus and mother. 

This non-radiant imaging technique shows the size and shape of the heart and show how well your 

heart's chambers and valves are working. Echo also can pinpoint areas of heart muscle that aren't 

contracting well because of poor blood flow or injury from a previous heart attack. It can detect 

possible blood clots inside the heart, fluid build-up in the pericardium (the sac around the heart), 

and problems with the aorta. The aorta is the main artery that carries oxygen-rich blood from your 

heart to your body [6]. 

The process to obtain ultrasound images is the following. A sound wave is produced by a 

piezoelectric transducer. Piezoelectric materials are compressed with a given electrical charge and 

return to their original shape when the charge is removed. Therefore, strong and short electrical 

pulses are applied that create the ultrasound wave. Materials at the end of the transducer and a 

watery gel that is placed between the patient’s skin and the probe permit an efficient transmission 

of the ultrasound, as air causes total reflection of ultrasound. The ultrasound is reflected at layers 

between different tissues, specifically where there are acoustic impedance changes in the body. 

The piezoelectric effect of the transducer also works in reverse and the return of the ultrasound 

provokes its vibration, which is converted into electrical pulses which are processed and 

transformed into a digital image. Depending on the time it took for the echo to be received and how 

strong this echo was, the corresponding pixel is illuminated with the corresponding intensity in the 

image. 

Compared to other imaging techniques such as MRI, echo provides a much better temporal 

resolution which allows to detect the pumping of the heart as the acquisition is immediate. This, 

however, comes at the expense of the spatial resolution, which is reduced. Nevertheless, for 

cardiac hemodynamics it is crucial to have high temporal resolution and this is the reason of the 

importance of this technique.  

Doppler ultrasonography measures blood flow velocities based on the Doppler effect, which is the 

changes in sound frequency as a sound source moves from the observer point of view. When an 

ultrasound beam is directed toward moving targets (red blood cells), the transducer determines the 

frequency shift which that is related to the velocity of the moving target, transmitted frequency and 

the angle between the direction of the ultrasound beam and the direction of the moving target. It is 

used for fetal hemodynamic and cardiac function and to study the movement of the baby and the 

blood inside him. The spectral Doppler shows blood flow velocities plotted against time. The 

information that can be obtained from a spectral Doppler trace includes flow velocity, direction of 

flow, the timing of the signal with cardiac events and intensity of the flow signal [7].  
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2.2 Artificial intelligence and deep learning 
Artificial intelligence (AI) is a discipline within the computer science field that aims to simulate 

human intelligence in machines. It is related to the similar task of using computers to understand 

human intelligence, but AI does not have to confine itself to methods that are biologically 

observable [8].  

Machine learning (ML) is a subset of AI that uses algorithms to parse data, learn from it, and then 

make a determination or prediction about something in the world. So rather than hand-coding 

software routines with a specific set of instructions to accomplish a particular task, the machine is 

“trained” using large amounts of data and algorithms that give it the ability to learn how to perform 

the task [9]. 

In order to build a ML model, there are 7 main steps to follow [10]: 

• Data collection: determine type of data to be collected and labels (for supervised training). 

• Data preparation: it consists on applying different steps in order to be able to train the 

model with this data. Usually, the data must be normalized, cleaned from errors or 

duplicates, and also visualized in order to recognize and minimize potential biases in the 

dataset. Finally, the data should be split in training and validation sets.  

• Choose a model: select the algorithm that fits better for the required task. 

• Training: the goal here is that the algorithm learns the required task as often as possible. 

In this process the data is shown to the model several times (training steps) and the 

algorithm progressively tunes the parameters to obtain a more accurate output. This step 

is usually performed by introducing the data from the training set. 

• Evaluation: once the model is trained, unseen data from the validation set is introduced 

to the model in order to check its performance. 

• Parameter tuning: the goal here is to modify model parameters seeking a performance 

improvement.  

• Make predictions: using further datasets, a better approximation of how the model will 

perform in the real world is obtained. 

Deep Learning (DL) is a subfield of ML based on algorithms inspired by the structure and function 

of the brain called neural networks. These neural networks (NN) attempt to simulate the behaviour 

of the human brain allowing it to “learn” from large amounts of data. While a neural network with a 

single layer can still make approximate predictions, additional hidden layers can help approximate 

more complex input-output mappings of data. 

DL has evolved hand-in-hand with the digital era, which has brought about huge amounts of data 

that traditional algorithms cannot take full advantage of. In addition, DL has benefitted from 

advanced computer hardware, such as graphical processing units (GPUs) and tensor processing 

units (TPUs), making it possible to train large NNs. 

The difference with ML, is that these algorithms can ingest and process unstructured data, like text 

and images, and it automates feature extraction, removing some of the dependency on human 

experts [11]. 
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2.2.1 Artificial neural networks  
ANNs are computational architectures inspired by the way biological nervous systems, such as the 

brain, process information [12]. It consists of multiple layers of simple processing elements called 

as neurons which perform two functions: the collection of inputs and the generation of outputs. 

In ANNs each node performs some simple non-linear computations and each connection conveys 

a signal from one node to another, labelled by a number called the “weight”. A node or neuron only 

depends on the information locally available, either stored internally or arriving via the weighted 

connections. A network formed by a single processing unit is called a perceptron and it is composed 

by three main parts.  

First, the inputs and the bias term that arrive through the weighted connections. Secondly, a 

weighted sum of the inputs is performed inside the node, which is known as linear combination. 

Finally, an activation function is applied which maps the output inside known range. Commonly, 

the function is non-linear which helps the model to generalize or adapt with variety of data and to 

differentiate between the output.  

 

Figure 5: Perceptron structure.  

The activation function controls the amplitude of the neuron’s output. Thus, the output of the neuron 

is a function of the linear combination of the inputs with the weighted connections. 

𝑦 = 𝑓(𝑧) = 𝑓 (∑ 𝑥𝑖𝑤𝑖

𝑖

) = 𝑓(𝑊𝑇𝑥 + 𝑏) 

Some of the most used activation functions are [13]: 

• Step function: allows to only activate the 

neuron in a situation where the input value is 

higher than a given threshold value or leave 

it deactivated when the condition is not met. 

𝑓(𝑥) =  {
0,    𝑥 < 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑

1, 𝑥 > 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑
 

 

Figure 6: Step function 
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• Sigmoid function: this function also presents a 

bounded range of activation.  

 

 

 

 

 

• Hyperbolic tangent function: presents a 

bounded range of activation but also 

considering negative values.  Hence, 

negative inputs of the hyperbolic functions 

will be mapped to a negative output as well 

as the input values that are nearing zero will 

also be mapped to output values nearing 

zero. 

• Rectified Linear Unit function (ReLU): 

This type of activation function is 

responsible for transforming the weighted 

input that is summed up from the node to 

the strict output or proportional sum. 

These functions are piecewise linear 

functions that usually output the positive 

input directly; otherwise, the output is 

zero. 

 

By itself, a single processing element is not very powerful as it only generates a scalar output. The 

power of the system emerges from the combinations of many units in an appropriate way and the 

non-linearity. Following this idea, ANNs architectures have several node layers where the initial is 

known as input layer and the last one as output layer. These structures follow a feed forward 

pipeline (Fig. 2) where a node can only connect forward to nodes from the next layer. Deeper node 

layers allow higher level feature extraction. 

2.2.2 Image segmentation 
Image segmentation aims to extract regions of interest from an image. The goal in the medical field, 

would be to extract or detect anatomical or pathological structures. It often plays a key role in 

computer aided diagnosis and smart medicine due to the great improvement in diagnostic efficiency 

and accuracy. Within the image segmentation field, one can identify the following types: semantic 

Figure 7: Sigmoid function 

Figure 8: Hyperbolic tangent function 

Figure 9: ReLU function 
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segmentation and instance segmentation. The first type is a pixel- level classification that assigns 

a corresponding category to each pixel in an image. The second type not only needs to achieve 

pixel- level classification, but also needs to distinguish instances on the basis of specific categories. 

Popular medical image segmentation tasks include liver and liver-tumour segmentation, brain and 

brain-tumour segmentation, optic disc segmentation, cell segmentation, lung segmentation and 

pulmonary nodules, etc [14].  

Several families of ANNs architectures that can be applied to cardiac image segmentation problems 

[15]. 

2.2.2.1 Convolutional Neural Networks (CNNs) 
A standard CNN consists of an input layer, an output layer and a stack of functional layers in 

between that transform an input into an output in a specific form. These functional layers often 

contain convolutional layers, pooling layers and/or fully connected layers. In general, a 

convolutional layer contains convolution filters, which is followed by a normalization layer and a 

non-linear activation function to extract feature maps from the input. These feature maps are then 

downsampled by pooling layers, which remove redundant features to improve the statistical 

efficiency and model generalization. After that, fully connected layers are applied to reduce the 

dimension of features from its previous layer and find the most task-relevant features for inference.  

 

Figure 10: Patch-based segmentation method based on a CNN classifier [15]. 

2.2.2.2 Fully Convolutional Neural Networks (FCNs) 
FCNs are a special type of CNNs that are designed to have an encoder-decoder structure such 

that the input and the output have the same size and only use convolutional operations. The 

encoder transforms the input image into a high-level feature representation whereas the decoder 

interprets the feature maps and recovers spatial details back to the image space by upsampling 

and convolution operations.  
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Figure 11: Architecture of an FCN. 

Compared to patch-based method for segmentation using CNNs, FCNs are trained and applied to 

the entire image removing the need for patch selection. However, these architectures may be 

limited to capture detailed context information as low level features can be eliminated by the pooling 

layers in the encoder.  

In [16] the U-net architecture is proposed as a solution for this problem. The skip connections that 

appear in this architecture concatenate channels from the encoder to the decoder at the same level 

so low-level features are not removed and spatial context is not lost.  

 

Figure 12: Architecture of a U-net. 

2.2.2.3 Generative Adversarial Networks (GANs) 
GANs are a type of generative models that learn to model the data distribution of real data and thus 

are able to create new image examples. These architectures consist of two networks: a generator 

and a discriminator. During training, the two networks compete against each other. The generator 

produces fake images aiming to fool the discriminator, and the last one tries to identify the real 

images from the fake ones. In segmentation, the discriminator would distinguish the segmentation 

maps from the ground truth maps encouraging the segmentation network (generator) to produce 

more accurate outputs.  
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Figure 13: GAN for segmentation applications. 

2.2.3 Training ANNs 
1. Input data: the training dataset previously processed is introduced into the model. 

2. Feedforward: this step generates an output with the model. Here the data is going in the forward 

direction applying the activation function after each node and the regularization method chosen. 

After each iteration, this output will be more accurate and the error will decrease as the weights 

update.  

3. Loss function: computes the error between the output obtained and the expected result. 

4. Backpropagation: activates the optimizer and updates the weights in order to decrease the error 

(goes in the backward direction).  

The training process is iterative which means that the steps will be repeated until convergence is 

reached, or training is stopped.  

2.2.3.1 Regularization 
The objective of a neural network is to have a final model that performs well both on the data used 

to train it and on the new data on which will be used to make predictions. Train a model that 

generalizes to unseen data it is a complex task. Underfitting corresponds to a situation where the 

model has not been trained enough, whereas overfitting corresponds to a situation where the model 

has lost the ability to generalize, and it performs well on the training set but poorly on new data 

[17].  

Regularization attempts to handle overfitting problems using different methods: 

• Weight regularization: penalises the model during training based on the magnitude of the 

weights. This will encourage the model to map the inputs to the outputs of the training 

dataset in such way that the weights of the model are kept small.  

• Activity regularization: penalises the model during training based on the magnitude of 

the activations. 

• Weight constraint: constrains the magnitudes of the weights to be within a range or below 

a limit. 

• Dropout: based on probability deactivates nodes during training. 
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• Noise: adds statistical noise to inputs during training. 

• Early stopping: monitors model performance on a validation set and stops training when 

performance decreases. 

• Data augmentation: it is a set of techniques to artificially increase the amount of data 

generating new items from existing data. 

2.2.3.2 Loss function 
The loss function addresses directly to the main goal of the network, which is to generate an output 

that solves the required task it is being trained for. This function corresponds to the mathematical 

representation of objectives and has an impact in accuracy and velocity for the learning process. It 

is a method of evaluating the error of the algorithm when it models the dataset. The value of the 

loss function indicates whether if the model is closer to an optimal performance or not. 

In order to choose a loss function for a model, it is connected by design to the activation function 

used in the output layer of the neural network.  

• Mean squared error (MSE): for regression problems with linear activation functions. 

• Cross entropy: for binary classification problems with sigmoid activation functions or 

multiclass classification problems with softmax activation functions. 

• Dice score: for image segmentation problems as a region-based loss function. 

2.2.3.3 Optimization 
During training, the network updates the weights in response to the errors the made on the training 

dataset. Updates are made to continually reduce this error until either a good enough model is 

found, or the learning process gets stuck and stops.  

The goal of an optimization algorithm is minimizing the loss function. This function will appear to 

be a non-convex surface with many “valleys” and so finding the global minima turns to be a 

challenging problem.  

• Gradient descent (GD): this 

algorithm will take the loss 

function of all the initialized 

weights and compute the 

gradient. This gradient will point to 

the steepest part of the loss 

function, which is the path to 

follow in order to minimize the loss 

function.  

• Stochastic gradient descent 

(SGD): this algorithm is a drastic 

simplification of GD. It appears to be more efficient as it estimates the gradient from the 

loss function of a randomly picked example on each iteration. This gradient will not be as 

accurate as in GD and more iterations will be taken, however this method is much faster 

as it saves computational costs with the loss functions calculations. [18] 

Figure 14: SGD scheme [42]. 
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• Adam: this algorithm is for first-order gradient-based optimization of stochastic objective 

functions, based on adaptive estimates of lower-order moments. It combines the 

advantages of AdaGrad, which works well with sparse gradients, and RMSProp, which 

works well in on-line and non-stationary settings. This method has proven to be effective 

as it takes big steps when far from the minima and smaller precise steps when closer to 

the minima of the loss function [19]. 

2.2.3.4 Backpropagation 
The backpropagation (BP) algorithm is commonly used for training ANN. Training is usually done 

by iterative updating of weights employing the loss function. This error signal is then 

backpropagated to the lower layers. Traditionally, two parameters, called learning rate (LR) and 

momentum factor (MF), are used for controlling the weight adjustment along the steepest descent 

direction and for dampening oscillations [20]. 

In order to control the training procedure, the learning rate (𝛼) plays a key role. This 

hyperparameter controls how much the weights (w) of the network are adjusted in each iteration 

with respect the loss gradient (∇𝐿(𝑤)). This value will be between 0 and 1: 

𝑤𝑡+1 = 𝑤𝑡 − 𝛼 ∗ ∇𝐿(𝑤) 

On the one hand, a high value could overshoot the 

minimum and fail to converge or even diverge, on 

the other hand a low value could take a long time to 

converge and even get stuck on a plateau region 

[21].   

In case of Adam optimizer, the learning rates are 

managed on a per-weight basis. 

  
Figure 15: Effect of various learning rates on convergence. 
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3. Market analysis 

3.1 Addressed sector 
As stated before, the delineation algorithm for Doppler echocardiographic images is mainly 

addressed to cardiac fetal medicine as an improvement for Doppler ultrasonography. Congenital 

heart disease is the most frequently occurring congenital disorder in new-borns and is the most 

frequent cause of infant death from birth defects [22]. These diseases affect nearly 1% of the births 

per year in the United States and the prevalence is increasing [23]. The increase in the diagnosis 

of heart defects has probably been influenced by improvements in diagnostic methods, such as the 

widespread use of echocardiography.  

3.2 Market evolution  
The market evolution of Doppler Ultrasound Systems is expected to gain market growth in the 

forecast period of 2021 to 2028. The growing acceptance of handheld devices will help in escalating 

the growth of the Doppler ultrasound systems market. The major factors that are expected to boost 

the growth of these systems market are the growing indices of cardiovascular diseases and the 

advances in the ultrasound diagnostic technologies [24].  

 

Figure 16: Market evolution [24]. 

3.3 Competition 
The potential competitors that this product can face in the marketplace are AI algorithms that offer 

an automatization method for delineation on Doppler echocardiographic images. These 

competitors are mostly on research phase. For this reason, a PubMed search has been performed 

with the key words “doppler echocardiography automatic segmentation” and articles older than 

2017 were not considered. In [25] the adoption of a supervised classifier trained with the samples 

representing the upper and lower velocity envelopes obtained from the Doppler spectrum achieved 

significant results. In [26] it is reviewed the automatic methods for analysing echocardiography 

data. On the Doppler spectral envelopes segmentation section, a conventional ML model presents 

promising results although it is only trained for mitral valve images and using only 25 patients. In 
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[27], a supervised classifier (a simple ANN) is used to identify measurable fetal heartbeats from the 

Doppler envelope and the results appear to have some limitations.  

3.4 Product environment  
The environment that is facing this product is potentially favourable. It can be observed that most 

of the approaches inside the competition do not apply DL architectures despite its superior 

performance. This can be explained due to the recent rise of this AI subset. Also, DL needs long 

training processes, large sets of annotated data and increased processing power. Fortunately, this 

product can cover these needs which can help to create a gap in this market.  
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4. Conception engineering   

4.1 Materials 
The data from which our model will be trained, evaluated and tested is provided by the Transversal 

Computation in Cardiology (IDIBAPS) research group. The dataset is private and previously a 

confidentiality agreement had to be signed.  

Regarding the dataset, it contains a total of 7063 doppler echocardiographic images. These images 

come from 2 different studies performed in fetal patients. These images where obtained from nine 

specific views of the cardiac anatomy, which can be observed in Table 1. The amount of image 

variability makes it a strong dataset as it might help promote model generalization and avoid 

overfitting.  

Table 1: Dataset summary 

Specific view Number of images 

Aortic isthmus 883 

Ductus arteriosus 879 

Ductus venosus 808 

Right ventricular outflow track 890 

Tricuspid valve 739 

Left ventricular outflow track 891 

Mitral valve 741 

Middle cerebral artery 884 

Umbilical artery 888 

 

Furthermore, as the training strategy followed is based on a supervised training, all the images 

must be labelled with its ground truth. In this case, the ground truth corresponds to the manual 

segmentation of a single cardiac cycle on each image performed previously by an expert 

cardiologist.  

 

Figure 17: Doppler echocardiographic image with ground truth superposed. 

Raw images that come out from a medical imaging device have the DICOM format. Each image 

anonymized and labelled with a unique identification number. The ground truth values are stored 



23 
 

in two csv file, one named y_coordinates.csv containing the values of the curves regarding the y 

axis and another one named x_coordinates.csv containing the values of the curves from the x axis.  

 

4.1.1 Data pre-processing  
As previously mentioned, images initially are stored with the DICOM format, which is the one 

generated after the acquisition with the echocardiography. However, the models can not read data 

in this format, images and ground truths must be in Tensor objects for the PyTorch library. Thus, 

all the data needs to go through a series of steps to apply a chosen data representation that models 

can read.   

 

Figure 18: Scheme of the pre-processing steps. 

In Figure 18, two different paths of data pre-processing are shown. The upper path corresponds 

to the pre-processing steps of the raw images, whereas the lower path corresponds to the pre-

processing of the ground truth curves.  

4.1.1.1 Pre-processing of raw images 
• Load images: according to the initial format (DICOM), images are loaded using the dicom 

library. The visualization of the images is possible with the matplotlib library using the 

imshow() method.  

• Compute image reference values: from the initial image is necessary to implement a 

function that computes the reference values of the image. These correspond to the 

coordinates of the doppler region and the coordinates of the reference line of the spectrum. 

These values are needed for cropping and for data representation of the ground truths. 

• Crop images: As it can be observed in Figure 19, the original images obtained from the 

acquisition contain the 2D echocardiography, several indicators and the doppler spectrum. 

Our region of interest is only the doppler spectrum and this is the only part of the image 

that should be transferred to the models. Consequently, images must me cropped to only 

contain the doppler region (Figure 20). This is done using the coordinates previously 

obtained that determine the limits of the doppler region.  
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• Convert to grayscale: Convert image to grayscale in order to have only one colour 

channel as an input for the model. Also, pixel values are converted to float values in range 

between 0 and 1 as opposed to the uint8 range between 0 and 255. 

4.1.1.2 Pre-processing of ground truth 
• Load ground truth curves: From the dataset the ground truths corresponding to each 

image are also obtained. As mentioned before these curves have been delineated by an 

expert cardiologist and correspond to a single cardiac cycle. 

• Skip unwanted ground truths: Once the curves are loaded, some of those need to be 

removed in case the curve is out of the doppler region, which corresponds to a bad manual 

segmentation and might not contain a full cardiac cycle.  

4.1.1.3 Choose data representation 
Once the images with their corresponding ground truths are pre-processed, a data representation 

needs to be chosen. The goal of this step is to optimize the performance of the model. The expected 

output is a full delineation of all the doppler spectrum. Thus, the data received by the model must 

be an image containing the doppler spectrum and the corresponding label containing a full 

delineation of the image.  

In Figure 21 it is shown how the data looks once it has gone through the pre-processing steps. 

 

Figure 21: Image with ground truth of a full cardiac cycle. 

Figure 19: Original image. 

Figure 20: Cropped image. 
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A clear problem is observed. The ground truth corresponds to the delineation of a single cardiac 

cycle; however, the model must receive an image labelled with its full delineation.  

The research group responsible of this project, proposed a solution for this problem which was 

already implemented in the first models.  

This solution is based on only using the segment of the image that corresponds to the delineation 

of the ground truth and generate an image by repeating this segment. It could be called tiling 

strategy. 

 

Figure 22: Scheme of the tiling strategy. 

The first step of the tiling strategy is to crop the image containing the full doppler spectrum so that 

it only represents the ground truth span. The current image now only contains a full cardiac cycle 

that corresponds to the ground truth curve. Then, the image is repeated alongside the x-axis as 

many times as needed so that the x dimension has a length of 512 pixels. The same repetitions 

are performed for the ground truth curve. The hard cut was smoothed using a small Gaussian filter 

in the borders of each cycle. 

 

Figure 23: Image generated by the repetition of the ground truth segment. 

In Figure 23, it is shown the result of applying the tiling strategy. These images correspond to the 

repetition of the same exact cardiac cycle.  

• Baseline solution, from the reference line to the curve position:  
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This is the existing data representation used in the previous models by the research group and it 

is the way is usually done for segmentation problems (MRI, CT, etc). This is the baseline where 

this project intends to test other data representations and try to generate better results.  

A binary mask is created from the ground truth curve. Values between the reference line and the 

curve position receive a value of 1, whereas values outside this region receive a value of 0. 

 

Figure 24: Binary mask from the reference line until the curve. 

• Binary mask around the curve position: 

Based on the existing solution, a different approach using a binary mask is proposed.  

 

Figure 25: Scheme for the generation of the binary mask. 

Initially, an empty mask is initialized with the same size as the doppler image. Using the coordinates 

of the ground truth, a value of 1 is assigned to those pixels that find themselves close to the position 

curve. A width value predefined determines which is the width wanted of the curve in the mask. 

 

Figure 26: Pre-processed image and ground truth withoud tiling. 
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Figure 27: Binary mask with 20 pixel width. 

In Figure 26, it is observed the initial image with the ground truth. In Figure 27, it is shown the binary 

mask after applying a width value of 20 pixels around the position curve. 

 

Figure 28: Segment cropped 

Next, the mask is cropped so that it only contains the segment with the ground truth, as it is shown 

in Figure 28. 

 

Figures 29, 30 and 31: Binary mask with width values of 20, 30 and 40 pixels respectively 

Finally, the segment from Figure 28 is repeated to obtain the final mask. These final steps are the 

same performed on the images as shown in Figure 22.  

In Figures 29, 30 and 31, it is shown the final mask with different width values. Each model will be 

trained using three different width values: 20, 30 and 40 pixels. 

• Linear regression: 

Instead of introducing the ground truth as a modified binary mask, this approach is based on 

introducing the ground truth as a curve. In order to do this, the model needs to receive a 2D input 

image and generate a 1D output prediction.  
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For this case, a similar approach as [28] is implemented. The Soft-argmax function along the width 

axis allows to convert feature maps directly to joint coordinates, resulting in a fully differentiable 

framework. To do so a layer is added at the end of the network that operates through the previous 

2D output generating a unidimensional vector prediction. While for the other cases the predicted 

output presents a shape of 256x512, in this case the predicted output will be 1x512 and thus 

obtaining a 1D vector.  

 

Figure 32: Ground truth tiled. 

For this approach, the tiled ground truth curve (Figure 32) that is given to the model is obtained 

following the same last steps as in Figure 22.  

4.1.2 Dataset splitting 
In order to perform a good evaluation of the models, the dataset must be divided in 3 sets. 

• Training set: the images in this set are used for training the model. This images are 

introduced to the model while training in order to fit the model.  

• Validation set: the images in this set are used to provide an unbiased evaluation of the 

model fitted on the training set while tunning the model hyperparameters. 

• Test set: the images in this set are used for the performance evaluation of the final model. 

These images are completely unknown for the model. After training, the model predicts the 

output for all the test set and the result is compared to the ground truths using different 

metrics for evaluation.  

 

4.2 Network architectures 
In this section, the possible network architectures that can be used for the segmentation of the 
images will be discussed. Most of them involve FCNs, and particularly U-Nets and W-nets.  
 

4.2.1 U-net 
The U-net implemented in this project will be based on the model proposed by [16]. In this paper 

the model implemented presents good performance using very few annotated images and does 

not demand a time-expensive training. 
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The main structure of this network consists of a contracting path or encoder and an expansive path 

or decoder. The symmetry between both paths yields a u-shaped model. The contracting part 

follows the typical architecture of an FCN. It consists of the repeated application of two 3x3 

convolutions each followed by a rectified linear unit and a 2x2 max pooling operation with stride 2 

for downsampling. At each downsampling step the number of feature channels is doubled. Every 

step in the expansive path consists of an upsampling of the feature map or a 2x2 up-convolution 

that halves the number of feature channels, a concatenation with the correspondingly cropped 

feature map from the contracting path, and two 3x3 convolutions, each followed by a ReLU. At the 

final layer a 1x1 convolution is used to map each component feature vector to the desired number 

of classes. It is important to select the input image size such that all the 2x2 max-pooling operations 

are applied to a layer with size values of powers of 2. Also, the initial channel number must be a 

power of 2 in order to avoid problems with the max-pooling operations [16]. 

 

Figure 33: U-net architecture [16]. 

 

Medical images present a series of characteristics that are challenging for segmentation problems. 

Different from common image segmentation, medical images usually contain noise and show 

blurred boundaries. On the one hand, it is very difficult to detect or recognize objects only 

depending on image low-level features. On the other hand, it is impossible to obtain accurate 

boundaries depending only on image high-level features due to lack of image detail information.  

The encoder – decoder system of the U-net is a possible solution to this problem. The encoder 

path performs convolutions such as a CNN extracting image features from high to low levels 

according to the network’s depth. Then, the decoder path is used to restore extracted features to 
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the original image resolution and output the final segmentation results. To avoid losing information 

from the initial features extracted, skip connections are performed from the encoder path to the 

decoder path at the same level to fuse low- and high-resolution information. At this point a problem 

might be present due to the large semantic gap between features but can be solved by performing 

some additional convolution operations after fusing. Currently, the U-Net has become the 

benchmark for most medical image segmentation tasks and has inspired a lot of meaningful 

improvements [14]. 

The regularization techniques implemented seek to improve results. In [29] it is shown that, after 

testing many configurations, the use of batch normalization and spatial drop-out provides with the 

best results. 

• Batch normalization: this step is necessary after each convolution operation in order to 

standardise the inputs, which means that inputs should have approximately zero mean and 

unit variance. Mathematically, it transforms each input in the current mini-batch by 

subtracting the input mean in the current mini-batch and dividing it by the standard 

deviation. This operation helps the network training by restricting the distribution of the 

input data to any particular layer, which helps the network to produce better gradients for 

weights update. Hence batch normalization often provides a much stable and accelerated 

training regime [30]. 

• Spatial drop-out: this operation is performed after each convolution operation. It works by 

probabilistically removing inputs to a layer, which may be input variables in the data sample 

or activations from a previous layer. It has the effect of simulating a large number of 

networks with very different network structure and, in turn, making nodes in the network 

generally more robust to the inputs. It helps the network generalise better during training 

and can drastically reduce the chance of overfitting. In this case, instead of removing 

individual units, spatial dropout drops entire 2D feature maps. If adjacent pixels within 

feature maps are strongly correlated it will help promote independence between feature 

maps.  

• Padding: the padding operation allows to preserve the original input size of an image after 

a convolution operation. It consists of adding a border of pixels with value zero around the 

edges of the image after the convolution. The number of pixels that need to be added to 

the edges depends on the kernel size used on the convolution. As the kernel used in the 

model is 3x3, the number of pixels added must be 1 to preserve the size of the image. In 

Figure 33, it is observed a cropping step before the skip connections, however by adding 

a padding of 1 on each convolution there is no need for cropping as size is preserved 

through all the network.  

4.2.2 W-net 
The W-net implemented in this project was based on the structure proposed by [31], which is based 

on concatenating together two fully convolutional networks into an encoder-decoder framework, 

where each of the FCNs are variants of the U- Net architecture. This decision is based on the 

outperformance of this model over a number of existing classical and recent techniques. Also, W-

net architecture has proven to be working well on several segmentation problems applied to 

biomedical images. 
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Figure 34: W-net architecture [31]. 

The W-net structure (Figure 34) is divided into two U-shaped paths which correspond to the 

encoder (𝑈𝐸𝑛𝑐) on the left side and the decoder (𝑈𝐷𝑒𝑐) on the right side. The working principle of 

each convolutional block is the same as the previous U-net architecture, as well as the 

downsampling, upsampling and skip connections. The main difference would be the transition 

between the encoder and the decoder, where a softmax layer is applied. This layer rescales the 

output of the encoder so that the elements lie in the range (0,1) and sum to 1. The decoder receives 

this output. The final convolutional layer is a 1x1 convolution to map the feature vector back to a 

reconstruction of original input. For the implementation of this architecture, the loss function used 

will be different from the ones appearing in Figure 34, as only a Dice loss function will be computed 

as a reconstruction loss from the end of the decoder path to the start of the encoder path.  

4.3 Training 
For the training part the coding language used will be Python and the main library used will be 

PyTorch. Even though there are other DL libraries such as Keras or TensorFlow, PyTorch has a 

very similar structure as Numpy, which makes it easier to use, and also the research group had 

already been working on this project using PyTorch.  

The work on the training of the models is going to be based on a previous code repository generated 

by the research group which had already been tested. The modifications regarding the data 

representation will be performed on the python file for training and the modification of the model 

parameters for training will be performed on the configuration file (json format).  

The training of the models will be performed by the high performance computing cluster (HPC) and 

so the jobs will be sent via VPN connection.  

4.4 Performance evaluation metrics 
In this section several evaluation metrics are going to be analysed. The main goal is to measure 

the performance of the different models trained. This evaluation will be applied to the model when 

predicting the images from the test dataset, where the prediction will be compared to the ground 

truth of the image. 
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Depending on the model’s data representation, the metrics are divided into imaging-based and 

regression. 

4.4.1 Imaging based metrics 

4.4.1.1 Hausdorff distance  
The Hausdorff distance measures how far two subsets from the same metric space are from each 

other. In other words, measures how similar two objects are (images, etc). Informally, the Hausdorff 

distance is the greatest of all distances from a point in one set to the closest point in the other set. 

Mathematically, X and Y are non-empty subsets of a metric space and the Hasudorff distance is 

defined to be [32] 

 

 

. 

 

 

This distance is a widely used as a model performance 

measure for segmentation problems. It  allows to compare binary images, such as the ground truth 

with the prediction generated by the trained model. In our case, this evaluation method would allow 

to measure the distances using the binary masks directly instead of having to transform them into 

unidimensional curves. However, it needs to be pointed out that the presence of outliers might lead 

to a bad evaluation as the final measure corresponds to the maximum distance which could 

correspond to an outlier.  

4.4.1.2 Dice Coefficient 
The Dice Coefficient is a highly used evaluation metric for 

semantic segmentation. It is computed as two times the area of 

overlap between the two images divided by the total number of 

pixels in both images [33]. This metric would also avoid the 

process of transforming the binary images into curves as it 

directly compares the images 

 

 

 

Figure 35: Computation of the Hausdorff 
distance between 2 images. 

Figure 36: Graphic explanation of the 
computation of the Dice coefficient. 
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4.4.2 Regression metrics 

4.4.2.1 Root Mean Square Error 
The root mean square error (RMSE) is the square of the mean of the square of all the error. The 

use of RMSE is very common and it is considered an excellent general-purpose error metric for 

numerical predictions. Formally it is defined as follows, where �̂� are the predicted values, y the 

observed values and n the number of observations. 

𝑅𝑀𝑆𝐸 = √∑
(�̂�𝑖 − 𝑦𝑖)2

𝑛

𝑛

𝑖=1

 

4.4.2.2 Mean Absolute Percentage Error 
The mean absolute percentage error (MAPE) is one of the most popular metrics for evaluating 

forecasting performance.  

𝑀𝐴𝑃𝐸 =
100%

𝑛
∑ |

𝑦 − �̂�

𝑦
|

𝑛
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It computes the mean absolute error and converts it to a percentage. The use of the absolute value 

provides this metric with robustness regarding the effects of outliers. However, it needs to be taken 

into account that the division operation forces the result to be undefined for data point of value 0 

[34]. 

4.4.2.3 Cross-correlation 
The cross-correlation metric tracks the movement of two sets of data relative to one another. It 

compares those sets and objectively determines how well they match up. This metric does not 

consider how the sets are scaled, only their evolution. The possible range for the correlation 

coefficient is from -1 to 1, where 1 reflects identical data sets [35].   
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5. Detailed engineering 

5.1 Implemented architectures 
In this section all the architectures implemented in this project are developed. The following models 

have been designed from a common python file which allows to modify several parameters to train 

different models and test their performance. These parameters are: number of profundity levels of 

the network, initial number of channels, number of channels at the output and number of 

convolutions per level.  

The feature number on the first convolution for each network has been chosen according to the 

training capacity of the computer as well as the batch size (explained in 5.2). By using padding the 

initial size of the images is conserved through all the steps.  

According to the different data representations, when models use the linear regression an 

additional layer is implemented. A Soft Argmax operation layer is added at the end of the network 

generating an unidimensional vector output. 

5.1.1 U-net with 5 levels 
 

 

Figure 37: U-net architecture with 5 levels. 
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5.1.2 U-net with 6 levels 

 

Figure 38: U-net architecture with 6 levels. 

5.1.3 U-net with 7 levels 

 

Figure 39: U-net architecture with 7 levels. 
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5.1.4 W-net with 5 levels 

 

Figure 40: W-net architecture with 5 levels. 

5.1.5 W-net with 6 levels 

 

Figure 41: W-net architecture with 6 levels. 

5.1.6 W-net with 7 levels 
 

 

Figure 42: W-net architecture with 7 levels. 

 

5.2 Training strategy  

5.2.1 Validation test 
Firstly, the correct functionality of the network was tested. In order to do so, the 5.1.4 model was 

chosen. As all the networks are based on the same structure testing the performance of one is 

enough. This validation test was based on training the model with the mask that is currently being 
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implemented by the research group. This type of data representation was already validated 

previously to this project. 

 

 

 

 

 

 

As it can be observed the prediction is good. Which means that the network working adequately. 

5.2.2 Calibration 
Due to the computational capacity limitations of the HPC, each model had to be trained with 

several parameters in order to choose the optimal ones. These parameters to choose were: initial 

number of channels, batch size and RAM memory used.  

After several trials, the parameters appeared to be mainly dependent on the profundity level.  

Table 2: Training parameters chosen. 

Model Number of channels Batch size RAM memory 

5 level network 64 4 64 G 

6 level network 64 4 64 G 

7 level network 32 4 64 G 

 

5.2.3 Job strategy 
Table 3: Job strategy. 

Model Data representation Job order / Model ID 

U-net with 5 levels Binary mask with 20 pixel width 1  

U-net with 5 levels Binary mask with 30 pixel width 2  

U-net with 5 levels Binary mask with 40 pixel width 3  

U-net with 6 levels Binary mask with 20 pixel width 4  

U-net with 6 levels Binary mask with 30 pixel width 5  

U-net with 6 levels Binary mask with 40 pixel width 6  

U-net with 7 levels Binary mask with 20 pixel width 7  

U-net with 7 levels Binary mask with 30 pixel width 8  

U-net with 7 levels Binary mask with 40 pixel width 9  

W-net with 5 levels Binary mask with 20 pixel width 10  

W-net with 5 levels Binary mask with 30 pixel width 11  

W-net with 5 levels Binary mask with 40 pixel width 12  

W-net with 6 levels Binary mask with 20 pixel width 13  

W-net with 6 levels Binary mask with 30 pixel width 14  

W-net with 6 levels Binary mask with 40 pixel width 15  

Figure 43 and 44: First image is the curve predicted by the model and second image is the prediction. 
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W-net with 7 levels Binary mask with 20 pixel width 16  

W-net with 7 levels Binary mask with 30 pixel width 17  

W-net with 7 levels Binary mask with 40 pixel width 18  

U-net with 5 levels Linear regression  19  

U-net with 6 levels Linear regression 20  

U-net with 7 levels Linear regression 21  

W-net with 5 levels Linear regression 22  

W-net with 6 levels Linear regression 23  

W-net with 7 levels Linear regression 24  

 

5.3 Implemented metrics 
The performance evaluation of the models is performed using the metrics described in 4.4. This 

evaluation is based on using the images from the test set and comparing the predictions of the 

model with the ground truths. For the images, the same pre-processing steps must be performed 

as in 4.1.1.  

For the computation of the metrics, the dice coefficient function has been defined in python, the 

hausdorff distance function used is from the skimage library [36], the root mean square function 

used if from the torch library [37], the MAPE function is used from the sklearn library [38] and the 

cross correlation function has been defined in python. 

5.4 Model results 
In this section it is shown the segmentation performance of the models trained. This performance 

is measured by the metrics proposed. Also, each model performance is illustrated observing the 

segmentation of a randomly selected image from the test dataset: 

 

Figure 45: Random selected image. 

The results obtained are being compared to the performance evaluation of the baseline solution. 

This model is a W-net network and uses the baseline data representation that uses a binary mask 

from the reference line to the curve position. The metric values are the following: 

Table 4: Baseline solution metrics. 

Dice coefficient 

0.9037749568759134 

Hausdorff distance 

42.27339812812656 
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RMSE 

13.079955740447383 

MAPE 

0.06595673562824161 

Cross correlation 

0.9941020288719871 

 

5.4.1 Model ID: 1 
 

Table 5: Metric values for Model 1. 

Dice coefficient 

0.2888593779634916 

Hausdorff distance 

112.77724301708936 

 

 

 

5.4.2 Model ID: 2 
 

Table 6: Metric values for Model 2. 

Dice coefficient 

0.0290460034543923 

Hausdorff distance 

108.39900992723237 

 

 

 

5.4.3 Model ID: 3 
 

Table 7: Metric values for Model 3. 

Dice coefficient 

0.029562358012144515 

Hausdorff distance 

103.45635826660497 

 

 

Figure 46: Prediction of Model 1. 

Figure 47: Prediction of Model 2. 

Figure 48: Prediction of Model 3. 
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5.4.4 Model ID: 4 
 

Table 8: Metric values for Model 4. 

Dice coefficient 

0.055413129533081605 

Hausdorff distance 

112.96051780423169 

 

 

 

5.4.5 Model ID: 5 
 

Table 9: Metric values for Model 5. 

Dice coefficient 

0.2688098856245765 

Hausdorff distance 

107.38066416850435 

 

 

 

5.4.6 Model ID: 6 
 

Table 10: Metric values for Model 6. 

Dice coefficient 

0.4808080053428538 

Hausdorff distance 

101.89651283079445 

 

Figure 49: Prediction of Model 4. 

Figure 50: Prediction of Model 5. 

Figure 51: Prediction of Model 6. 
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5.4.7 Model ID: 7 
 

Table 11: Metric values for Model 7. 

Dice coefficient 

0.1515928791189047 

Hausdorff distance 

112.80008559554199 

 

 

 

5.4.8 Model ID: 8 
 

Table 12: Metric values for Model 8. 

Dice coefficient 

0.3906598849433161 

Hausdorff distance 

107.3517679103469 

 

 

 

5.4.9 Model ID: 9 
 

Table 13: Metric values for Model 9. 

Dice coefficient 

0.38333541319025305 

Hausdorff distance 

101.77876045003754 

 

Figure 52: Prediction of Model 7. 

Figure 53: Prediction of Model 8. 

Figure 54: Prediction of Model 9. 
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5.4.10 Model ID: 10 
 

Table 14: Metric values for Model 10. 

Dice coefficient 

0.17122470264677275 

Hausdorff distance 

112.9839369615932 

 

 

 

5.4.11 Model ID: 11 
 

Table 15: Metric values for Model 11. 

Dice coefficient 

0.1936857640737967 

Hausdorff distance 

107.43865191959758 

 

 

 

5.4.12 Model ID: 12 
 

Table 16: Metric values for Model 12. 

Dice coefficient 

0.2669584902466908 

Hausdorff distance 

101.89413559433615 

 

Figure 55: Prediction of Model 10. 

Figure 56: Prediction of Model 11. 

Figure 57: Prediction of Model 12. 
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5.4.13 Model ID: 13 
 

Table 17: Metric values for Model 13. 

Dice coefficient 

0.14464378810129014 

Hausdorff distance 

112.9839369615932 

 

 

 

5.4.14 Model ID: 14 
 

Table 18: Metric values for Model 14. 

Dice coefficient 

0.2904967162514867 

Hausdorff distance 

107.43865191959758 

 

 

 

5.4.15 Model ID: 15 
 

Table 19: Metric values for Model 15. 

Dice coefficient 

0.02896816555805188 

Hausdorff distance 

101.89651283079445 

 

Figure 58: Prediction of Model 13. 

Figure 59: Prediction of Model 14. 

Figure 60: Prediction of Model 15. 
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5.4.16 Model ID: 16 
 

Table 20: Metric values for Model 16. 

Dice coefficient 

0.006557661217977295 

Hausdorff distance 

112.9839369615932 

 

 

 

5.4.17 Model ID: 17 
 

Table 21: Metric values for Model 17. 

Dice coefficient 

0.2334054929548093 

Hausdorff distance 

107.43865191959758 

 

 

 

5.4.18 Model ID: 18 
 

Table 22: Metric values for Model 18. 

Dice coefficient 

0.5579057875787617 

Hausdorff distance 

101.89651283079445 

 

Figure 61: Prediction of Model 16. 

Figure 62: Prediction of Model 17. 

Figure 63: Prediction of Model 18. 
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5.4.19 Model ID: 19 
 

Table 23: Metric values for Model 19. 

MAPE 

0.613529644502693 

Cross correlation 

0.475845873782959 

RMSE 

54.16038780523438 

 

 

5.4.20 Model ID: 20 
 

Table 24: Metric values for Model 20. 

MAPE 

0.6733614099206194 

Cross correlation 

0.4451213431361262 

RMSE 

78.58893781959979 

 

 

5.4.21 Model ID: 21 
 

Table 25: Metric values for Model 21. 

MAPE 

0.41635479331792047 

Cross correlation 

0.4688914738762607 

RMSE 

49.631254910544804 

 

Figure 64: Prediction of Model 19. 

Figure 65: Prediction of Model 20. 

Figure 66: Prediction of Model 21. 
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5.4.22 Model ID: 22 
 

Table 26: Metric values for Model 22. 

MAPE 

0.46045785743531203 

Cross correlation 

0.477294404839291 

RMSE 

46.20067670080675 

 

 

5.4.23 Model ID: 23 
 

Table 27: Metric values for Model 23. 

MAPE 

0.4353168228056141 

Cross correlation 

0.46989182126151186 

RMSE 

48.36919890598897 

 

 

5.4.24 Model ID: 24 
 

Table 28: Metric values for Model 24. 

MAPE 

0.41409849265332593 

Cross correlation 

0.47048364551350375 

RMSE 

46.253778589329926 

 

 

 

 

Figure 67: Prediction of Model 22. 

Figure 68: Prediction of Model 23. 

Figure 69: Prediction of Model 24. 
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5.4.25 Summary 

 
Table 29: Summary of the performance evaluation (Models 1 to 18). 

Model ID Dice coefficient Hausdorff distance 

1 0.2888593779634916 112.77724301708936 

2 0.0290460034543923 108.39900992723237 

3 0.029562358012144515 103.45635826660497 

4 0.055413129533081605 112.96051780423169 

5 0.2688098856245765 107.38066416850435 

6 0.4808080053428538 101.89651283079445 

7 0.1515928791189047 112.80008559554199 

8 0.3906598849433161 107.3517679103469 

9 0.38333541319025305 101.77876045003754 

10 0.17122470264677275 112.9839369615932 

11 0.1936857640737967 107.43865191959758 

12 0.2669584902466908 101.89413559433615 

13 0.14464378810129014 112.9839369615932 

14 0.2904967162514867 107.43865191959758 

15 0.02896816555805188 101.89651283079445 

16 0.006557661217977295 112.9839369615932 

17 0.2334054929548093 107.43865191959758 

18 0.5579057875787617 101.89651283079445 

 

Table 30: Summary of the performance evaluation (Models 19 to 24). 

Model ID MAPE Cross correlation RMSE 

19 0.613529644502693 0.475845873782959 54.16038780523438 

20 0.6733614099206194 0.4451213431361262 78.58893781959979 

21 0.41635479331792047 0.4688914738762607 49.631254910544804 

22 0.46045785743531203 0.477294404839291 46.20067670080675 

23 0.4353168228056141 0.4698918212615118 48.36919890598897 

24 0.41409849265332593 0.4704836455135037 46.253778589329926 

 

The results obtained for each model are illustrated with a representative example alongside the 

metrics. The dice coefficient shows better results for models 6, 8, 9 and 18. However, these results 

do not relate to the hausdorff distance values. The representative examples of these models do 

show a slight improvement over the other, although the segmentation is not optimal.  

Regarding the linear regression, models 21 to 24 present better metric values for MAPE and RMSE 

than models 19 and 20. Although the best results are not optimal, these results may suggest a 

better performance of more complex architectures with larger depth when using linear regression 

as data representation.  

The results obtained for the alternative models proposed can be compared to the metric values of 

the baseline solution in Table 4. It is clear that no model improves the performance of the baseline 

solution as the metric values are worse for the models proposed.  
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To analyse better the metric values, the mean and standard deviation (Std) of some aggrupation 

of models is calculated. The comparisons are made between network architectures (U-net and W-

net), network depth (5, 6 and 7 levels) and the width of the binary mask tested (20, 30 and 40 

pixels). 

Table 31: Network architecture comparison table. 

 U-net W-net 

Metric Mean Std Mean Std 

Dice 0.230898548575 0.161375125165 0.210427396514 0.153301092176 

Hausdorff 
distance 

107.6445466633 4.306281378336 107.4394364332 4.52674552818 

MAPE 0.567748615913 0.109802936142 0.436624390964 0.01894870227 

Cross correlation 0.463286230265 0.013154549601 0.472556623871 0.00335881828 

RMSE 60.79352684512 12.71837908978 46.94121806537 1.009967627702 

 

The comparison between network architectures shows better mean value of the metrics for the W-

net, although the Dice coefficient points the other way. It is important to notice that the differences 

between both architectures are not significantly big. Also, most values show a poor performance of 

the models. 

Table 32: Network depth comparison table. 

 5 levels 6 levels 7 levels 

Metric Mean Std Mean Std Mean Std 

Dice 0.16322278 0.1027993 0.21152328 0.15502818 0.2872428 0.17947647 

Hausdorff 
distance 

107.824889 4.2007593 107.426132 4.52169257 107.37495 4.51346204 

MAPE 0.53699375 0.0765358 0.55433911 0.11902229 0.4152266 0.00112815 

Cross 
correlation 

0.47657013 0.0007242 0.45750658 0.01238523 0.4696875 0.00079608 

RMSE 50.1805322 3.979855 63.4790683 15.1098694 47.942516 1.68873816 

 

When comparing the mean values of the metrics between models using different depth of the 

network, it is shown that most metrics point out a better performance when using 7 level networks. 

However, the same behaviour as the previous comparison it is observed, where differences are 

not significantly big and metric values show a non-optimal performance. 

Table 33: Mask width comparison table. 

 20 pixels 30 pixels 40 pixels 

Metric Mean Std Mean Std Mean Std 

Dice 0.13638192 1.6887381 0.23435062 0.10998251 0.2912563 0.20549920 

Hausdorff 
distance 

112.914942 0.0899176 107.57456 0.37021674 102.13646 0.59182281 
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This comparison table focuses on the binary mask proposed in this project as a data representation, 

which is based on creating a mask of different width around the curve position. The results show 

that better mean metric values are observed with models using masks with bigger width value, 40 

pixels. 
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6. Execution chronogram 

In this section it is defined the timing regarding tasks and the organization of the project. Initially, 

the project was meant to be developed in a time range of one semester, although due to access 

problems to a suitable computational environment (explained in 1.2) delayed the start of the project. 

This force to modify the duration and dates for all the tasks. Finally, the project started in November 

2021 and finished in June 2022.  

6.1 Work breakdown structure (WBE) 
Decomposition of the tasks involved in the project: 

 

Figure 70: Work Breakdown Structure 

6.2 WBE dictionary 
Table 34: WBE dictionary. 

Task Description Related activities 

PM1 – Starting point Creation of the project.  - Initial meeting with research 
group. 
- Definition of objectives. 
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PM2 – Planning General planning of the 
project. 

- Task definition. 
- Chronologic plan. 
- Programming of the meetings 
for monitoring and doubts. 
- Control checkpoints definition. 

CE – Conception engineering Analysis of all the previous 
information necessary to 
define and develop the 
project. 

- State of the art and background 
analysis. 
- Market analysis. 
- Limitations.  
- Familiarization with Pytorch 
library 
- Network analysis. 
- Familiarization with the dataset. 
- Data representation analysis. 
- Familiarization with the use of 
the HPC cluster and the 
procedure for sending jobs. 
- Familiarization with the original 
code for training. 
- Evaluation metrics analysis. 

E1 – Network design Design of the chosen 
model architectures that 
will be trained.   

- Development of a primary 
network. 
- Generalization of the network 
with several modifiable 
parameters. 
- Testing of the correct 
functioning of all the networks. 

E2 – Data representation Design of the chosen data 
representations.  

- Data pre-processing. 
- Code development. 
- Testing of a good 
generalization for all images. 
- Error analysis and correction 

E3 – Model training Training of the different 
models chosen using the 
different data 
representations. 

- Parameter modification of the 
original code according to the 
training designed for each 
model. 
- Error analysis and correction. 

E4 – Model evaluation Evaluation of the 
performance of each 
model trained using the 
metrics chosen. 

- Code development for each 
metric. 
- Collection and analysis of the 
results.  

C1 – Objective analysis Checking the 
accomplishment of the 
goals defined at the 
beginning of the project. 

 

 

6.3 Precedence analysis 
In this section it is presented the dependencies between the tasks mentioned above.  
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Table 35: Precedence analysis. 

Task Name Antecedent Durtion (weeks) 

PM1 Starting point - 1  

PM2 Planning PM1 8  

CE Conception engineering PM2 11 

E1 Network design CE 10 

E2 Data representation CE 10 

E3 Model training E1/E2 5 

E4 Model evaluation E3 5 

C1 Objective analysis E4 4 

 

6.4 GANTT chart 

 

  

Figure 71: GANTT diagram. 
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7. Technical viability 

7.1 Technical requirements 
To perform this project, a high performance computation environment with several GPUs was 

needed, so that can the computational requirements regarding the training phase could be dealt 

with. This HPC is provided by the UPF and the connection is made via VPN in order to allow access 

from different locations.  

Regarding the local server, it is needed to create a local virtual environment containing all the 

according libraries. This would allow to work and test code from the local server without having to 

connect to the HPC every time a code needs to be executed.  

Furthermore, a pre-existing repository created by the research group needed to be downloaded. 

This repository contains all the files needed for training and it is downloaded via GitHub.  

7.2 SWOT analysis 

 

Figure 72: SWOT analysis. 

7.2.1 Strengths 
• Less time consuming than current methods: Current segmentation methods of doppler 

echocardiographic image involve manual delineation steps for the posterior analysis of the 

image. However, the proposed tool would provide with a pipeline for analysing these 

images much less time consuming. Furthermore, healthcare professionals would have less 

workload regarding automatic specialized tasks and their working time could be optimized.   

• Automatization: Manual segmentation largely depends on the experience of the 

professional performing the task. Whereas the automatization of this task would 
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significantly reduce the influence of the individual experience and consequently decrease 

the rate of human errors.  

• Cost-effectiveness: This tool would be extremely cost-effective as it would considerably 

reduce workforce and time, and at the same time improve performance. 

7.2.2 Weaknesses 
• Black box effect: DL models are provided with a sufficient complexity that they are not 

straightforwardly interpretable to humans. The lack of interpretability in predictive models 

can undermine trust in those models, especially in health care where decisions have a 

direct impact on the patient’s health. Therefore, it is reasonable to think that healthcare 

professionals could be reluctant to such an opaque tool.  

• Limited time: the structure and development of this project has been influenced by the 

limited timings. Further trials could have been made to reinforce results by testing the 

performance of other models based on different architectures and using different data 

representations.  

7.2.3 Opportunities 
• Easy funding: Echocardiographic images are one of the most commonly used imaging 

techniques, which an automatization of the segmentation for the analysis is a really 

interesting asset for many companies in the sector. Therefore, it would not be really hard 

to find funding.  

• More analysis information: This segmentation tool not only would provide the information 

that is currently being analysed by the current method, but much more information of every 

image could be extracted and this would provide with more information for the posterior 

analysis that could be crucial. 

7.2.4 Threats 
• Competition growth: DL is rising extremely fast and the automatization of healthcare 

tasks is gaining a real interest. Therefore, everyday new studies and new techniques are 

being evaluated meaning that competition is rising.  
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8. Conclusions 

This project’s main objectives were to explore several alternative solutions to the existing pipeline 

for the generation of a DL-based algorithm that automatically delineates fetal Doppler 

echocardiographic images, in collaboration with the project awarded by the Bill and Melinda Gates 

Foundation. In order to accomplish this goal, several model architectures were design and 

alternative data representations were proposed. The literature did not present any DL-based 

Doppler segmentation algorithm. Therefore, the alternative solutions tested were not based on any 

specific algorithm previously implemented for this kind of problem.  

Basing the analysis of the results to the performance evaluation metrics values, it is clear to 

conclude that the alternative data representations proposed do not show an improvement respect 

to the baseline solution. The Dice coefficient, which compares two images based on the area of 

overlap, does not present any result close to 1. Model 18 presents the best Dice coefficient with a 

value of 0.5579057875787617, whereas the baseline solution has a value of 

0.9037749568759134. The Hausdorff distance measures the biggest distance between two points 

of the images, and all of them present values higher than 100, whereas the baseline solution has 

a value of 42.27339812812656. Regarding the mean absolute percentage error (MAPE), model 24 

presents a value of 0.41409849265332593, however the baseline solution presents a much lower 

error with 0.06595673562824161. The cross correlation values from the models using linear 

regression are really similar, with the model 22 presenting the best number of 0.477294404839291. 

The baseline solution also outperforms the alternative solutions with a value of 

0.9941020288719871. The RMSE presents a wider range of values where the minimum error is 

46.20067670080675, but the baseline solution still seems to work better with an error of 

13.079955740447383.  

Analysing the tables with the different mean metric values of several model aggrupation, some 

tendencies can be observed. The network architecture comparison shows that W-net architecture 

presents a better performance than the U-net architecture. This result can be related to the findings 

observed when the baseline solution was tested, as the model that showed the best performance 

was also based on a W-net architecture. The network level comparison shows better performance 

in networks with larger number of levels. The baseline solution is based on a 6 level network. These 

findings might propose that performance could be improved using a deeper network with the 

baseline data representation. The mask width comparison shows that the proposed binary mask 

as data representation works better when the width number is higher. Although the results for this 

data representation are not optimal, it is observed that binary masks perform better when shapes 

are bigger. These findings support the fact that due to the use of bigger and more accurate shapes, 

the baseline solution performs much better. 

These results need to be put into context in order to understand the problems faced for future 

research approaches. Initially, it needs to be said that this project is based on the basic knowledge 

of a final year student that just started to learn about DL. Thus, it needs to be taken into account 

that code implementations might have not been optimal when it comes to computational efficiency, 

and this has led to larger times of training and evaluation.   
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The lack of generalization of the models is hard to explain due to the black box effect, which is one 

of the main limitations when working with DL. The lack of interpretability of the models makes it 

much harder to understand what is going wrong and then be able to improve the generalization of 

the model to unseen inputs. However, the previous results show that the key must be the data 

representation to use. One important handicap is the presentation of the ground truth as the manual 

delineation of a single cardiac cycle, which leads to the tiling strategy. This forces the models to be 

trained by pre-processed images that contain identical cardiac cycles concatenated. However, 

when it comes to generalization to unseen data, the model predicts the segmentation of images 

containing different cardiac cycles. Following the results obtained, the models seem to not 

generalize when using the alternative data representation as it forms smaller shapes compared to 

the baseline solution. 

With this project it has been proved that U-net and W-net based models of 5 to 7 profundity levels 

do not present good results for the delineation of Doppler echocardiographic fetal images when 

using the alternative data representations. For future research, we propose several approaches 

that might present better segmentation results for this problem. Firstly, an interesting line would be 

to test the linear regression data representation using other model architectures. Another line of 

research could be to use deeper W-net based models and explore the utilization other binary masks 

as data representation with bigger shapes. Also, U-net Transformer could be an architecture to 

look into which is starting to be applied in the medical imaging field [39].   

Finally, it would be important to emphasize the impact this project has had at a personal level. 

Working alongside professionals of the field awards the opportunity to observe, learn and acquire 

huge amounts of knowledge. The project allowed for learning a new framework, PyTorch, and for 

researching state-of-the-art algorithms for image segmentation. Moreover, the achievement of 

goals through rigorous work provides with a wide range of skills incredibly valuable for the 

professional future.   
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