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We study the singular effects of vanishingly small surface tension on the dynamics of finger competition in
the Saffman-Taylor problem, using the asymptotic techniques described by TdRVeles. Trans. R. Soc.
London, Ser. A343 155(1993] and Siegel and TanvegPhys. Rev. Lett76, 419 (1996], as well as direct
numerical computation, following the numerical scheme of Hou, Lowengrub, and Sh&ll&omput. Phys.

114, 312(1994]. We demonstrate the dramatic effects of small surface tension on the late time evolution of
two-finger configurations with respect to exaconsingular zero-surface-tension solutions. The effect is
present even when the relevant zero-surface-tension solution has asymptotic behavior consistent with selection
theory. Such singular effects, therefore, cannot be traced back to steady state selection theory, and imply a
drastic global change in the structure of phase-space flow. They can be interpreted in the framework of a
recently introduced dynamical solvability scenario according to which surface tension unfolds the structurally
unstable flow, restoring the hyperbolicity of multifinger fixed points.
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I. INTRODUCTION problem posed by Saffman and Tayldr] and only solved
three decades latdfl5—18. Another manifestation of the
The displacement of a viscous fluid by a less viscous one&ingular nature of surface tension which is directly relevant
in a Hele-Shaw cell, the so-called Saffman-Taylor problerto the present work is its effect on the dynamics. Siegel,
[1-5], is a prototypical pattern formation problem. Since theTanveer, and Daj19,2(f showed that interfacial evolution
seminal work of Saffman and Taylft] a considerable effort for the regularized problerfi.e., vanishingly smalB) may
has been aimed at understanding both steady and unsteagdiffer significantly from that for the8=0 problem in order
interfacial patterns formed during this flow. The Saffman-On€ time. _
Taylor problem is the simplest member of a wide class of 1he physical content of exact zero-surface-tension solu-
interfacial pattern formation problems such as free dendritidions With polelike singularities has been recently addressed
growth, directional solidification, or chemical electrodeposi—'n Refs. [5,21,23 using a dynamical systems approach.

tion [6—8]. As such, a theoretical understanding of Hele- 1 hrough a detailed study it has been shown that the exact

. . . zero-surface-tension phase flow, considered in a global
Shaw flow may help elucidate generic behavior common tg .

. o . : sense, is structurally unstable. Consequently, the zero-
many pattern forming systems. Despite its relatively simple

. . surface-tension phase dynamics ao¢topologically equiva-
formulation and the large amount of work devoted to it, how- P y pologicatly &q

| ¢ interfacial d e lo-Sh lent to the phase-space flow of the physical problem, regu-
ever, several aspects of interfacial dynamics in Hele-Shavy ;o4 by surface tension. Indeed, the zero-surface-tension

flow are still poorly understood, in particular concerning the yaqe flow omits the necessary saddle-point structure of mul-
highly nonlinear and nonlocal dynamics of finger competi-tifinger fixed points, which is crucial to the physical finger
tion. competition proces$22]. A natural extension of the well
One of the reasons for the recent interest in Hele-Shawnown solvability mechanisrtfirst applied to “select” a fin-
flow, at least from a mathematical point of view, is that ex-ger of width 1/2 out of a continuum of solutions in the single
plicit time-dependent solutions can be found in the case ofinger casg was proposed for multifinger solutions in Ref.
zero surface tensiof9—12. However, it is also known that [22]; this helps clarify how the introduction of surface ten-
the zero-surface-tension Saffman-Tayl&T) problem is ill  sion modifies the global phase-space structure of the flow
posed as an initial value problefh3] and finite-time singu- and restores the hyperbolicity of multifinger fixed points.
larities appear frequently14]. Nevertheless, rather large  The approach of Ref.22], however, was qualitative in
classes of zero-surface-tension solutions have been founthture and could not quantify the extent to which zero-
which exhibit the variety of morphologies observed both insurface-tension trajectories might resemble the evolution
experiments and numerical simulations. Then, the questiowith small surface tension. In particular it was recognized
that naturally arises is to what extent smoétionsingulay  that, while some trajectories appear to be qualitatively cor-
zero-surface-tension solutions reproduce the dynamics of thect for infinite time, others may have a dramatically differ-
physical problem with finite surface tension, in particular inent evolution.
the limit of vanishing dimensionless surface tensiBr; 0. A satisfactory analytical understanding of the problem
It is well known that surface tension is a singular pertur-with B#0 has been achieved in two regimes: the initial lin-
bation to the zero-surface-tension problgh3]. This singu-  ear instability of the flat interface followed by the weakly
lar character shows up dramatically in the classical selectiononlinear regimé¢23], and the asymptotic regime, where sur-
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face tension selects the width of the single fingE5—18. Il. ZERO-SURFACE-TENSION

The highly nonlinear intermediate regime that connects the In this section we present the equations which govern the

quasiplanar interface with the asymptotic single-finger "interfacial dynamics in a rectilinear Hele-Shaw cell, follow-

gime has mostly been studied through numerical computay, ‘e formalism of Ref[13]. We consider a class of exact,

tion[see, e.g., Ref$24 28] also combined with qualitative ime_dependent zero-surface-tension solutions that are rel-
techniques(29,3(. Dai and Shelley{31] showed that for gy an; to the finger competition problem, and briefly describe
small B numerical computations are extremely sensitive tone solutions within this class.
the precision used in the computations. As a consequence Consider Hele-Shaw flow in the channel geometry, in
noise level has to be controlled with care in order to ensurguhich a fluid of negligible viscosity displaces a viscous lig-
that the computation is sufficiently accurate. Computationsjid. The equations governing the interfacial evolution can be
using very high-precision arithmetic are reported in Refsconveniently formulated by first introducing a conformal
[32,33. mapz(¢,t) which takes the interior of the unit semicircle in
An analytical treatment of this highly nonlinear and non-the ¢ plane into the region occupied by the viscous fluid in
local free-boundary problem faces challenging difficulties. Inthe complex planeg=x+iy, in such a way that the arg
particular, a perturbative study for smallis complicated by =¢€'® for se[0,7] is mapped to the interface and the diam-
the ill posedness of the zero-surface-tension problem. Tarster of the semicircle is mapped to the channel widg|
veer[13] was able to overcome this obstacle by embeddingrhe mapping functionz({,t) has the form z({,t)=
the zero-surface-tension problem in a well-posed one. In ad= (2/m)In {+i+f({,t), and inside and on the unit semicircle
dition, this well-posed extension of th@=0 problem al- We requiref({,t) to be analytic ana,(¢,t)#0. In addition,
lowed Bakeret al. [34] to develop a numerical method to We require that Ini=0 on the real diameter of the semi-
compute the time evolution of zero-surface-tension dynamic§ircle. This latter condition ensures thamaps the diameter
in a well-posed manner. Once tiB=0 problem is formu- to the channel walls. Under swtablg assumptifsese, Ref.
lated in a well-posed way tH@+ 0 case can be studied using [13l] the Schwartz reflection principle may be applied to

a perturbative approach. The main result of the asymptotiéhc_’l_vp]’ th"’;ftf is%analyltic _?n?zgljo for |§|$dl. the olat
perturbative theory developed by Tanvdég] is that the € efiective velocily Tield, averaged across the piate gap,

effect of very small surface tension may be significant in asa two-dimensional potential flow satisfying Darcy's law

) . u=Ve. Here ¢ is a velocity potential defined by =
0O(1) time. Siegekt al.[20] have extended the work of Ref. _ (b%12u)p, wherep is the pressurey is the viscosity and

[13] to later stages of the evolution, and through numerical) is the gap width. Under the assumption of incompressibil-

corr&pu.tanon ffo ' k\]/ ery smaltl) vglueshcﬁ the)frﬁonflrmed tr;e ity (V-u=0) the potential satisfies Laplace’s equat®fp
predictions of the perturbative theory. € zero-surtacé—_q Incompressibility also implies the existence of a stream

tension solutions studied by Siegalal.[19,20] in the chan-  ncion . Therefore, one can define a complex velocity
nel geometry were single-finger solutions with an asymptotiystentialW(z,t) = ¢+ iy which is analytic forz in the fluid

width X\, specifically chosen to be incompatible with Se|ec'region of the channel. Its form as a function feads
tion theory for vanishing surface tension. They found that the

singular effect of surface tension was to widen the finger in W(Z,t)=—(2/m)In{+i+w(l,t), (1)
order to reach the selected width. The surprising feature there

was that the effect of surface tension is felt in order-one timewherew(¢,t) is an analytic function inside the unit circle. In
i.e., that the time lapse for which the regularized solutionthe absence of surface tensiass= 0 [see Eq(3)].

approaches the unperturbed oneBas 0 is bounded. At the interface we impose the usual boundary conditions.

The present paper expands the work of Rgf9,20 in  The kinematic boundary condition states that the normal
the spirit of Ref[22], towards the study of multifinger solu- component of fluid velocity at a point on the interface equals
tions. However' unlike the studies Ejfg,zq we choose zero- the normal Ve|OCi'[y of the interface at that pOint, and takes
surface-tension multifinger solutions that are compatibléhe form
with selection theory, to isolate the effects on finger compe-
tition from the effects on the selection of the width. We find E{i
that the effect of small surface tension on finger competition {z;
can be quite dramatic.

The paper is organized as follows. In Sec. Il the equationThe dynamic boundary condition specifies that the pressure
describing Hele-Shaw flow are introduced, and a class ojump across the interface is balanced by surface tension, and
two-finger zero-surface-tension solutions relevant to twods given by
finger competition is presented and briefly discussed. In Sec.

[l the basic features of the asymptotic theory are recalled,

and the theory is applied to the zero-surface-tension solu-

tions introduced in the previous section. The numerical com-

putations with finite(but smal) B are presented in Sec. IV. The parameteB is the nondimensional surface tension and is
Section V discusses and summarizes the results obtained defined byB=b?T/12uVa?, whereT is the surface tension,
previous sections. V is the fluid velocity at infinity and is half the cell width.
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Egs. (1)—(3) are in nondimensional form, with lengths and Then the planar interface correspondsde-0; the fixed
velocities nondimensionalized ayandV, respectively. point STR) to a=—i; ST(L) to @=i; and 2ST toa=1.

WhenB=0 it is well known that pole singularities in, For e# 0 the continuum of fixed points is removed, as is
(i.e., in f,) present in the exterior of the unit disk are pre-the double Saffman-Taylor finger fixed point 2ST. Conse-
served under the dynamics, i.e., such singularities are neithguently, the solution to Eq4) exhibits “successful” compe-
created nor destroyed, although the location of those whichition, in the sense that the asymptotic interface shape con-
are initially present will evolve with time. Exa@=0 solu- sists of a single Saffman-Taylor finger or side Saffman-
tions consisting of a collection of pole singularities with con- Taylor finger. The price to pay is the appearance of finite-
stant amplitude have been the focus of extensive stlidess time singularities for a certain subset of initial conditions, in
e.g., Ref.[9]]. The simplest such solution leading to non- the form of a zero ofz, impacting the unit disKthis is a
trivial finger competition consists of a pair of singularites in generic feature of conformal map solutianyscomposed of a
the upper halfplane of¢|>1, located at positions that are finite number of pole singularities—see REF]]. Then, only
symmetric with respect to thgaxis. A second pair of poles the subset of initial conditions free of finite-time singularities
conjugate to the first pair is required to satisfy the symmetnjis capable of sustaining finger competition all the way to the
restriction Imf=0. This exact solution takes the form t—o outcome. Nevertheless, one may ask whether the class
[5,21,23 of B=0 solutions that are free of finite-time singularities
may describe, at least qualitatively, the physical finger com-
petition for positive surface tension in the linBt—0.

2 1 _ I
z(L,t)=——In{+—=(1—\+ie)ln| 1— 5
™ ™ £s(t) lIl. ASYMPTOTIC THEORY
1 ] 2 i Little is known about the effect of finitébut smal) sur-
’ ;(1_)\_|6)|n l_Z(t)z +d(t+i, 4 face tensiorB on the dynamics of zero-surface-tension mul-
S

tifinger solutions, and in particular on the class of exact so-
lutions (4). For single-finger configurations, steady state
where\ and e are real constants with<ON<1 ande=0,  selection theory predicts that the finger cannot have an arbi-
andd(t) is real. The singularity locations are given by the trary width. Indeed, for vanishing surface tensidn-0 the
complex parametef(t), which satisfies a simple differen- width A=1/2 is selected, asymptotically in time. Thus, it is
tial equation given in Refl21]. Analyticity of f({,t) in the  clear that surface tension has a critical influence on single-
unit circle implies that {s(t)|>1. We employ the conven- finger solutions with\ #1/2, as was shown by Siegel, Tan-
tion thatZ4(t) is a complex number in the first quadrant. The veer, and Da[19,20.
amplitudes of the singularities, given here by the numbers Consider now the effect of small surface tension on the
1-N+ie and its conjugate, are chosen so that theexact B=0) two-finger solution(4). When 0<B<1 the
asymptotic form of the solution consists of one or two asymptotic perturbation theory developed in REf9,13,2Q
steadily propagating fingers of total widsh The parameter can be applied. This perturbation theory describes the effects
e determines the nature of the finger competition Ba 0. of the introduction of a small amount of surface tension on
We summarize the features of the solutigh that are initial dataz({,0) specified in the extended complex plane,
most relevant to the study of finger competition. Consideri.e., in a domain including the “unphysical” regioft|> 1
first e=0. In this case the asymptotic configuration consistgthe extended domain is required to make B0 problem
of one or two fingers of total width\, depending on the well posed. The effect of finiteB is most important near
initial condition. The singularities move toward the unit disk, isolated zeros and singularities pf(£,0), where a regular
with the limit ast—o denoted byl (t)—e'’. When#=0  perturbation expansion iB breaks down. For the class of
the asymptotic configuration is a single Saffman-Taylor fin-solutions(4) we are discussing, the isolated singularities of
ger growing in the center of the chanrfehis asymptotic  z,({,0) are simple poles. The theory suggests that the intro-
configuration is denoted $R)], for 6==/2 it is a “side”  duction of finite surface tension modifies the polés) (by
Saffman-Taylor finger i.e., a pair of half fingers of total width transforming them into localized clusters ef4/3 singulari-
A with tips located at the cell wallslenoted STL)], and for  ties, but this has no significant influence on the interfacial
0=/4 it is a “double” Saffman-Taylor finger, namely two shape.
identical fingers of width\/2 with tips atx=0,=1 (denoted The influence of surface tension on the zerogt,0) is
2ST). For any other value o the asymptotic configuration more complex. Each initial zero instantly gives birth to two
consists of two unequal steadily growing fingers, as a consdecalized inner regions, i.e., regions where tBe0 and
quence of the continuum of fixed points that is present in th&>0 solutions differ byO(1) (the theory predicts that these
phase portrait of the dynamical variables, namelyinner regions also contain clusters ef4/3 singularities
[ReZ4(t),ImZ(t)]. Therefore, fore=0 the solution4) does  One of the two inner regions moves, at least initially, accord-
not exhibit finger competition. In addition, it is important to ing to theB=0 dynamics of the original zerg, [38], and
note that the evolution of Eq4) with e=0 is free of finite- has a negligible influence on the interface in the case we
time singularities, i.e.z,#0 in the domain|{|<1 for all ~ study. The second inner region created arogig{®) moves
time. In order to correspond to the notation of REZ1]  differently: to leading order iB it moves like asingularity
introduce the variablea(t)=a’'(t)+ia"(t)=11i gﬁ(t)]. of the zero-surface-tension problem and this speed is differ-
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ent form the speed of the zeig(t), which spawned the In the following it will be useful to define the real quantity

cluste.r. As this singularity cluster apprpaches the physicab:_()\He)gg_()\_if)zg which appears in Eq€7) and
dpmaln it may perturb the flow and the interface shr_:\pe mayg).

dnffer IS|gn|f|c.antIy from that aB=0 shape. The location of Depending on the value of the initial data may have
this singularity cluster will be denoted hiy(t), and follow- o055y hoth the real and imaginary axes, or all the zeros
ing Ref. [13] we shall call it the daughter singularity. We may lie on a single axis. This difference has significant con-

emphagize that the dynamics of the daughter singu!arity i§equences in the finite surface tension dynamics. More spe-
déatermmed at Iow_e_st or_der solely by trBzz_O solution . cifically, when\<1/2 the zeros described in Eq§a and
Z°(¢,1), at least until it arrives at the surroundings of the unit 7b) are located on both the real and imaginary axefZbf
circle, and therefore can be simply computed once the initi 1, namely att |¢o. | and+i|¢,_|. The situation is differ-

l + — — |-

Ioc_la_lﬂons of trf]we Zeros clzfg(_g“,O) a:e _determlne_:d. L b ent for \>1/2, which is further divided into two cases, de-
sen Sef?f%)ter singularity evolution equation is given ypending on whethe2+4(1—2\)|£/2>0 or <0. In the
former case all four singularities lie on the real afier 8
. ] >0) or on the imaginary axifor 3<0). In the latter case
Lo(D)= =01 Ly(D,0; £4(0)={0(0), ) the four zeros are located off the axes in conjugate pairs, i.e.,
at =y and = {,. Finally, when\ =1/2 the solution4) has
only two zeros, located on the real axis 31§f/|2_/\/—2/3
, , , ' when 8<0 and on the imaginary axis at||?/\/23 when
qg:i_ d_g {+{ Re¢ Wg(g ] (6) B>0. Note that for\ =1/2 theB=0 solution has two less
2mi Jigj=1 ¢ =0 |ZUL D)2 zeros than foi # 1/2.

The initial zero locations described above have a critical
and the superscript zero denotes that the function evaluationigaring on whether the daughter singularity will impact the
are done using the correspondiBg=0 solution. The func-  unit disk [39]. Although all daughter singularities approach
tion —qg(g,t) also gives the characteristic velocity of a pole the unit disk, their impact may be shielded by the presence of
or branch point singularity af,({,t) located at positiord in an inner region corresponding to a pole singularity. More
the region|Z|>1. The daughter singularity approaches theprecisely, since€y and{s obey the same dynamical equation,
unit circle [13] and it can impact it in a finite timé;, the  they will move together if they get close enough to each
daughter singularity impact time, satisfymgy(ty)|]=1. In  other. However, the inner region around a pole moves to
the limit B—0, the daughter singularity impact tintg sig-  leading order like thé&=0 pole, i.e., it moves exponentially
nals the time when the effects of the surface tension are feklowly toward |{|=1 when|{—1<1, and does not im-
on the physical interface. For times larger thigrthe B=0 pinge upon the unit disk in finite timg]. In this case the
interface and th&—0 are expected to differ significantly. ~O(B) inner region around the daughter singularity will not

For the family of exacB=0 solutions the mapping func- affect the dynamics off|=1, at least untilt=0O(—In B).
tion (4) has four polelike singularitiest ¢ and +¢,, and  Before this time, we expect the interface to be uninfluenced

whereq? is defined by

four zeros* ¢, and + {,_ of z, located at by the presence of the dgughter singularity..This _shieldin_g
mechanism is discussed in the context of single fingers in

2 = ( ) ( €)Ls Knowledge of thet—c asymptotic state and the initial
2(1=2)) locations of zeros can be used to ascertain whether shielding

N 0 2 can occur. TheB=0 asymptotic state corresponds Jﬁ)(t
+\/[()\+|E)§s+()\—|6)§s] +4(1-2)N)| 4 —o)—=*1. Thus, forA<1/2, only one pair of daughter
2(1-2\) ' singularities may be shielded—never both— so at least one
(79 pair of daughter singularities will impinge on the unit disk.
The daughter singularities will also not be shielded when
>1/2 andB?+4(1—2)\)|Z¢?<0. However, forx>1/2 and
B2+4(1—2\)|¢4?>0 it is possible for all the daughter sin-

,  —(\FieZ-(\—ie):

o~ 2(1-2n) gularities to be shielded, since they lie on a single axis. The
\/ — —— 7 daughter singularities can also be completely shielded when
NI+ (A —ie) {5 +4(1-20)| 4 \=1/2. The different possibilities are schematically depicted
2(1-2\) ' in Fig. 1.

We have numerically computed the daughter singularity
impact timety for various values of\ and e, using initial
For the particular case= 1/2 this solution presents only one conditions close 0 the planar interfa¢és|*=20 and vari-
pair of zeros* ¢, located at ous values of Args]. Figure 2 shows the phase portrait for

different values ofA and e with the daughter singularity
Fak impact indicated. From the plots it.is immediately seen that
— —- (8)  for A<1/2 at least one daughter singularity always hits the
2[(Atie)s+(N—ie)l] unit circle, and for\=1/2 some trajectories are free from

(7o)

(6=
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-&s© L.(0) FIG. 2. Phase portraits fofa) A=1/3 ande=0.1, (b) A=2/3

and e=0.1, and(c) A=1/3 ande=1/2. The daughter singularity
‘I’ £4-© impact is indicated by the symbols. The symbol corresponds to
the impact of{4, , X to the impact of{4_, and * to the simulta-

®) J, neous impact ofy, and{y_ .
£4 @
wheren parametrizes the branch of solutions. Note that
Z.0) X 0 >1/2 for all n. The steady finger shape is to leading order a
* 6@ 50 Saffman-Taylor finger, with the above values Xaf substi-

tuted for the widthA. On the other hand, foe>0 the
asymptotic state of Eq(4) is a Saffman-Taylor finger of
width \. From Eq.(9) it is clear there exists a steady solution
with width A ,(B) close to a Saffman-Taylor finger of arbi-
trary width A\>1/2. Thus the shielding of the daughter sin-
gularity, which leads to the persistence of a Saffman-Taylor
solution with A>1/2 over long times, is consistent with
steady state selection theof0]. In contrast forA<1/2
— there are no nearby steady solutions. Thus, a Saffman Taylor
=450 X_Cd—(o) £s(0) finger with A <1/2 cannot persist over a long time. We see
that the impact of a daughter singularity provides a mecha-
nism for the onset of finger competition, finger widening,
T—c 1. © and selection of a widtih >1/2.

For e=0 the scenario is similar, except there is an added
class of exacB>0 solutions. Magdaleno and Casademunt
[35] have shown that two-finger solutions composed of
steadily propagating but unequal fingers do exist for small
nonzeroB. The introduction of a small nonzero surface ten-
sion selects a discrete set of solutions from the continuum of
daughter singularity impact. In addition, it is observed thatfixed points of theB=0 phase portrait. The solutions are
for fixed \ a larger value ok causes the daughter singulari- parametrized by the total width of the fingeys-\;+\, and
ties to hit in shorter timesgor less developed fingerthan a  the relative widthg=X\,/\, and the introduction of finit®
smaller value ofe, and for fixede larger A implies larger  discretizes the possible values of the parameters. In particu-
impact times. We have also checked that the daughter singlar, they must satisfy a condition of the form=\,(B) and
larity impact occurs well before a finite-time singularity, i.e., =0, n(B), wheren andm are integers. The expression for
the impact of a zero af, . Thus, the effect of surface tension \,(B) at lowest order is equivalent to E¢®), but with dif-
is significant well before the curvature in the zero-surfaceferent coefficient€,. The shape of these solutions are given
tension solution becomes large. to leading orde(in the limit t—o0) by Eqg. (4) with allowed

It is noted that the\ dependence of the daughter singu-value of \,(B) substituted for the width\. Again, \(B)
larity impact is consistent with the results of steady state>1/2, and the consistency between daughter singularity im-
selection theory15-18. According to selection theory, for pacts and steady state selection theory follows as above.
small B the possible values ok are discretizedA must We conjecture that the outcome of interfacial shape evo-
satisfy the relationn=\,(B), given to leading order by lution after the daughter singularity impinges is in general
independent of the particular finger on which the impact first
occurs i.e., independent of the point at whig}{t) impacts
on |¢|=1. More specifically, we surmise that impact on ei-

vy
[T}

FIG. 1. (a) Schematic representation of the dynamics of pgle
and daughtet4 singularities fora <1/2. (b) Schematic representa-
tion of one of the two possible dynamics of pdlgand daughte
singularities forn>1/2.

An(B)= %{1+(%w2CnB)2’3} n=0,12..., (9
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ther the shorteftrailing) or larger(leading finger retards the time step isAt=5x10"4. For small values of surface ten-
velocity of that finger, and is accompanied by the wideningsion numerical noise is a major problem, and the spurious
of the leading finger, so as to maintain a constant fluid flux agrowth of short-wavelength modes induced by roundoff error
infinity. The widened leading finger then shields the trailingmust be controlled. To help prevent this noise-induced
finger, preventing it from further growth. Thus, the finger growth at short-wavelengths spectral filterii&§] is applied.
that is leading at the time of the daughter singularity impactAdditionally, we minimize noise effects and also assess the
“wins” the competition, in the sense that it will evolve for time at which these effects become prevalent by employing
t—oo to the ST steady finger. To examine this conjecture anaxtended precision calculations, as described in the follow-
study the dynamics of finger competition with finifut  ing section.
smal) surface tension we have numerically computed the
evolution of an interface with initial conditions given by Eq. . ,
(4). The results are reported in the following section. A. Solutions with e=0
We first consider parameter values=1/2 ande=0. A
IV. NUMERICAL RESULTS f[yp.ical set _of ipterfacial profiles _is showr_1 in Fig. 3: The
initial data is given by the mapping function E@l), with
Numerical computations have been performedBorO,  \=1/2, e=0, d(0)=0, and{2(0)= 20 exp(/6). With this
using an initial interface corresponding to the explB#0  yalue of £2(0) the initial interface is well inside the linear

soluyons d'S(?USSEd in Sec. l.l' Th_e effect of positive Surfac(?*egime. Evolutions are shown for different valuesBfand
tension on this class of solutions is explored for various val-

. . » . the B=0 interface evolution is also plotted for comparison.
ues ofe and a variety of initial pole positions. To isolate the b P

effects inherent to finger competition from those of WidthIn all these evolutions the filter level is set to 26, although
. : 9 P . : later we shall make comparisons to profiles computed at
selection, we will concentrate oB=0 solutions with\

_ L .. higher precision.
=1/2, the value selected by surface tension in the limit For the largest value of surface tension the computed

B—0. . . ; .
> =
We employ the numerical method introduced by HouB 0 and the exadB=0 solutions first differ appreciably at

et al.[28] and used in other studies of small surface tensioril® Séventh curve, correspondingtte 3. At this point the
effects in Hele-Shaw flowi19,20,32. The method is de- velocity of the small fingeKat the channel side$egins to

scribed in detail in Ref28]. It is a boundary integral method d€crease and itis clearly left behind when compared with the
in which the interface is parametrized at equally spacedMall finger evolution in th&=0 solution. Eventually, the
points by means of an equal-arclength variableThus, if advance of the small finger is completely suppressed and the

s(a,t) measures arclength along the interface then the quar@9er finger widens to attain a width close to 1/2 of the
tity s,(a,t) is independent ofr and depends only on time. phqnnel, the width singled out by selectlon_theory _for van-
The interface is described using the tangent afgiet) and |~sh|ng B. For a smaller value of surface tension, for instance
the interface lengtit(t), and these are the dynamical vari- B=0.001, the evolution displays qualitatively the same be-
ables instead of the interfageandy positions. The evolution havior. The B>0 interface differs appreciably from the
equations are written in terms ®{«,t) andL(t) in such a B=0 sightly later than beforé.e., at the eighth curyeand
way that the high-order terms, which are responsible of théhe region where the two solutions differ most is to some
numerical stiffness of the equations, appear linearly and witlgxtent more localized around the small finger than for larger
constant coefficients. This fact is exploited in the construcvalues ofB. Additionally, for this value of surface tension the
tion of an efficient numerical method, i_e_, one that has n(ﬁﬁect of numerical noise is Clearly exhibited in the interfa-
time step constraint associated with the surface tension tergial profiles. Here the tip-splitting and side-branching activi-
yet is explicit in Fourier space. We have used a linear propaties are a clear effect of numerical noise, as can be easily
gator method that is second order in time, combined with £hecked redoing the computation with a different noise filter
spectrally accurate spatial discretization. Results in this sedevel.

tion are specified in terms of the scaled variables In order to suppress or delay the branching induced by
numerical noise that appears for small values of surface ten-

sion it is necessary to use higher precision arithmetic, e.g.
quadruple precisiof128-bit arithmeti¢. The filter level can

then be reduced by a large amount and the outcome of spu-
The number of discretization points is chosen so that al[ious oscillations is substantially delayed. Figure 4 shows the

Fourier modes of)(,t) with amplitude greater than round- €fféct of reducing the filter level to 1G'. TheB=0 solution

off are well resolved, and as soon as the amplitude of thé® Plotted, as well as the computation with double precision.
highest-wave-number mode becomes larger than the filtdror B=0.001 the branching is totally suppressed, at least for
level the number of modes is increased, with the amplitudehe times we have computed, but for smaller valueB dfie

of the additional modes initially set to zero. The time sMdp  use of quadruple precision is only able to delay the branch-
is decreased until an additional decrease does not change timg and not totally suppress it. The quadruple precision com-
solution to plotting accuracy, nor lead to any significant dif- putation confirms the results observed with lower precision,
ferences in any quantities of interest. In a typical calculatiorthe introduction of finitgbut smal) surface tension results in
512 discretization points are initially used, and the initialthe suppression of the small finger. From Fig. 4 one can also

T=77t, E:WZB, X=X, 9=Wy, (10

instead of the original ones used in previous sections.
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cmene
6= A ) =7 P A

0 ! N 1 | 1

0 0 4 x 8 12

0

FIG. 3. Evolution of an initial condition of the forr¥) with A=1/2, e=0, and§§(0)=20 exp{#/6). The solid lines correspond to
surface tensioB values(a) 0.01,(b) 0.005,(c) 0.001, andd) 0.0005. The dashed lines correspond to the zero-surface-tension evolution. The
time difference between different curves is 0.5. The physical channel ip direction extends from the origin to the dotted line, and the
region above is plotted for better visualization of the lateral finger.

see that for long times, when the interface is clearly affectedelocity of the large finger is only slightly affected by sur-
by numerical nois¢in the double precision curyethe noise-  face tension, whereas the velocity of the small finger is sub-
induced branching is restricted to the large finger, and thetantially reduced by the inclusion of fini® As B is de-
small finger is basically unaffected by noise. This observacreased the tip velocity of the small finger is more faithful to
tion suggests that the small finger shape, as well as its tip

velocity and tip curvature, can be trusted even when the large L, T T T
finger has developed tip splittings and side branchings due to
the spurious growth of roundoff error.

Figure 5 shows the tip velocity of both fingers versifsr
decreasing values of surface tension. It can be seen that the

0

FIG. 4. Evolution of an initial condition of the forn¥) with
A=1/2,e=0, and§§(0)220 exp{#/6). The solid lines correspond FIG. 5. Computed tip velocities for the initial condition of Fig.
to B=0.001 with a filter level equal to 1/, the dotted line cor- 4 (&) corresponds to the centrdarge) finger and(b) to the lateral
responds to the sani but with the filter level equal to I0°, and ~ (smal) finger. The daughter singularity impact tinig is indicated
the dashed line corresponds to the zero-surface-tension solutiohy the + symbol. The value oB is: O (solid line), 0.0002(dotted
The time difference between curves is 0.5. As in Fig. 3, the physicaline), 0.0005(dashed ling 0.001 (long dashed ling 0.005 (dot-
channel in they direction extends from the origin to the dotted line. dashed ling and 0.01(dot-dot-dashed line
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4 y T y T y T y T y growth of the small finger. Later on, as the singularity cluster
centered infy spreads over the unit circle, the effect of sur-
face tension is felt by the whole interface and the large finger

widens.

5 i We have also studied the finite surface tension dynamics
p=0.1 for a more general class of initial conditions. More precisely,
p=0.05 ] we have studied initial conditions of the formg3(0)

s 1 =20exp{ nm/12), wheren=0,*~1,...,+6, and have ob-
p=0.02 1 tained the same qualitative results as in the case previously

2 p=0.01 . studied, namely that the presence of small surface tension
p=0.005 ] suppresses the growth of the finger which is trailing at the

time of daughter singularity impact. In order to compare the

B=0 and theB+#0 dynamics in a compact and global way

. . . . . . . . . we have plotted the phase portrait 8 0 using the the tip

o 0.05 or =05 02 0.25 velocitiesv, v, as dynamical variables. In the laboratory
B frame they read

FIG. 6. The timef, (defined in the tejtversusB*. From top to

i 22 2.2
bottom, p=0.1, 0.05, 0.02, 0.01, 0.005. The daughter singularity U1:1+L(§s_§s)i§s§s (113
impact timet, is indicated by ax symbol, and the curves are 22Hi(2-29)12 ’
linearly extrapolated for comparison.
the B=0 evolution before the daughter singularity impact 1—i(§§—?§)+§§z§
(shown by a crogs and clearly veers away from thg=0 VT 5 (11b
velocity later in the evolution, consistent with asymptotic {s{s—(Ls— 912

theory. Note that at the smallest valueBbthe tip velocity of

the large finger drastically differs from thi&=0 velocity at Now a comparison between dynamics B+0 andB+0 is

late times. This discrepancy is a manifestation of noise efstraightforward since the trajectories can be plotted together

fects in the neighborhood of the large finger tip. However, asand compared. In addition, the tip velocity is a useful vari-

previously seen, the small finger is basically unaffected byable because it contains geometric information; specifically

noise at the times we have plotted. the inverse of the tip velocity is equal to the width of the
In order to further verify that the daughter singularity im- finger in the asymptotict{~~) regime. It is important to

pact is responsible for the observed change in the small fimote that ¢ ;,v,) are dynamical variables for ti&=0 prob-

ger tip speed we follow the scheme introduced in R28). lem, so that the plot of the zero-surface-tension trajectories

Definet, as the time when the computed tip velocity differs onto the spaceu;,v,) is a true phase portrait. On the other

by p from the B=0 tip velocity. According to asymptotic hand ¢,,v,) are not state variables of the problem with

theory[13] thist, will be a linear function oB¥inthe limit  finite surface tension, so in this case we simply obtain a

B—0, as long as is small enough. Figure 6 shows,  Projection onto the;,v,) space of the originaB#0 tra-
versusB? for various values op, and it can be seen thTa,; jectory, which is embeded in the infinite-dimensional phase

exhibits the predicted behavior. Moreover, we have extrapos’p‘i‘:Ce of |r71te;]face (t:r:)nflghuratlonst B0 toaether with
lated theB=0 value oftp using the two points of lowe$ igure # Shows the phase portrait for=7 fogethe

} - ) the tip velocities obtained from the initial conditions de-
Emd th resgltllsvtllery clols%tgthvm(;% valuet |sfrte;]pre(:jsentﬁ;j scribed above foB=0.01. From the figure it is evident that
y asx symbol. We conciuge that Ine impact ot the daughtelty, o ,.qquction of finite surface tension has substantially
singularity is associated with the dramatic change ofBhe

) . ly one
>0 solution when compared to the zero-surface-tension S&hanged the global phase dynamics of the problem. Only

lution, reducing the velocity of the small finger and eventu-B—0-01 trajectory connects the planar interface (1,1) and
ally suppressing it. In contrast, for ti&=0 dynamics the the 2ST point (2,2), corresponding to the unsteady double

small finger “survives,” propagating with the same Saffman-Taylor finger. Any othéB=0.01 trajectory ends in
asymptotic speed as the larger finger. Note that the averag#e of the two ST finger points, $) at (2,0) and STR) at
interface advances at unit velocity, and a tip velocity below(0,2). In contrast, the (2,2) point, equivalent to the con-
one implies that the finger retreatingin the reference frame tinuum of fixed points present with thea(,a") or
of the average interface. (Rels,Im¢s) variables, has a finite basin of attraction for
It is noted that for the initial condition we have studied B=0. The introduction of finite surface tension has dramati-
the daughter singularity impact takes place on the tip of theally changed the zero-surface-tensian ,p,) trajectories,
small finger. Therefore, the influence of surface tension orio the extent that th8=0 phase portrait and th@+0 pro-
the interface should be significant first around the impaciection are not topologically equivalent. This result is not a
point, that is, the small finger tip. Our numerical results showcomplete surprise, since it was anticipated from the structural
that in fact this is the case; the initial effect of the daughterinstability of the dynamical system governing the evolution
singularity impact is to slow and then completely stop theof Eq. (4) for e=0 [21]. A more dramatic example of topo-
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FIG. 7. Plot of the evolution of initial conditions of the for4) t',:IG' Ef%.thCOmp;alrtigon kf’fkt]""e,e,rt‘. t:&: Od‘ttrlaject.oriesbanE((j t)he.t;;]ro-
with A=1/2, €=0, and ¢%(0)=20exp{nm/12) and n=0, ¢ 'f/rz‘o 73 evodu '20'2)0728 iniia /%on ';10” gi’en y e, V(‘j"
+1,... +6 inthe (v;,0,) or tip speed space. The solid line cor- X =1/2, €=0, and{;(0)=20 exp(w/6), whereA corresponds to
responds t@=0.01 and the dashed line B=0. B=0.001, ¢ to B=0.005,0J to B=0.01, andx to B=0. The

daughter singularity impacts are indicated by a plus.

logical inequivalence of phase portraits will be given in the ) o o o
following section, when we consider the casg0. tension phase portrait this projection has one major limita-
Although the use of the variables {,v,) has allowed us tion: it only conslders a Iocal_ qugntlty, the tip velocity. We
to project the finite surface dynamics onto the zero-surfacel@ve also considered a projection that takes more global

properties of the interface into account. Specifically, given a

computedB =+ 0 solution for an initial condition of the form
! ' ' ' (4), one can use a suitable norm to define a “distance” be-
X tween the computed interface and tBe=0 interface ob-
NNy ] tained from the mapping function E¢4). We choose this
A N “distance” to be the area enclosed between the two inter-
A faces at a given time. Additionally, we define a projection of
the B#0 interface onto théd8=0 phase spacpwith phase
' space variables (R&,Im¢)] by selecting the value of;
\ that minimizes the “distance” between the two interfaces,
N with the restriction that the position of the two mean inter-
/ 7 faces must be the same. The latter condition ensures that the
/ 4 projection satisfies mass conservation.

Figure 8 shows thd8=0 phase portrait and the corre-
sponding projected evolution for surface tensi®r0.01.
Again, the plot clearly shows that the introduction of finite
surface tension modifies the phase portraiBefO. The pro-
jected trajectories are initially close to tifge=0 dynamics,
but for well developed finger&orresponding tda|~1) the
projection departs from thé8=0 trajectory towards the
Saffman-Taylor fixed point, located at'=0, «"=1. The
o projected trajectory only remains close to the corresponding

B=0 trajectory when the Iatter evolves towards the

FIG. 8. Comparison between tffe=0 trajectories and the pro- Saffman-Taylor fixed point. More precisely, the continuum
jected evolutions witlB=0.01, for the initial conditions of Fig. 7. of fixed points present foB=0 has been removed by sur-
The solid line corresponds =0 and the dashed line to the pro- face tension and the Saffman-Taylor fixed point is the uni-
jection of theB=0.01 evolutions. The daughter singularity impacts Versal attractor of the dynamics for finite surface tension.

In Fig. 9 the projection for decreasing valuesBofs plot-

P
P

-
- -
- oo

———————

fate L S

~.

S~
~,
',

are indicated by a circle.
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T ' T ' T ' T ' a cros$ the projection departs from tHg=0 trajectory and
] approaches the Saffman-Taylor fixed point, consistent with
asymptotic theory.

B. Solutions with e#0

The continuum of fixed points present fer=0 is absent
for e#0, but in this case finite-time singularities in the form
_ of zeros ofz, impinging on the unit disk do appear for some
initial conditions. Therefore, we can expect that the effect of
finite surface tension will be somewhat different than éor
=0. First, the presence of surface tension should eliminate
finite-time singularities, and secondly, finiBecould modify
the basin of attraction for the two attractors of tBe=0
dynamical system, namely the side Saffman-Taylor finger
and the center Saffman-Taylor finger.

o L o L 2 L 2 L w0 To explore this, we have performed computations with

8 L o 2 ol . ] oy 2
A=1/2 and €=0.1 with initial conditions ¢5(0)

=20exp{nw/12) andn=0,%x1,...,=6. Initially we set

FIG. 10. Plot of the evolution of initial conditions of the form B=0.01 and use a value of the noise filter level equal to
(4) with \=1/2, e=0.1, and£5(0)=20exp{nw/12) andn=0, 1013 which suffices due to the relatively large value of

*1,...,26 inthe {;,v,) ortip speed space. The solid line cor- & "o o agjest way to compare both dynamics, fiBitand
responds tB=0.01 and the dashed line ®=0. The computed g_ s to plot their trajectories in velocity space. Thus, in

trajectory that most nearly separates the two basins of attraction is. . . = .
also plotted. Note that the long time behavior of the third and fourthE'g' 10 the tip velocitiesu; ,v,) of theB=0.01 computation

B=0.01 curves(counting from the upper left trajectory in clock- arg_tplotted tgg}_:]\ettrf]lert_ Wlthl th_?_ tip ;/?rlsggeos f??_o' Ford
wise direction is dramatically different from the corresponding 2/P!tfarye an € lip velocities o =V solution rea

B=0 solutions. 1+i(§§f?§)+§§?§

V1= 5 2 7 252 , (129
- —e(2+ D) +INE-D)—(1-2)
ted, using the initial conditioZ(0)= 20 exp{#/6). AsB is (b ellst Lo HIME— L)~ )
decreased the projected trajectory gets closer toBtke) 1-i(£2-73)+ {222
trajectory, but as it approaches the point when the daughter y,=— — . > izs . (12p
singularity impinges the unit circléhis point is signaled by {elste(st o) —iINEs— L) —(1=2N)
(a) ©)
6 4 6F
4 4
2t 4 2
0 0
(b) 2 (d)
6 - 6
4~ — 4

0 0

0 12 0

FIG. 11. Evolution of an initial condition of the forrf#) with A=1/2, e=0.1, and§§(0)=20 exp(im/6). The solid lines correspond to

surface tensioB values(a) 0.01,(b) 0.005,(c) 0.001, andd) 0.0005. The dashed lines correspond to the zero-surface-tension evolution. The
time difference between different curves is 0.5. The physical channel in direction extends from the origin to the dotted line.
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@

05 . 1 . 1 . 1 . I
0

FIG. 12. Computed tip velocities for the initial condition of Fig.
11: (a) corresponds to the central finger ail to the lateral finger.
The daughter singularity impact tintg is indicated by thet sym- FIG. 13. Comparison between tBe=0 trajectories and the pro-
bol. The value of8 is: 0 (solid line), 0.0002(dotted ling, 0.0005 jected evolutions witlB = 0.01, for the initial conditions of Fig. 11.
(dashed ling 0.001(long dashed ling 0.005(dot-dashed ling and  The solid line corresponds =0 and the dashed line to the pro-
9'01(d0t‘d0t'd‘35hed line The deviations observed at late times for jection of theB=0.01 evolutions. The daughter singularity impacts
B=0.0002 and3=0.0005 in(b) are due to numerical noise. are indicated by a circle. Note that the fouBh-0 trajectory(as

~ ) ) measured counterclockwise from the botjoewverses direction and
From the plot one can see that mést 0.01 velocity trajec-  heads toward the fixed point (8 1).

tories follow (at least qualitativelytheir B=0 counterparts,

in the sense that they end up in the same fixed point. How- .
ever, the second, third, and fourth trajectofiesunting from marked decrease over that Br=0 and is less than that of

. ; . ; : SR the central finger. The side finger tip speed is also decreasing
the upper left tra.uectory In clockwise dlrectmmffer~5|gn|f|— at the final stage of the computation. The tip speed trend in
cantly from theirB=0 counterparts. The secor@=0.01  ne |imit B—0 is further illustrated in Fig(12). This figure
trajectory moves apart from thB=0 solution simply be-  gshows the tip speed versus time of each finger for a sequence
cause Fhe latter devglops a flnlte—nm_e.smgularlty, WhIC'h iSof decreasingB. The plot suggests that upon impact of the
regularized by _the mtroductlon_ of fl_nlte su_rface te?”s'on-daughter singularity the side finger velocity levels off and
However, the third and fourth trajectories exhibit a quite sur-eyentually decreases, whereas the velocity of the center fin-
prising behavior: the computed interface wigh=0.01 ends  ger is nearly unaffected and continues to increase. The trend
up in a different fixed point than the exaBt=0 solution, s indicative of the center finger “winning” the competition
despite the fact that the=0 solution is smooth for all time in the B>0 dynamics, while the opposite occurs Br0.
and has the asymptotic width that would be selected by varFinally, it is noted that the influence of surface tension is first
ishing surface tension. felt by the smaller finger, which is the recipient of the daugh-

In order to get further insight into this behavior we haveter singularity impact. Afterwards the leading finger begins
computed the evolution for decreasing value8aifsing the ~ to widen, in a manner consistent with the conjecture in Sec.
specific initial pole positiorg’g(O)=20 explim/6), with A IIl. Further remarks on this point are made in Sec. V.
=1/2 ande=0.1. Quadruple precision has been used when it The projection method described in the previous section
has been necessary. Figure 11 shows its evolution for foulas been also applied to this case, and the results are dis-
values of the surface tension parameter, together wittBthe played in Fig. 13 in the particular ca®=0.01. It can be
=0 solution. The differences between the two interfaces foseen that for most trajectories the projection stays close to
long times are readily apparent. WhBe=0 the finger in the theB=0 curves, even for long times. The daughter singular-
central position stops growing and the side finger wins théty impact still leads toO(1) differences between thg=0
competition, whereas foB>0 we encounter the opposite and B>0 solutions, although the impact does not produce
situation—namely, the central finger surpasses the side fingehanges in the outcome of finger competition. However, as
and wins the competition. For the smaller valuesBothe  expected some of the trajectoriésamely, the third and
finger on the sides has not quite stopped growing when théourth as measured clockwise from the botjodo indicate
computation is stopped, although its tip speed shows aignificant qualitative differences in the long time evolution.
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_02_' T L A S described by its evolution und&=0 dynamics. This is a
| T dramatic consequence of the singular nature of surface ten-

sion on the dynamics of finger competition that is not related

i ) 4 1 to steady state selection, but confirms the ideas of the pro-

y 4 posed dynamical solvability scenario in RE22].
-0.3 S -

® I 7 - V. SUMMARY AND CONCLUDING REMARKS

x The asymptotic theory developed in RfE3,20 predicts
041 A 7 the existence of regions of the complex plane where the zero-
X surface-tension solution and the finite surface tension solu-
i 7 ] tion differ by O(1). These regions are the daughter singular-
1532 ity clusters, and their influence is felt in the physical
ol interface when they are close to the unit circle. Daughter
~ singularities move towards the unit circle, and when their
motion is not impeded by other singularities they reach the
FIG. 14. Plot off., versusB for initial conditions of the form  unit circle in O(1) time. When the distance between the
(4) with A=1/2, e=0.1, and¢3(0)=20 exp{6). daughter singularity and the unit circle @(BY?) the inter-
face can displayD(1) discrepancies with respect the inter-
The plot provides a simple depiction of the topological in-face of theB=0 solutions.
equivalence of th&>0 andB=0 dynamicg41] Since the precise effect of the daughter singularity cannot
It has been shown that the introduction of a filgdhas  be established by the asymptotic theory it is necessary to use
not changed the attractors of the problem, but it has changetumerical computation in order to establish the effects of
their basins of attraction. Interestingly, in tBe=0 case there daughter singularity on the dynamics of the interface. We
does not exist a single separatrix trajectory between the twbave focused our efforts on uncovering the role of surface
Saffman-Taylor attractors, but rather a finite region, corretension in the dynamics of two-finger configurations, and
sponding to the set of trajectories ending in cusps, that actsvo different types of two-finger zero-surface-tension solu-
as an effective separatrix. Since for finite surface tensioions have been studied. The first type=(0) does not ex-
there are no cusps, it can be assumed that there is a sindtéit finger competition whenB=0 but rather contains
trajectory that separates the two basins of attraction. Obviasymptotic configurations consisting of two unequal steady
ously, this trajectory will depend on the value of the surfacefingers advancing with the same speed. Numerical computa-
tension parameter. More precisely, the initial condit{@(ﬂ) tions with small surface tension show that the introduction of
corresponding to the separatrix trajectory will be a functiona smallB triggers the competition process which was absent
of the surface tensioB. To quantitatively characterize this for B=0 by restoring the saddle-poitttyperbolig structure
set of initial conditions we have studied the dependence off the appropriate multifinger fixed point. The second type
the separatrix trajectory in a neighborhood of the planar in{e+ 0) of two-finger solution we have studied exhibits finger
terface fixed point as a function &, using initial conditions ~competition forB=0, but the numerical computation with
of the form ¢2(0)= 20 exp(#). For a given initial condition small B has shown that the long time configuration of the

£<(0) introduce the paramet@gep(ﬁ), defined as the unique computed interface |qualltat_|\_/elyd|ffe_r_ent frpm theB=0
) U S€ ) solution for a broad set of initial conditions, in the sense that
value for which the evolution is attracted toward the fixed

. . ; the finger that “wins” the competition is not the same with
zgrg STL) wheno> 6sepand to the fixed point SR) when and without surface tension. Thus, the presence of surface
sep-

i ~ o tension seemingly can change the outcome of finger compe-
Figure 14 shows the plot dfsep versusB, and it is ob- tition even in configurations that are well behaved and
served that a8 decreasesds,, saturates to a fixed value, smooth for all time and whose asymptotic width is fully

namely gsep(~|3_>o): —0.4843-0.0009. It is interesting to compatible with the predictions of selection theory for van-
compare this value to the position of the separatrix region fofshing surface tension. This unexpected result shows that sur-

B=0, which is located betweers®=°=-0.95758 and face tension plays also an essential role in multifinger dy-
6B=°= —1.04796. The separatrix for finit® lays outside namics through a drastic reconfiguration of the phase-space

and far away from the separatrix region =0, even for flow structure. . . ,

o . . Our calculations support the conjecture that impact on
vanishing surface tension. Our evidence, therefore, suggests ' .

= . . : either the shorter or larger finger retards the velocity of that

that anyB=0 trajectory located between the trajectories de-f. : : PP
) ~ B0 . : _finger, and is accompanied by the widening of the larger
fined by fse{B—0) and¢=~" will not describe, even quali-  finger. As a consequence, in general the outcome of finger
tatively, the regularized dynamics in the linit—0, since  competition is independent of the particular finger on which
the finger that will “win” the competition under th&=0  the impact first occurs, and the finger which is leading at the
dynamics will “lose” under theB— 0 dynamics. Thus, there time of the daughter singularity impact “wins” the competi-
exists a positive measure set of initial conditions of the formtion. This recipe fails only for interfacial configurations with

(4) such that the evolution witB— 0 cannot be qualitatively very similar fingers, when not only the position of the finger
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(which finger is leadingbut also the tip velocitiega trailing  traced back to the restoring of hyperbolicity of multifinger
finger can have for a certain time a larger velocity than thefixed points.
leading ong at the impact time may play a role.
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