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Evaporation and coarsening dynamics with open boundaries
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We present a study of the evaporation dynamics of a substance undergoing a coarsening process. The system
is modeled by the Cahn-Hilliard equation with absorbing boundaries. We have found that the dynamics,
although of a diffusive nature, is much slower than the usual one without coarsening. Analytical and simulation
results are in reasonable agreement.@S1063-651X~99!05701-3#

PACS number~s!: 05.70.Ln, 83.70.Hq, 64.70.Fx
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Phase separation in binary systems is an interesting
ample of pattern formation in nonequilibrium systems@1–8#.
The system, placed in an unstable state, evolves spon
ously towards the equilibrium by generating domains rich
each of the two components. When the volume fraction
one of the components is sufficiently small, the domains
the minority phase coarsen to form circular domains~drop-
lets! immersed in the bulk of the majority phase. In its la
stages, this process can be described by Lifshitz-Slyo
theory@3#, which assumes that the larger droplets grow at
cost of smaller ones, which are thermodynamically le
stable due to their higher surface energy. From a theore
and practical point of view, phase separation processes
usually modeled by time-dependent Ginzburg-Landau eq
tions for the local concentration, with a conserved order
rameter.

When the system is supposed to be closed, the averag
the order parameter over the whole system~mean density! is
conserved, but the existence of open boundaries thro
which the droplet phase evaporate once converted into
bulk phase leads to a decrease of this quantity. We are in
ested in the latter situation. We have previously studied
evaporation of periodic arrays of initially equal droplets
two-dimensional systems with open~absorbing! boundaries
@9#. In the present work we extend the study by analyzing
evaporation of a set of initially randomly located identic
droplets in a system with open boundaries.

One of the simplest models to describe heterogene
systems showing phase coarsening is formulated through
Cahn-Hilliard equation@4,6#. In dimensionless form it read

]

]t
c~r ,t !5

D

2
¹2@2c~122c!~12c!2¹2c#, ~1!

where D stands for the diffusion coefficient at the bu
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phase. In what followsD51. The two thermodynamically
stable phases of our system correspond to different value
the order parameterc: c.1 for what is hereinafter referred
to as the liquid~droplet! phase andc.0 corresponding to
what will be called the vapor~bulk! phase; the third homo
geneous solutionc51/2 is unstable. The surface tension a
sociated with the interface between the liquid and
gas phase is denoteds in the following. It can be calculated
as s5*dx@dc(x)/dx#25A2/6, where c(x) is a one-
dimensional solution of Eq.~1! satisfying the boundary
conditions c(2`)50 and c(`)51, i.e., c(x)5 1

2 @1
2tanh(x/A2)#.

We numerically integrate Eq.~1! using an Euler discreti-
zation in a rectangular system of dimensionsLx5256 and
Ly5512 with two absorbing boundaries@c(t)50# at x50
and x5Lx and periodic boundary conditions in they direc-
tion. The simulations start from a configuration ofN0 ran-
domly located identical droplets. To prepare this initial co
figuration, we first integrate Eq.~1! with periodic boundary
conditions in both directions and an initial condition gene
ated by assigning to each point a concentrationc(r ,0)5c0

1h(r ), c0 being the mean concentration andh a uniformly
random number in the interval@20.05,0.05#. Following Eq.
~1!, randomly located domains of droplets withc.1 form
and grow in a bulk withc.0. After some time, when the
system hasN0 droplets, we stop the simulation and enfor
the droplets to have the same radiusR0 . Then we use this
configuration as the initial condition to study the effect of t
absorbing boundaries.

Figure 1 shows some patterns corresponding to a typ
evolution from an initial configuration ofN0'250 droplets
of equal radiusR055.5. We can observe how the drople
nearest each of the open boundaries start to evaporate s
leaving a region without droplets whose thickness grow
189 ©1999 The American Physical Society
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time. Far enough from the open boundaries, in the middle
the system, the phase separation process evolves like
closed system. Between these two different regions there
ists an intermediate zone that contains few droplets in
process of evaporation. In order to visualize better the e
lution of the mean density, in Fig. 2 we plot the on
dimensional concentration profile averaged along they direc-
tion c̄(x,t)5Ly

21*0
Lyc(r ,t)dy. This quantity is hereinafte

denoted the density profile. In Fig. 3 we plot the time ev
lution of the whole number of dropletsN(t). This quantity
shows a fast decrease at early and intermediate times a
slower behavior at longer times. The open boundaries fa
the early disappearance of droplets that are near the bo
ary, in a faster process than for the same initial configura
but in a closed system. The evolution of the mean rad
measured asA2RG , RG being the mean radius of gyration,
plotted in Fig. 4. It shows a long time behavior similar to t

FIG. 1. Patterns showing the evolution of a droplet configu
tion, corresponding to an initial condition ofN0'250 and R0

55.5 at timest50 ~a!, 1000 ~b!, and 5000~c!. The absorbing
boundaries in our open system are represented by discontin
lines.

FIG. 2. Density profiles for the same conditions as in Fig.
corresponding to times fromt52000 to t514 000 every Dt
52000. Dashed lines correspond to the model of the theore
approach~see the text!.
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one obtained for a closed system. After some transient do
nated by the initial condition and the open boundaries,
radius increases with the usual power lawt1/3, according
with the Lifshitz-Slyosov theory.

We turn now to the theoretical discussion of the evapo
tion and coarsening dynamics described here. Accordin
the density profiles shown above, after some very short tr
sient, three different spatial regions can be distinguished
our system~see Fig. 2!. The first one, whose width is de
noted by l(t), will hereinafter be referred to as a bounda
layer region. It is the area nearest the absorbing walls an
quasihomogeneous~small linear profile! and purely com-
posed of the leaving gas phase without any signature of
uid droplets. The second one is called a transition region
spatially extends froml(t) to an abscissa hereinafter denot
L(t) ~measured from the open boundary!. It is no longer ho-
mogeneous but rather contains a mixture of gas phase
liquid droplets. The important feature to be kept in mind f
further discussion, however, is that those droplets, while t
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FIG. 3. Number of droplets versust for the same conditions a
in Fig. 1 ~solid line! and for a closed system with the same initi
configuration~dashed line!.

FIG. 4. Mean radius versust for the same conditions as in Fig
1 ~solid line! and for a closed system with the same initial config
ration ~dashed line!.
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exist, do not move but irreversibly evaporate, feeding in t
way the gas phase that will eventually escape from the
tem after crossing through the boundary layer. It is then c
that in this region the liquid droplets and the gas phase
their vicinity can never attain equilibration. Finally, the thi
region to be distinguished in the system is its bulk part. I
again a heterogeneous zone composed of liquid droplets
ther growing or shrinking, and gas phase. In the followi
we will assume that the behavior in this region is complet
autonomous with respect to the evaporation process of
system as a whole. In other words, we will assume that
bulk region keeps its mean density equal to the prescri
initial value for the entire distribution, denotedr0 , its behav-
ior being purely that corresponding to a strictly conserv
system. Thus all that happens in the bulk region is a typ
coarsening process of the sort described by the stan
Lifshitz-Slyosov theory for a closed system, as displayed
the dashed line in Fig. 4. Furthermore, contrarily to what w
mentioned to occur in the transition region, we can prope
invoke for the bulk region an equilibration principle betwe
the existing droplets and the gas phase surrounding th
Taking into account surface tension effects~Young-Laplace
corrections!, this enables us to express the value of the or
parameter in the bulk gas phasecg

(bulk) in terms of the aver-
aged radius of the droplets:cg

(bulk)5s/2R.
The picture of the evaporation process that emerges f

the previous considerations is then rather simple. The wh
dynamics could be described as a replacement process o
bulk phase that is progressively invaded as time goes on
the boundary layer and the accompanying transition reg
both propagating from the absorbing walls. Such a shrink
of the bulk part of the system is naturally accompanied b
decrease in the overall density of the system since
‘‘heavier’’ bulk region is being replaced by the ‘‘lighter’
ones closer to the open boundaries. Actually, a material
ance derived from this simple argument is all that we w
invoke, as explained later on, to derive the basic equat
for the relevant dynamical variables of our system. Need
to say, given the considerations above, we will simply ne
to in the following to the distinctive behavior of the evap
rating boundary and transition layers since the bulk is go
to be described by the standard Lifshitz-Slyosov theory.

Let us start by considering separately the gas phase o
heterogeneous system. In both the boundary and trans
purely evaporating layers, the concentration of such a
phasecg adopts very small values. This permits us to line
ize the Cahn-Hilliard equation~1! leading, in the lowest-
order approximation, to a pure diffusion equation forcg ,

]

]t
cg~r ,t !5D¹2cg . ~2!

Furthermore, we will invoke a quasistatic approximatio
legitimated due to the extremely slow evaporation dynam
here analyzed, that reduces the dynamics expressed by
~2! to a pure Laplacian one. That is to say, a linear profile
going to be established forcg that extends fromcg(0)50 at
the absorbing boundary to the value well insidecg„L(t)…
5cg

(bulk) . In passing notice that this bulk value introduces
certain time dependence on this boundary condition thro
s
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its dependence on the average radius of the bulk drop
R(t). The full characterization of our model is still pendin
on the prescription of a boundary condition at the interfa
separating the boundary and transition layers. Lacking m
fundamental arguments, we just assume as a sort of wor
hypothesis, to be checked later on, thatcg„l (t)…5acg

(bulk) ,
in terms of anad hoc introduced parametera (a,1) as-
sumed to be time independent. In turn this will simply le
to a unique time scaling for the two spatial scales introdu
so far in the system since within the Laplacian approxim
tion invoked aboveL(t)5 l (t)/a.

Our next task will be to derive a dynamical equation f
l(t). As anticipated this will be accomplished in terms of
material balance formulated for an infinitesimal displac
ment of the interface separating the evaporating regions f
the bulk one. Obviously this means that we are going to n
to refer to the density profile of the mixed phase syst
rather than to the concentration of the gas phase. We h
according to our description above,

c̄~x,t !5
cg„l ~ t !…

l ~ t !
x, 0<x< l ~ t !

c̄~x,t !5cg„l ~ t !…1
r02cg„l ~ t !…

L~ t !2 l ~ t !
@x2 l ~ t !#, l ~ t !<x<L~ t !

~3!

c̄~x,t !5r0 , x>L~ t !

where, according to our simulation results, we have s
posed also a linear spatial distribution for the transition
gion ~Fig. 2!.

In terms of these density profiles, the differential ma
evaporated from the system corresponding to an elemen
displacementdl(t) is readily calculated. After transforming i
into a flux j x and since such a diffusive flux to th
open boundary can also be trivially written a
j x52D@dc̄(x,t)/dx#x50 , we finally end up with a differen-
tial equation forl(t) given by

dl2

dt
5

4Dacg
~bulk!

S 11
1

a D r02cg
~bulk!

, ~4!

where we have neglected the time dependence ofcg
(bulk) .

A complementary equation for the spatially averaged d
sity of matter in the system, denotedr(t) is also readily
calculated from the distributions above. Expressing it
terms ofl(t), we have

r~ t !5r02

S 11
1

a D r02cg
~bulk!

Lx
l ~ t !. ~5!

Once combined, Eqs.~4! and ~5! explicitly determine the
temporal evolution of the averaged density of matter in
system
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d~r02r!2

dt
5

4D

Lx
2 @~a11!r02acg

~bulk!#cg
~bulk! , ~6!

whose solution reads explicitly

r~ t !5r02
2

Lx
$@~a11!r02acg

~bulk!#cg
~bulk!%1/2~Dt !1/2.

~7!

This is shown in Fig. 5, where we plotr(t) versust1/2 for
three droplets configurations corresponding to different
tial radii. For time long enough it is well reproduced b
linear fits. Actually, these enable us to indirectly evaluate
value of the parametera, which turns out to bea'0.77 for
the three cases.

Let us compare these results with those that can be
tained for the free diffusion case, with the same diffusi
coefficient,

]

]t
c~r ,t !5D¹2c ~8!

and with the same initial condition~droplets! and absorbing
boundaries. What we observe in these parallel simulation
that the diffusion process homogenizes the center of the
tem to the mean densityr0 and the concentration evaporat
through the boundaries but now in a faster dynamics tha
the previous case. The analytical solution of this proble

FIG. 5. Mean density versust1/2 for three configurations with
N0'250 and different initial radii:R056 ~solid line!, R055.5
~dashed line!, andR055 ~dot-dashed line!. Free diffusion cases fo
the same initial conditions are also plotted for comparison~steepest
lines!.
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with a homogeneous initial condition given byr0 , is
straightforward@10# and the mean density decays as

r~ t !5r02
2r0

p1/2Lx

~Dt !1/2. ~9!

A comparison of this result with Eq.~7! lead us to con-
clude that although both cases have the same mean de
r0 and the same diffusion coefficientD in the bulk, in the
coarsening case there is an ‘‘effective bulk density’’ no
controlling the evaporations. This new quantity can be
tracted by comparing Eqs.~7! and ~9!, thus obtaining

re f f5$p@~a11!r02acg
~bulk!#cg

~bulk!%1/2. ~10!

As cg
(bulk)/r0!1, the evaporation process is much slow

when droplets are present. However the power decay lawt1/2

does not change.
Figure 5 summarizes the comparison just made. The p

ence of coarsening slows down drastically the evapora
dynamics, but qualitatively we still have a diffusive proce
now controlled by the very small density of the bulk phas
Nevertheless, we should keep in mind that intrinsically t
dynamics here analyzed is richer than that of a pure diffus
system. Actually, further refinements could be achieved b
numerical integration of Eq.~6! oncecg

(bulk) is expressed and
evaluated in terms of the dynamically evolving average
dius of the droplets. However, since the time evolution
this quantity is slower (t1/3) than the purely diffusive one, i
is unlikely to expect significant quantitative differences w
respect to the approximate analysis presented above.

From the above results we conclude that during the ph
separation process~coarsening! in open systems, the evapo
ration of the liquid phase is controlled by diffusion mech
nisms. Quantitatively one can say that we have a diffus
process controlled by the bulk ‘‘gas’’ density~smaller than
the mean density! whose value is sustained by the dynam
of droplets. As the Lifshitz-Slyozov dynamics is muc
slower than a purely diffusive dynamics, the latter dom
nates, as it is observed in numerical simulations.
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