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Diffusion in spatially and temporarily inhomogeneous media: Effects of turbulent mixing
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We consider diffusion of a passive substar@ein a phase-separating nonmiscible binary alloy under
turbulent mixing. The substance is assumed to have different diffusion coefficients in the pure Alasks
B, leading to a spatially and temporarily dependent diffusion “coefficient” in the diffusion equation plus
convective term. In this paper we consider especially the effects of a turbulent flow field coupled to both the
Cahn-Hilliard type evolution equation of the medium and the diffusion equébioth, therefore, supplemented
by a convective term It is shown that the formerly observed prolonged anomalous diffudibri_ehr, F.
Sagus, and J.M. Sancho, Phys. Rev5E, 5028(1996] is no longer seen if a flow of sufficient intensity is
supplied.[S1063-651X97)00108-9

PACS numbds): 47.27.Sd, 64.60.My

l. INTRODUCTION a is a(uniform) random variable, whose actual range is not
of critical importance as long as its average vanishes. Here

In a recent publicatiofl] (hereafter referred to a3 We  we have chosea e[ —0.1,0.1.
treated diffusion in a special inhomogeneous medium. We This equation describes the phase separation following a
were then interested in finding out how the time dependencguench of a nonmiscible binary alloyvith phasesA and
of the variance of a passive scalar field immersed in a binarg) inside its coexistence curve. It is knousee, e.g/7] and
alloy changes when coupled to the spatial and temporal inreferences therejnthat the solutions to this equation are,
homogeneities of the underlying phase-separating mediumdepending on the intensity of the turbulence, more or less

In this paper, we will consider a similar model but include inhomogeneous. In the zero intensity limit this medium is
turbulent mixing. In[2,3] we have been concerned with the very structured, its configuration depending on the relative
diffusion of a passive scalar convected by a random incomeoncentration of the phases. Raising the intensity of the tur-
pressible flow using the analytical and simulation techniquegulent flow the structures, quite naturally, get distorted and
of stochastic differential equations. The role of the mediumiess regular. In the high intensity limit, phase separation even
was played by the mentioned turbulent flow, which is represtops and we arrive at a homogeneous mixture of the partici-
sented mathematically by a two-dimensional, isotropic, stapating phases. For more details $&gand also .
tionary, homogeneous, and incompressible velocity field. In - The velocity field appearing in Ed1) has a zero mean
[4] it has been shown how to generate such a vector field iand is, for simplicity, Gaussian correlated
an efficient manner. The latter ansatz has now been extended
to explicitly incorporate viscosity5].

We have opted to use, as a medium, a solution of a dy-
namical equation corresponding to a phase segregation prob- Co
lem, i.e., iﬂ this case thepwell-k?]own gahn-HiIIigj’;\rdgequa’tiF:JnWherGf‘vl’vJ with i,j e{x,y} stand for the components the
[6] supplemented by a convective tefd (see, e.g.[8—10] two—dlmen§|onal velocity fleld.. This vector field is con-
for some newer literature on the theoretical 4hd—13 on structed using the stream function
the applied aspects of this subject

(V' (r,t)u(1.t))=RI(|r1 =1, |ty —ty]),

- an dn 2
n sy e - =\ ") 2
ot VX = V)=V (vy), D
which in turn follows the Langevin equation
where o (r,t) is a stochastic, isotropic, and incompressible
vector field that is our model of turbulent stirring. The initial in ., - poe 2,2
distribution x(r,0) is chosen to be Zi - VVIn(n O+ QIATVAV- &(r 1) ()
x(r,0)=xot+ea,

(here the dynamical viscosity appears explicitly{5]). &

represents herein a stochastic noise term, whose components
*Permanent address: I. N. Stranski-Institut, Sekretariat ER 1‘?‘re spatially and temporarily correlated.
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It can be shown that this vector fietd exhibits in depen- o(1)=4Dt, (7
dence of the operatd| - - - ] the energy spectra characteris- ) ) )
tic for turbulence(e.g., that of Kraichnaii14], which will ~ Whose value can be calculated analytically for small intensi-
solely be used in our calculations, or that of Karman-ties of the turbulent advective fiel®,3]. For the sake of
Obukhov[15]). easily identifying diffusional regimes we defined in |

The turbulent flow is characterized by the parametgrs (t)
which represents the intensity of the noise source divided by D(t)= UT

t 1

the viscosity A which is connected to the correlation length

I, of the flow b
0 y which was then usually represented and discussed.

J Additionally, we derived in | an expression for the time
Io=7)\, dependence db(t) for the case of an unstirred phase sepa-
ration. Its counterpart for the present problem can be evalu-

(for the Kraichnan type of energy spectrum: §8p, and by ~ ated similarly as

the dynamical viscosity, which together with\ defines the aD*
correlation timet, of the flow D(t)=D*(1—ay,) — 5
t
)\2

again for Kraichnan’s spectrum. The intensity of the turbu-

lence, additionally, is given by +% tdtJ j dx dy(FJ:,b}X,;,
0
ugzi‘l. t
8\ E<D>w—f SD(t)dt+AD(t), (8)
0

Diffusion of the substanc€ is now treated via the usual
diffusion equation, again supplemented by a convective ternivhich now has been supplemented by an additional term
using the same velocity field as in E@). As a coupling AD(t) due to the presence of the turbulent figlBubscripts
between the phase-separating medium and the diffusion wen the angular brackets indicate whether averaging is over

have simply chosen space (), or over realizations of or the flowv.] For ho-
- - . mogeneous media this terdiD has been evaluated analyti-
D(r,t)=[1—ax(r,t)]D", (4) cally in the limit of small correlation times of the flofi2,5].

Note though, that here, i.e., with an inhomogeneous and dy-
namically evolving mediumAD depends generally on time.
One of the main results of | was that diffusion in our
gphase-separating medium without stirring was anomalous.
Indeed, we gave evidence tHatt) goes liket ®to a con-
stant final valueD,,. This is an extremely slow process.
Analyzing the results with the aid of some analytical treat-
oo o o ment, we suggested this to be due to a “reservoir effect” and
V- [D(r,t)Vi(r,t) =V -[vy(r,t)], (5)  that the total interface length would be an adequate measure
for it. Under a “reservoir effect” we understand the follow-

where the second term on the right hand side again describdig: In the regions with a low d|ﬁu5|_on coefficient it takes a
ery long time for the matter to diffuse through these re-

convection by the same turbulent vector field, as mentioned X
above gions. Therefore, even at longer times, a good part of the

The object of our interest now is the variancer aff this disper_sgd m_atter will be collected _in exactly these regions,

scalar field with time, i.e., thu_s giving rise to an ever dec_reashg_t). Moreover, these

regions have their own dynamics, which gives a process that

a(t)={((Ar)?=(r?)—(r), (6)  Wwill only asymptoticallyreach a constant value fdd(t).

Since the integral representi®p gets its contributions only
where(f(r)) is defined as the average «(fr) over different  from the interface region, we concluded that the total inter-
realizations ofis [and therefore as the average over differentface length was the most natural way to measure the reser-
realizations of the turbulent field, as well as that of the “me-voir effect. Interchangeably, we can investigate the effect on
dium,” that is being represented ky(r,t) and is, because of the linear(characteristigsize of the growing pure-phase do-
the random nature of the initial conditions, also a stochastienains, since these two measures are not independent of each
process other.

As is well known, in homogeneous media this dispersion Looking now at the model we want to investigate here,
grows in the long time limit linearly with time, the propor- one realizes thaD(t) couples both directly and indirectly to
tionality constant being four time@n two-dimensionsthe  the random flow. Directly due to the presence of a new term
effective diffusion constanD in Eq. (8) and indirectly due to the dependence on the un-

whereD* is a value of input that together with the parameter
a (here:a=0.85) defines the diffusion constants in the pure
phases. Again we refer to | for a discussion of this couplin
and its parameters.

So, lety(r,t) be a passive, i.e., nonreacting, scalar field,
that describes the density of the substaGcé&hen we have

E:
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derlying structuring ofy. Let us therefore first treat the effect 5 - ' T ' '
that such a random flow has gnand even more importantly 45t _
on L(t), the total length of the interfac@r rather the total
area; see below

In view of the rather numerous parameters involved in the 85T 1
model (the diffusion coefficientD*, the coupling constant af ,
a, the mean compositioy,, the noise strengtla,, the vis- 3 s i
cosity v, and the parametex, which is connected with the *
correlation length of the floywwve have fixed both thaver- 2r
age diffusion coefficient{D)=D* (1—ay)=0.5, the cou- 15
pling parametera, and the mean compositioy, (see, ol
though, below, which normally was chosen to be zefar,
equivalently, we consider equipartial or critical mixtures 08 i
For the sake of brevity, and in order to avoid repetitions, 0 1 Y . Y y 15
we do not wish to dwell on numerical details but on the ' ' % ' '

necessary ones. The Cahn-Hilliard equation as well as the _ o

diffusion equation have been discretized according to stan- F!G- 1. Representation of the distribution piatt=500 for two
dard procedures; see | for more details. As to the flow, thé!fferent values of the flow intensitySolid line: up=0, broken
numerical aspects have been discussed in some def&il.in ine: ug=0.0870) In the,,m').(ed case the .'nte.rface gets Sens'.bly less
Here it may suffice to say that EB) can be solved exactly SnarP: SO that a "zero” width assumption is no longer valid. See
. . . . . text for details.(Grid sizeN=128, x,=0.0,A=2, andv=1, 10

in Fourier space and that thus the obtained solution will therﬂealizationss

be Fourier antitransformed and used in both Efjsand(5). '

The numerical errors of our results, equally that of the
total interface area as well as that Bf(t), are extremely
difficult to estimate, also for reasons of computer time. In |
we estimated the error fdd (t) in the case without flow and
from our experience we know that here the errors are n
significantly higher (i.e., they will be of the order of 10—
15%). “Real” error estimates or even bounds, though, are

small eddies of high intensity and long correlation time. The
proportionality to the intensity needs no further explanation.
The dependence di may be understood from an extreme
case: consider one sole circular eddy of the size of the sys-
o) . -
tem (very largel ) centered at the origin. Instead of mixing
the phases, this would just give the whole system an angular
velocity, depending on the intensity. The mixing effectivity

not available. would be (close t9 zero. For smaller eddies, on the other
hand, there is always an exchangstweenthe eddies, lead-
Il INFLUENCE OF THE FLOW ON THE INTERFACE ing to mixing, if their correlation time is not too short. If we

LENGTH have many small eddies but with a very short correlation

In [7] some of us have already been concerned with théime, again there will be little mixing, because there will be
influence of a turbulent flow on the solutions of the Cahn-VerY little exchange between the eddi@a.the opposite case

Hilliard equation plus convective supplement. We were therP! Very long correlation times, one will find a constant flow
more interested in the temporal dependence of the spatidetween the eddies, which implies a rather effective mixing.
extension of the appearing structures than in the interface A last preparatory remark may be in place: since the av-
length. The main result df7] can be summarized as follows: €@9€ compositiony, is conserved in the Cahn-Hilliard
for low and medium intensities of the flow the linear struc- €auation(with and without convectionthe number of struc-
ture size grows in the long time limit according to the tUres times their respective area must be constant. From this
Lifshitz-Slyozov behavior; for smaller times, a different follqws that for a growing spatial extension of the structures,
growth law has been observdd]. Raising the intensity their number must decreagene observes that smaller struc-

though, one finds a limit intensity beyond which the systerfUrés are unstable and vanish in favor of the larger pnes
supports only structures of a certain size; those larger gep"Ce their number now is antiproportional to thguareof

ruptured by the flow. It was suggested([ifi that for every the !inear dimension, the total interface Ieng\whiqh js pro-

Up there exists a critical., such that for every value Portional to the number and the linear extensionill de-

\>\., one will find frozen growth. In particular, it was creasewith time. In the undisturbed problem without mixing
c» . L]

found that we could simply define
2
)\me_z, (9) L(t)=<f fdxdy(l—)(z)> .
¢ 2 ug N
where3 =22/3~1 is related to the surface tension. Because of the pronounced sharpness of the inte(faee

In order to understand the above relation between the spdsig. 1) this area was practically identical to the total interface
tial correlation length of the flow and the question of frozenlength. We found in | that (t)t =3 In the disturbed case
or sustained growth, it seems worthwhile to discussntite  with mixing the interface now gets sensibly broader. In Fig.
ing effectivity—obviously a closely related concept—in de- 1 we show the(normalized distribution of y at time
pendence of the three parametafs |, andt, of the flow.  t=500 for zero noise and farj=0.0870. Since it is evident
Quallitatively speaking, the mixing effectivity is best with from Fig. 1 that the above definition will not yield the inter-
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face length, but rather the total interface area, some care ha ' '
to be taken. We therefore contrasted our results by calculat-
ing also the characteristic linear size of the structures. This is
evaluated as usual from the circular averae,t) of the
correlation function

1

L@

> 1 > o >
Gt =( gz Ix(r+r" Hx(r.H=x3l)

XU

(where N is the size of the systemThe “characteristic”
sizeR(t) of the structures is now determined by the first zero

of the functiong(r,t) with respect ta. Calculations of this

type, though, yield for the time range considered here results
that are relatively independent of the noise intensities used.
This is because we are still in the coarsening redifigei.e.,

the dominant process is still the coalescence of droplets
rather than their being moved around by the flow. This is 1!
also expressed by the fact that we do not find a growth pro-
portional to the Lifshitz-Slyozot® law.

In view of the results concerninB(t) to be presented
later on and realizing also from E¢B) that the “indirect”
term gets contributions from the whole interfacial area, the
more consistent measure for our time rangé (§), as de-
fined above. We will hence base our argumentation on the
interfacial area.

We have calculatedl (t) for different choices of the pa-
rameterse, A, andv. One finds the following results.

(a) The interface area decreases isil@avermanner with a
growing intensity of the random floysee Fig. 2a)]. Mixing
is therefore more effective.

(b) The interface area decreasiester with growing v,

. 1=30
o 1=2.5
- 1=2.0

1=3.0

1=2.5
1=2.0

100
t

i.e., decreasingcorrelation time.

(c) The same is true for growing. Changing\, though,
changes alug, lo, andty. In view of the importance of the
intensity, changing jusk is inconclusive.

(d) For a given intensity of the random flowg, the tem-
poral development of the interface(@lmos) independent of
the different possible choices @f, and \ [see Fig. &)].
Note that here—as ifc)—t, is changed. Additionally keep-
ing t, constanfinset of Fig. Zb)], the results are statistically
equal.

Results (d) might at first sight be a little unexpected,
keeping in mind that according to E¢) raising\ for con-
stantué we are going in the direction of frozen growth. They
show, though, that fok (t) the most important parameter is
the intensityof the turbulent flow.

FIG. 2. Double-logarithmic representation of the total interface
areal (t) in dependence of time as a function of the parameters of
the flow. (@) Varying the intensityu? of the flow u3. (Solid line:
u3=0.0000, long dashesi3=0.0249, short dashesi3=0.0497,
dots:u5=0.0622, and dot dashes3=0.0807;A=2, v=1.) In (b)
we show results for two constant intensities of the flow
u§=0.0249 (solid lineg and 0.0870(dashed linesvarying both
€o and\ (v=1). Note that, varies here. In the inset @b) results
for constantu3=0.0249and constant,=4 are shown(Solid line:
N=2.0, v=1, long dashes:A=2.5, v=1.5625, short dashes
A=3.0, v=2.25) See text for details.(Grid size N=128,
xo0=0.0, 10 realizations.

Summarizing, one can say that the total interface area is a
continuous function of the parameters of the flow. Not only
very near the limit for frozen growth, but also further away

We have also calculated the equal point correlation funcihe time dependence f(t) changes considerably with the

tion of (x(r,t) x(r,t+s)), . as a measure of the change in
structure. The qualitative results are the same as above.

intensity of the flow. While correlation time does have an
influence, though of second order, correlation length seems

Fig. 3 we show this nonstationary correlation function forto play a minor role.

three values of the noise parametge=0, 20, and 35. Ini-
tially one finds for thet chosen an increasing correlation,

IIl. INFLUENCE OF THE FLOW ON THE DIFFUSION

which is essentially due to the fact that at very short times
the solutions of the Cahn-Hilliard equation have not yet
reached their equilibrium values of 1. So, typically, one After having discussed in some detail the influence of a
finds that initially the “bulk” values grow until they reach turbulent flow on the structurization of the underlying me-
said values. The much more interesting and relevant infordium, we now proceed to discuss diffusion in such a dynami-
mation here is naturally the decay of the correlation. As to becally evolving medium. In | we gave evidence to the fact that
expected, the correlation decays much more rapidly when thiine interface in amndisturbedproblem plays a major role. In
phase mixture is “stirred.” fact, we found—as mentioned earlier—that the temporal de-

OF THE SCALAR
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0.03 , , . . . . . . . TABLE I. Estimate of effective differential diffusion constants.
ADY was evaluated by numerical simulation puttag 0 which is
equivalent to obtaining it from a homogeneous medium with
D=0.5[see Eq.(4)]. AD' was estimated from the data shown in
Fig. 4 for the case of zero average composition. Although the me-
dium is inhomogeneous and dynamically evolving, we do reach a
diffusional regime within calculation time and therefax®' can be
estimated.(The size of the system wa$=128, and the average
was made over 10 runs up te-500 or 20 000 time stepg;,=0,
A=2,andv=1))

0.025

0.02

0.015

c(t,s)

0.01

0.005 |

€o u3 ADM AD'
0
20 0.0497 0.108 0.035
-0'0050 5|0 1cl)0 1%0 2clJo 250 3clJo 3&0 4<|)o 4&0 500 25 0.0622 0.133 0.070
s 30 0.0746 0.158 0.103
35 0.0870 0.183 0.119

FIG. 3. The  nonstationary  correlation  function
c(t,8) = {(x(r,t)x(r,t+9)), ,.; for €,=0 (solid line), €o=20 (long
dashey andey= 35 (short dashesas a function of the time differ-
ence. {=6.25 was chosen such that the initial structurizapomas
advanced considerabliy=128\=2,»=1; 10 realizations.

but puttinga=0. This gives a homogeneous medium with
the diffusion coefficient equal to the average diffusion coef-
ficient of the inhomogeneous problertin the case of
. , Xo=0). We could not estimataD" (the deviation of the
velopment of the_ total mterf_ace Ieng_th determines howcomputed diffusion constant from the average diffusion con-
D(t) approaches its asymptotic valgehich we calculated  gtant in the homogeneous cagmom the analysis made in
using the first order effectiye me_dium approximation; for the[5]’ because here we are not in the limit of very short corre-
latter see, e.g[,16]). Now including a turbulent flow field, |ation times of the flow. Approximate results obtained by
the analysis of | changes considerably. As described abovi§,merical simulatior{simply puttinga=0 in Eq. (4)] are
and in |, the cause for the very prolonged abnormal diffusionso\n, in Table I. From there and Fig. 4 we can see that even
was the “reservoir effect” which in turn depends heavily on \yith an intensity of the flow that in a homogeneous medium
the absence of a transport mechanism other than pure diffyo 14 result in 20% elevation of the effective diffusion con-
sion. _ _ stant only, the abnormal behavior found without mixing is
In Fig. 4 we show rgsuits fob(t) corresponding to dif- ot ghserved anymordin our numerical simulations we
ferent intensities of noiseg. Apart from finite size effects tq,nd diffusional behavior fom320.0497 a=2=1)]
we find, for already rather weak noises, a diffusional regimesr,rhylent mixing seems to be very efficient in this respect.
Quite expectedly, mixing has a destructive influence on thg, Taple | we also show the numerical estimate of the effec-
behavior described in I. In order to estimate the efficiency okjye giffusion constant for this scenario. We see that even in
the mixing, we also calculated(t) for the same parameters, the case of higher intensity of the flow, the effective diffu-

sion constant is considerably lower than it was for a homo-

075 ' - - ' , - - - , geneous medium with the same characteristics. For very high
ozl intensities, though, we can expect the two values to coincide.
A very rough estimate based on the linear dependence of
0.5 | ] bothAD" andAD' (inhomogeneous cassays that for val-
45=0.0870 ues above13= 0.16(for v=1; see belowwe may expect the
08 1 two to coincide.(One has to take into account, though, that
£ s N . i higher intensity stirring stops phase separation, so that pos-
i T WEOOR9T sibly this will be reached even earligr.
05 [~ e We have also calculated(t) for two other average com-
oas | e \=00249 | positionS)_m: +0.4 asin |. This might have b_een interesting,
o~ T because in those cases we found droplets instead of lamellar
04 , i structures. The results, though, are—again as in |—strictly
4=00000 analogous to the ones presented in Fig. 4, albeit in some
0.35

cases we had even more problems with finite size effects.
As we mentioned in the Introduction, the diffusing field
s couples both directly and indirectly to the flow. In order to
of the flow \=2, v=1). Even for relatively small intensities of estimate the ianuence of thes? tWC,’ different couplings, We
the flow, the prolonged abnormal diffusion observed dge0 is performed calculations neg_lectmg either one of them. In Fig.
not found anymore. A diffusional regime is reached within the cal-> We show the corresponding results of calculatng) (a)
culation time. Note, however, that for the constgt)=D*(1  Without any coupling or, equivalently, farg=0 [solid line],
—ayo)=0.5 this depends on the average composition. The fina(b) dropping the convective term itb) [long dashe} (c)
dropping of the curves is due to finite size effe¢Results averaged dropping the convective term ifL) [short dashds and (d)
over 10 runs with system siZ¢=128) taking both couplings into accoufdots|. The results shown,

0 50 100 150 200 250 300 350 400 450 500
t

FIG. 4. Temporal development &i(t) for different intensities
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0.52 T T T T T T T T T 0.55

054 |\
0.53 ;
0.52 H
0.46 051 {

05
0.44 |

D(t)
D(t)

0.49 -

0.42 048 -

04| 047y

0.46 -
0.38 |

0.45 -

0.36 . . . . ) ) ) ) . 0.44
(] 50 100 150 200 250 300 350 400 450 500 0
t

FIG. 5. Temporal development @ (t) for different couplings
to the flow. Solid line shows results fo=0 or, equivalently, no 0.54 & O
coupling. The long dashed line was obtained calculabr{g) by
dropping the convection term the differential equation forThe o052 LI
short dashed line was obtained in a similar manner, only this time
dropping the convection term in the Cahn-Hilliard type equation ‘
with convection. Finally, the dotted line includes both couplings. 05 f
(uU3=0.0497,\=2, v=1, and x,=0. System size wabl=128,
and results were averaged over 10 runs. 048 L

D(t)

and those for higher intensities of the flow, indicate that the

indirect coupling is of minor importance. In effect, although 0.48 1
there is a dependency of the results on the intensity also for
the case of dropping the direct coupling, calculatiDét) 0.4

with only the convective term in the evolution equation for 0 50 100 180 200 230 800 350 400 450 500

¢, yields statistically the same results as in Fig. 4. In spite of ) _

the fact that, physically speaking, dropping one of the con- FIG. 6. D(t) for constantu;=0.0249, varying bothe, and x

vection terms is not very sensible, it shows us that the trangS0lid lines:eo=10A=2, long dashest, =24.4141\ =2.5, short

port of matter due to the mixing really is very effective. The dashese=50.6250\=3). (&) For constant viscosity=1. One

important role of the underlying inhomogeneous medium inobserves a transition of diffusional to anomalous behavior with

imposing a non-normal diffusion due to the formation of 9°WingA. (b) Varying alsov, keeping thus constant botif and
to=4. Here the above transition is not observed; on the opposite,

i i i 0
[ﬁzep::’/gl;rér: strongly reduced by adding a turbulent flow toresults are very similaftaking statistical error into accoyntn (b),

. .solid line: v=1, long dashes:yr=1.5625, and short dashes:
Let us now proceed to discuss the dependency of the dIf_z=2.25. The other parameters mentioned are as in Fig. 4.

ferent parameters involved. Apart from the dependency on
D* and(D) already discussed in |, for the dependency ongjy gp) we do not only not observe such a transition, but
the parameters of the flow, we can adopt exactly the samg,q 5i5q that all the results are similar. This means that for
position as in the preceding section, where we discussed thge emporal development &f(t) the correlatiortime plays
influence on the total interface area. As to varyindand 5 ,ch more important role than the correlatiengthof the
A], we find strictly the same behavior as above: since the,ow. This was not so in the case b{t), which depended
mixing effectivity is proportional to the correlation tinfand very little ont, for constanti2. Clearly, intensity and corre-
antiproportional to the correlation lengthdiminishing v [or lation time arg here of similgr importr;mce
A] we observe a transition from anomalous to diffusional '
behavior.(Let us remark once more, though, that changing
only \ is of lesser interest, because besides the correlation
length, both intensity and correlation time are also changed. |n this paper we discussed diffusion in a dynamically
There is, though, a distinction in the relevance of the corevolving, phase separating system with convection. Based
relation time. This can be seen in Figgaand @b). In Fig.  on the results of I, we were mainly interested in the question
6(a) we showD(t) for constantu3=0.0249, analogous to of whether the earlier found prolonged anomalous diffu-
Fig. 2(b), i.e., with constantv and therefore variablg,. In  sional process was able to stand up against turbulent mixing.
the preceding section we showed that the interface area d®ealizing that in our model the scalar variable or the
pends very little on é,,\), as long asug is constant. Here density of the diffusing substand®, couples both directly
the case is very different. In fact, we again observe a transiand indirectly(via the binary mediuny) to the flow, we first
tion from anomalous to diffusional behavior, in spite of the discussed possible effects of the mixing pn
fact thatA grows. If we compare this with Fig.(6), where In | we gave evidence that the “mechanism,” responsible
alsoty=4 is kept constant, the reason seems to be clear. Ifor the (“infinitely” ) long anomalous diffusion in such a

IV. SUMMARY AND DISCUSSION
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system, was what we named the “reservoir effect” with its used. We suspect that the asymptotic valudx(t) depends
appropriate measure being the total interface area. Quiten ué andt.
naturally then, upon including the turbulent flow we concen- This result is interesting if looked at from the viewpoint
trated on its effect on the latter quantity. [I[] it had been of the distribution of energy. The intensity of the flow ap-
shown that there exists a threshold or critiaal, such that pears herein as the integral over the wavelength of said spec-
for A>\ the structures cease to grow. In this paper we gavé&um, while the correlation time does not appear at all in the
further evidence of this fact, showing that this is a continu-equilibrium distribution. Reformulating the results in this
ous process depending on the mixing efficiency. From physicontext seems to indicate that the distribution of the energy
cal reasoning we know that the latter must be antiproporon the different wavelengths involved plays a minor role
tional to the eddy sizéor correlation length of the flomwand  compared to its intensity and dissipation. It would be inter-
proportional to the correlation time. Calculatihgt) for dif-  esting to investigate whether similar results as the ones
ferent values ok andw this was confirmed. Varyingy and ~ shown here could be obtained by a single mode flow.
\ for constantsi3 and v resulted in only small differences in ~ Finally let us remark on the generality of our model cho-
the results. This indicates that the most important parameté&en here. From our viewpoint, this model has two major
here is the intensity of the flow, though a certain dependencgirawbacks. The medium usete., the mixture of the sub-
on the correlation time exists. stancesA and B) is characterized only by different bulk
Turning now to the evaluation ob(t), we found that diffusion coefficients. Up to now, we assuméas in the
turbulent mixing very effectively facilitates matter inter- Majority of articles published in this areaqual viscosities
Change, such that even for smaller intensities of the ﬂOW, éor both phases. Natura”y, this is a rather harsh restriction. In
purely diffusional regime is reached in medium time. In fact,the future we would like to include g-dependent(and
the mixing is so effectivédepending naturally on the rela- therefore space-dependent and time-dependeistosity.
tive weight, i.e., onD* and ug) that by far the dominant First attempts have revealed th(_a com.plexfcy of this problem.
coupling is the direct one. The changes in the temporal be>€condly, we have been dealing with binary alloys, thus
havior of the total interface area are by far not sufficient tocompletely neglecting the hydrodynamical modes of a more
explain the distinct behavior with and without flow. On the COmplete ansatz that would be applicable to fluids also. Far-
other hand, neglecting the latter, i.e., dropping the coupling€!l @nd Valls have stressed in a series of pagses{17,18
of x to the flow, resulted in very similar results compared@nd references thergirthe importance of currents in the
with those where all couplings were included. growth dynamics. As thg currents affgct the growth rate in a
Apart from the competition between the two distinct '¢levant manner(they find—depending on the model—
mechanisms of matter transport, the concept of mixing effi€XPonent§R(t)o<t"] n of up to 0.69 as opposed to 1/3 of the
ciency is central to explaining both the dependencies ofifshitz-Slyozov time law it is most interesting to investi-
L(t) andD(t). So, it was found thab(t) varies in the same 92te the mflue_nce of sald.curréssjtm diffusion in mhomo-.
manner ad_(t) with ». Up to the time calculatedt€500)  9€neous media. Both subjects are now under investigation.
we found transitions from anomalous to diffusional behavior
upon diminishingv (or \). On the other hand, we found that
in the case oD(t) both fundamental parametemé and t; We gratefully acknowledge financial support by the
are of similar importance. Keeping constant both intensityDeutsche Forschungsgemeinschaft and by the Generalitat de
and correlation time of the flow, very similar results were Catalunya under the CIRIT-PIEC program. Computer time
found, indicating that there is little or no dependence on therovided by the Center de SupercomputadéoCatalunya is
correlation length(within the range of correlation lengths also acknowledged.
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