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Evaporation and coarsening dynamics with open boundaries
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We present a study of the evaporation dynamics of a substance undergoing a coarsening process. The system
is modeled by the Cahn-Hilliard equation with absorbing boundaries. We have found that the dynamics,
although of a diffusive nature, is much slower than the usual one without coarsening. Analytical and simulation
results are in reasonable agreemg81.063-651X99)05701-3

PACS numbegps): 05.70.Ln, 83.70.Hq, 64.70.Fx

Phase separation in binary systems is an interesting exhase. In what followD=1. The two thermodynamically
ample of pattern formation in nonequilibrium systefis-8].  stable phases of our system correspond to different values of
The system, placed in an unstable state, evolves spontangre order parametar. c=1 for what is hereinafter referred
0US|y towards the equilibrium by generating domains rich into as the ||qu|d(drop|eb phage andt=0 Corresponding to
each of the two components. When the volume fraction ofyhat will be called the vapotbulk) phase; the third homo-
one of the components is sufficiently small, the domains ofyeneous solutios=1/2 is unstable. The surface tension as-
the minority phase coarsen to form circular domaid®p-  guciated with the interface between the liquid and the
lets) immersed in the bulk of the majority phase. In its Iategas phase is denotedin the following. It can be calculated

stages, this process can be described by Lifshitz-Slyoso _ 2_ ; :
theory[ 3], which assumes that the larger droplets growattheS o=[ddc(x)/dx]?=2/6, where c() is a one

cost of smaller ones, which are thermodynamically lessd|me_n_3|onal solution of Eq(1) sat|sfy|n_g the bourlldary
stable due to their higher surface energy. From a theoretic&Pnditions_c(==)=0 and c(=)=1, ie., c(x)=3[1
and practical point of view, phase separation processes ar_eta”hé‘/\/z)]'_ ) i i )
usually modeled by time-dependent Ginzburg-Landau equa- We numerically integrate Ed1) using an Euler discreti-
tions for the local concentration, with a conserved order pazation in a rectangular system of dimensidns=256 and
rameter. L,=512 with two absorbing boundari¢s(t)=0] at x=0

When the system is supposed to be closed, the average ahdx=L, and periodic boundary conditions in tiyedirec-
the order parameter over the whole syst@enean densityis  tion. The simulations start from a configuration § ran-
conserved, but the existence of open boundaries througlomly located identical droplets. To prepare this initial con-
which the droplet phase evaporate once converted into thiiguration, we first integrate Eq1) with periodic boundary
bulk phase leads to a decrease of this quantity. We are inteconditions in both directions and an initial condition gener-
ested in the latter situation. We have previously studied theited by assigning to each point a concentratién0)=c,
evaporation of periodic arrays of initially equal droplets in 4 ,(r), ¢, being the mean concentration apca uniformly
two-dimensional systems with opeabsorbing boundaries  random number in the intervl-0.05,0.03. Following Eq.
[9]. In the present work we extend the study by analyzing the1), randomly located domains of droplets with=1 form
evaporation of a set of initially randomly located identical ang grow in a bulk withc=0. After some time, when the
droplets in a system with open boundaries. system has\, droplets, we stop the simulation and enforce

One of the simplest models to describe heterogeneouge droplets to have the same radRg. Then we use this
systems showing phase coarsening is formulated through th&nfiguration as the initial condition to study the effect of the
Cahn-Hilliard equatiori4,6]. In dimensionless form it reads apsorbing boundaries.

Figure 1 shows some patterns corresponding to a typical
evolution from an initial configuration ofly=~250 droplets
of equal radiusRy=5.5. We can observe how the droplets
nearest each of the open boundaries start to evaporate soon,
where D stands for the diffusion coefficient at the bulk leaving a region without droplets whose thickness grow in

J —DV22 1-2c)(1—c)—V? 1
EC(”)_E [2¢( c)(1-c) cl, (1)
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FIG. 1. Patterns showing the evolution of a droplet configura-

tion, corresponding to an initial condition dfi;=~250 and R,
=5.5 at timest=0 (a), 1000 (b), and 5000(c). The absorbing
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FIG. 3. Number of droplets versudor the same conditions as

boundaries in our open system are represented by discontinuoirs Fig. 1 (solid line) and for a closed system with the same initial

lines.

configuration(dashed ling

time. Far enough from the open boundaries, in the middle oPn€ obtained for a closed system. After some transient domi-
the system, the phase separation process evolves like inngated by the initial condition and the open boundaries, the

closed system. Between these two different regions there e

fadius increases with the usual power la%?, according

ists an intermediate zone that contains few droplets in th#ith the Lifshitz-Slyosov theory. _
process of evaporation. In order to visualize better the evo- e turn now to the theoretical discussion of the evapora-

lution of the mean density, in Fig. 2 we plot the one-
dimensional concentration profile averaged alongytaec-

tion ?(x,t)=L;1f;yc(r,t)dy. This quantity is hereinafter

denoted the density profile. In Fig. 3 we plot the time evo-

lution of the whole number of dropletd(t). This quantity
shows a fast decrease at early and intermediate times an
slower behavior at longer times. The open boundaries fav

the early disappearance of droplets that are near the boun

tion and coarsening dynamics described here. According to
the density profiles shown above, after some very short tran-
sient, three different spatial regions can be distinguished in
our system(see Fig. 2. The first one, whose width is de-
noted byl(t), will hereinafter be referred to as a boundary
ayer region. It is the area nearest the absorbing walls and is
asihomogeneoussmall linear profilg¢ and purely com-
osed of the leaving gas phase without any signature of lig-
id droplets. The second one is called a transition region and

ary, in a faster process than for the same initial configuratiorgpt,jma"y extends froni(t) to an abscissa hereinafter denoted

but in a closed system. The evolution of the mean radius

measured a§2R, Rg being the mean radius of gyration, is

L (t) (measured from the open boundarlj is no longer ho-
mogeneous but rather contains a mixture of gas phase and

plotted in Fig. 4. It shows a long time behavior similar to theliquid droplets. The important feature to be kept in mind for
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FIG. 2. Density profiles for the same conditions as in Fig. 1,
corresponding to times fromi=2000 to t=14000 everyAt

further discussion, however, is that those droplets, while they
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FIG. 4. Mean radius versusfor the same conditions as in Fig.

=2000. Dashed lines correspond to the model of the theoretical (solid line) and for a closed system with the same initial configu-

approach(see the text
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exist, do not move but irreversibly evaporate, feeding in thists dependence on the average radius of the bulk droplets
way the gas phase that will eventually escape from the sysR(t). The full characterization of our model is still pending
tem after crossing through the boundary layer. It is then cleaon the prescription of a boundary condition at the interface
that in this region the liquid droplets and the gas phase irseparating the boundary and transition layers. Lacking more
their vicinity can never attain equilibration. Finally, the third fundamental arguments, we just assume as a sort of working
region to be distinguished in the system is its bulk part. It ishypothesis, to be checked later on, tiogél(t))= ac(b”'k)

again a heterogeneous zone composed of liquid droplets, & terms of anad hocintroduced parametet (a< 1) as-
ther growing or shrinking, and gas phase. In the followingsumed to be time independent. In turn this will simply lead
we will assume that the behavior in this region is completelyto a unique time scaling for the two spatial scales introduced
autonomous with respect to the evaporation process of thep far in the system since within the Laplacian approxima-
system as a whole. In other words, we will assume that théion invoked above. (t)=1(t)/«.

bulk region keeps its mean density equal to the prescribed Our next task will be to derive a dynamical equation for
initial value for the entire distribution, denoted, its behav-  |(t). As anticipated this will be accomplished in terms of a
ior being purely that corresponding to a strictly conservedmaterial balance formulated for an infinitesimal displace-
system. Thus all that happens in the bulk region is a typicament of the interface separating the evaporating regions from
coarsening process of the sort described by the standatde bulk one. Obviously this means that we are going to need
Lifshitz-Slyosov theory for a closed system, as displayed byto refer to the density profile of the mixed phase system
the dashed line in Fig. 4. Furthermore, contrarily to what wagather than to the concentration of the gas phase. We have
mentioned to occur in the transition region, we can properlyaccording to our description above,

invoke for the bulk region an equilibration principle between

the existing droplets and the gas phase surrounding them. . cy(1(1)
Taking into account surface tension effeC¥ung-Laplace c(x,t)= gl , 0=sx<I(1)
correction$, this enables us to express the value of the order (t)
parameter in the bulk gas ph Uk in terms of the aver-
aged radius of the droplets{’ "= o/2R. po— g( )
The picture of the evaporatlon process that emerges fromc(x H=cqe(l () + L(t)— [ (M), HH)=<x<L(t)

the previous considerations is then rather simple. The whole (3)
dynamics could be described as a replacement process of the

bulk phase that is progressively invaded as time goes on by —

the boundary layer and the accompanying transition region, c(x,0)=po,
both propagating from the absorbing walls. Such a shrinkage

of the bulk part of the system is naturally accompanied by avhere, according to our simulation results, we have sup-
decrease in the overall density of the system since th@osed also a linear spatial distribution for the transition re-
“heavier” bulk region is being replaced by the “lighter” gion (Fig. 2).

ones closer to the open boundaries. Actually, a material bal- In terms of these density profiles, the differential mass
ance derived from this simple argument is all that we willevaporated from the system corresponding to an elementary
invoke, as explained later on, to derive the basic equationgdisplacementll(t) is readily calculated. After transforming it
for the relevant dynamical variables of our system. Needlesiito a flux j, and since such a diffusive flux to the

to say, given the considerations above, we will simply needbpen boundary can also be trivially written as
to in the following to the distinctive behavior of the evapo- j, = — D[d?(X,t)/dX]x:o, we finally end up with a differen-
rating boundary and transition layers since the bulk is goingial equation forl(t) given by

to be described by the standard Lifshitz-Slyosov theory.

Let us start by considering separately the gas phase of' our dI2 4D arcu
heterogeneous system. In both the boundary and transition el g
purely evaporating layers, the concentration of such a gas dt 1
phasecy adopts very small values. This permits us to linear- 1+ a
ize the Cahn-Hilliard equationil) leading, in the lowest-
order approximation, to a pure diffusion equation égr,

x=L(t)

, (4)
po_c(gbulk)

where we have neglected the time dependenag .

A complementary equation for the spatially averaged den-
sity of matter in the system, denotedt) is also readily
calculated from the distributions above. Expressing it in
terms ofl(t), we have

i Cy(r,t)=DVZcy. 2)

Furthermore, we will invoke a quasistatic approximation,

legitimated due to the extremely slow evaporation dynamics 1+ l po—clPuk
here analyzed, that reduces the dynamics expressed by Eq. )= po— a g (1) ®)
(2) to a pure Laplacian one. That is to say, a linear profile is (D =po Ly (t).

going to be established fay, that extends froney(0)=0 at

the absorbing boundary to the value well lnSldﬁL(t)) Once combined, Eq94) and (5) explicitly determine the
=c{P"™ . In passing notice that this bulk value introduces atemporal evolution of the averaged density of matter in the
certam time dependence on this boundary condition througbystem
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0.25 ' ' with a homogeneous initial condition given by,, is
straightforward 10] and the mean density decays as

2po
p(1=po= (DO ©
T Lx

0.20

A comparison of this result with Eq7) lead us to con-
clude that although both cases have the same mean density
po and the same diffusion coefficied in the bulk, in the

0.15 . coarsening case there is an ‘“effective bulk density” now
controlling the evaporations. This new quantity can be ex-
tracted by comparing Eq$7) and(9), thus obtaining

1o , , peti={m{(a+ 1)po—acyIcf P2 (10

0 50 100 150
£ As c"N/py<1, the evaporation process is much slower

FIG. 5. Mean density versug’ for three configurations with When droplets are present. However the power decay t&w
No~250 and different initial radii:R,=6 (solid ling, R,=5.5 does not change. o
(dashed ling andR,=5 (dot-dashed ling Free diffusion cases for Figure 5 summarizes the comparison just made. The pres-
the same initial conditions are also plotted for comparigeepest €nce of coarsening slows down drastically the evaporation

lines. dynamics, but qualitatively we still have a diffusive process,
now controlled by the very small density of the bulk phase.

d(pg—p)? 4D Nevertheless, we shouldi keep in mind that intrinsica]ly the
————=—[(a+1)py— acgbu'@]cgbu'k) , (6) dynamics here analyzed is richer than that of a pure diffusive
dt X system. Actually, further refinements could be achieved by a

numerical integration of Eq6) oncec{’"" is expressed and
evaluated in terms of the dynamically evolving average ra-
2 (bulkyy (bulky 112 1 dius of the droplets. However, since the time evolution of
p()=po— —{l(a+1)po—acy e} (DY this quantity is slowert®3) than the purely diffusive one, it
X ) is unlikely to expect significant quantitative differences with
respect to the approximate analysis presented above.
This is shown in Fig. 5, where we plgi(t) versust*? for From the above results we conclude that during the phase
three droplets configurations corresponding to different ini-separation proceggoarseningin open systems, the evapo-
tial radii. For time long enough it is well reproduced by ration of the liquid phase is controlled by diffusion mecha-
linear fits. Actually, these enable us to indirectly evaluate thenisms. Quantitatively one can say that we have a diffusion
value of the parameter, which turns out to bex~0.77 for  process controlled by the bulk “gas” densifgmaller than
the three cases. the mean densijywhose value is sustained by the dynamics
Let us compare these results with those that can be olsf droplets. As the Lifshitz-Slyozov dynamics is much
tained for the free diffusion case, with the same diffusionslower than a purely diffusive dynamics, the latter domi-
coefficient, nates, as it is observed in numerical simulations.

whose solution reads explicitly

a
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