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Diffusion in spatially and temporarily inhomogeneous media: Effects of turbulent mixing

H. Lehr* and F. Sague´s
Departament de Quı´mica Fı́sica, Universitat de Barcelona, 08028 Barcelona, Spain

J. M. Sancho
Departament d’Estructura i Constituents de la Materia, Universitat de Barcelona, 08028 Barcelona, Spain

~Received 28 January 1997!

We consider diffusion of a passive substanceC in a phase-separating nonmiscible binary alloy under
turbulent mixing. The substance is assumed to have different diffusion coefficients in the pure phasesA and
B, leading to a spatially and temporarily dependent diffusion ‘‘coefficient’’ in the diffusion equation plus
convective term. In this paper we consider especially the effects of a turbulent flow field coupled to both the
Cahn-Hilliard type evolution equation of the medium and the diffusion equation~both, therefore, supplemented
by a convective term!. It is shown that the formerly observed prolonged anomalous diffusion@H. Lehr, F.
Sague´s, and J.M. Sancho, Phys. Rev. E54, 5028~1996!# is no longer seen if a flow of sufficient intensity is
supplied.@S1063-651X~97!00108-6#

PACS number~s!: 47.27.Sd, 64.60.My
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I. INTRODUCTION

In a recent publication@1# ~hereafter referred to as I! we
treated diffusion in a special inhomogeneous medium.
were then interested in finding out how the time depende
of the variance of a passive scalar field immersed in a bin
alloy changes when coupled to the spatial and tempora
homogeneities of the underlying phase-separating mediu

In this paper, we will consider a similar model but includ
turbulent mixing. In@2,3# we have been concerned with th
diffusion of a passive scalar convected by a random inco
pressible flow using the analytical and simulation techniq
of stochastic differential equations. The role of the medi
was played by the mentioned turbulent flow, which is rep
sented mathematically by a two-dimensional, isotropic, s
tionary, homogeneous, and incompressible velocity field
@4# it has been shown how to generate such a vector fiel
an efficient manner. The latter ansatz has now been exte
to explicitly incorporate viscosity@5#.

We have opted to use, as a medium, a solution of a
namical equation corresponding to a phase segregation p
lem, i.e., in this case the well-known Cahn-Hilliard equati
@6# supplemented by a convective term@7# ~see, e.g.,@8–10#
for some newer literature on the theoretical and@11–13# on
the applied aspects of this subject!,

]x

]t
5¹2~2x1x32¹2x!2¹W •~vW x!, ~1!

where vW (rW,t) is a stochastic, isotropic, and incompressib
vector field that is our model of turbulent stirring. The initi
distributionx(r ,0) is chosen to be

x~r ,0!5x01a,
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Berlin, Germany.
561063-651X/97/56~2!/1660~7!/$10.00
e
e

ry
n-
.

-
s

-
-

n
in
ed

y-
b-

a is a ~uniform! random variable, whose actual range is n
of critical importance as long as its average vanishes. H
we have chosenaP@20.1,0.1#.

This equation describes the phase separation followin
quench of a nonmiscible binary alloy~with phasesA and
B) inside its coexistence curve. It is known~see, e.g.,@7# and
references therein! that the solutions to this equation ar
depending on the intensity of the turbulence, more or l
inhomogeneous. In the zero intensity limit this medium
very structured, its configuration depending on the relat
concentration of the phases. Raising the intensity of the
bulent flow the structures, quite naturally, get distorted a
less regular. In the high intensity limit, phase separation e
stops and we arrive at a homogeneous mixture of the par
pating phases. For more details see@7# and also I.

The velocity field appearing in Eq.~1! has a zero mean
and is, for simplicity, Gaussian correlated

^v i~rW1 ,t1!v j~rW2 .t2!&5Ri j ~ urW12rW2u,ut12t2u!,

where v i ,v j with i , j P$x,y% stand for the components th
two-dimensional velocity field. This vector field is con
structed using the stream functionh

vW 5S 2
]h

]y
,
]h

]x D , ~2!

which in turn follows the Langevin equation

]h

]t
5n¹2h~rW,t !1Q@l2¹2#¹W •jW~rW,t ! ~3!

~here the dynamical viscosityn appears explicitly@5#!. jW
represents herein a stochastic noise term, whose compon
are spatially and temporarilyd correlated.

^j i~rW,t !j j~rW8,t8!&52e0nd~rW2rW8!d~ t2t8!d i j .

1,
1660 © 1997 The American Physical Society
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56 1661DIFFUSION IN SPATIALLY AND TEMPORARILY . . .
It can be shown that this vector fieldvW exhibits in depen-
dence of the operatorQ@•••# the energy spectra characteri
tic for turbulence~e.g., that of Kraichnan@14#, which will
solely be used in our calculations, or that of Karma
Obukhov@15#!.

The turbulent flow is characterized by the parameterse0
which represents the intensity of the noise source divided
the viscosity,l which is connected to the correlation leng
l 0 of the flow by

l 05
Ap

2
l,

~for the Kraichnan type of energy spectrum; see@5#!, and by
the dynamical viscosityn, which together withl defines the
correlation timet0 of the flow

t05
l2

n
,

again for Kraichnan’s spectrum. The intensity of the turb
lence, additionally, is given by

u0
25

e0

8pl4 .

Diffusion of the substanceC is now treated via the usua
diffusion equation, again supplemented by a convective t
using the same velocity field as in Eq.~1!. As a coupling
between the phase-separating medium and the diffusion
have simply chosen

D~rW,t !5@12ax~rW,t !#D* , ~4!

whereD* is a value of input that together with the parame
a ~here:a50.85) defines the diffusion constants in the pu
phases. Again we refer to I for a discussion of this coupl
and its parameters.

So, letc(r ,t) be a passive, i.e., nonreacting, scalar fie
that describes the density of the substanceC. Then we have

]c

]t
5¹W •@D~rW,t !¹W c~rW,t !#2¹W •@vW c~rW,t !#, ~5!

where the second term on the right hand side again desc
convection by the same turbulent vector field, as mentio
above.

The object of our interest now is the variance ofr of this
scalar field with time, i.e.,

s~ t !5^~Dr !2&5^r 2&2^r &, ~6!

where^ f (r )& is defined as the average off (r ) over different
realizations ofc @and therefore as the average over differe
realizations of the turbulent field, as well as that of the ‘‘m
dium,’’ that is being represented byx(r ,t) and is, because o
the random nature of the initial conditions, also a stocha
process!.

As is well known, in homogeneous media this dispers
grows in the long time limit linearly with time, the propor
tionality constant being four times~in two-dimensions! the
effective diffusion constantDeff
-
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s~ t !54Defft, ~7!

whose value can be calculated analytically for small inten
ties of the turbulent advective field@2,3#. For the sake of
easily identifying diffusional regimes we defined in I

D~ t !5
s~ t !

4t
,

which was then usually represented and discussed.
Additionally, we derived in I an expression for the tim

dependence ofD(t) for the case of an unstirred phase sep
ration. Its counterpart for the present problem can be ev
ated similarly as

D~ t !5D* ~12ax0!2
aD*

2t

3E
0

t

dtE E dx dyK S x
]x

]x
1y

]x

]y Dc L
x,vW

1
1

2tE0

t

dtE E dx dŷ rW•vW c&x,vW ,

[^D& r ,x2E
0

t

dD~ t !dt1DD~ t !, ~8!

which now has been supplemented by an additional te
DD(t) due to the presence of the turbulent field.@Subscripts
on the angular brackets indicate whether averaging is o
space (r ), or over realizations ofx or the flow vW .# For ho-
mogeneous media this termDD has been evaluated analyt
cally in the limit of small correlation times of the flow@2,5#.
Note though, that here, i.e., with an inhomogeneous and
namically evolving medium,DD depends generally on time

One of the main results of I was that diffusion in o
phase-separating medium without stirring was anomalo
Indeed, we gave evidence thatD(t) goes liket21/3 to a con-
stant final valueD` . This is an extremely slow proces
Analyzing the results with the aid of some analytical tre
ment, we suggested this to be due to a ‘‘reservoir effect’’ a
that the total interface length would be an adequate mea
for it. Under a ‘‘reservoir effect’’ we understand the follow
ing: In the regions with a low diffusion coefficient it takes
very long time for the matter to diffuse through these
gions. Therefore, even at longer times, a good part of
dispersed matter will be collected in exactly these regio
thus giving rise to an ever decreasingD(t). Moreover, these
regions have their own dynamics, which gives a process
will only asymptoticallyreach a constant value forD(t).
Since the integral representingdD gets its contributions only
from the interface region, we concluded that the total int
face length was the most natural way to measure the re
voir effect. Interchangeably, we can investigate the effect
the linear~characteristic! size of the growing pure-phase do
mains, since these two measures are not independent of
other.

Looking now at the model we want to investigate he
one realizes thatD(t) couples both directly and indirectly to
the random flow. Directly due to the presence of a new te
in Eq. ~8! and indirectly due to the dependence on the u
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1662 56H. LEHR, F. SAGUÉS, AND J. M. SANCHO
derlying structuring ofx. Let us therefore first treat the effec
that such a random flow has onx and even more importantly
on L(t), the total length of the interface~or rather the total
area; see below!.

In view of the rather numerous parameters involved in
model ~the diffusion coefficientD* , the coupling constan
a, the mean compositionx0, the noise strengthe0, the vis-
cosity n, and the parameterl, which is connected with the
correlation length of the flow! we have fixed both theaver-
age diffusion coefficient^D&5D* (12ax0)50.5, the cou-
pling parametera, and the mean compositionx0 ~see,
though, below!, which normally was chosen to be zero~or,
equivalently, we consider equipartial or critical mixtures!.

For the sake of brevity, and in order to avoid repetitio
we do not wish to dwell on numerical details but on t
necessary ones. The Cahn-Hilliard equation as well as
diffusion equation have been discretized according to s
dard procedures; see I for more details. As to the flow,
numerical aspects have been discussed in some detail in@5#.
Here it may suffice to say that Eq.~3! can be solved exactly
in Fourier space and that thus the obtained solution will th
be Fourier antitransformed and used in both Eqs.~1! and~5!.

The numerical errors of our results, equally that of t
total interface area as well as that ofD(t), are extremely
difficult to estimate, also for reasons of computer time. I
we estimated the error forD(t) in the case without flow and
from our experience we know that here the errors are
significantly higher ~i.e., they will be of the order of 10–
15%!. ‘‘Real’’ error estimates or even bounds, though, a
not available.

II. INFLUENCE OF THE FLOW ON THE INTERFACE
LENGTH

In @7# some of us have already been concerned with
influence of a turbulent flow on the solutions of the Cah
Hilliard equation plus convective supplement. We were th
more interested in the temporal dependence of the sp
extension of the appearing structures than in the interf
length. The main result of@7# can be summarized as follows
for low and medium intensities of the flow the linear stru
ture size grows in the long time limit according to th
Lifshitz-Slyozov behavior; for smaller times, a differe
growth law has been observed@7#. Raising the intensity
though, one finds a limit intensity beyond which the syst
supports only structures of a certain size; those larger
ruptured by the flow. It was suggested in@7# that for every
u0 there exists a criticallc , such that for every value
l.lc , one will find frozen growth. In particular, it wa
found that

lc
2'

p2

2

S

u0
, ~9!

whereS52A2/3'1 is related to the surface tension.
In order to understand the above relation between the

tial correlation length of the flow and the question of froz
or sustained growth, it seems worthwhile to discuss themix-
ing effectivity—obviously a closely related concept—in d
pendence of the three parametersu0

2, l 0, and t0 of the flow.
Qualitatively speaking, the mixing effectivity is best wit
e

,

he
n-
e

n

I

ot

e
-
n
ial
ce

et

a-

small eddies of high intensity and long correlation time. T
proportionality to the intensity needs no further explanatio
The dependence onl 0 may be understood from an extrem
case: consider one sole circular eddy of the size of the
tem ~very largel 0) centered at the origin. Instead of mixin
the phases, this would just give the whole system an ang
velocity, depending on the intensity. The mixing effectivi
would be ~close to! zero. For smaller eddies, on the oth
hand, there is always an exchangebetweenthe eddies, lead-
ing to mixing, if their correlation time is not too short. If w
have many small eddies but with a very short correlat
time, again there will be little mixing, because there will b
very little exchange between the eddies.~In the opposite case
of very long correlation times, one will find a constant flo
between the eddies, which implies a rather effective mixin!

A last preparatory remark may be in place: since the
erage compositionx0 is conserved in the Cahn-Hilliard
equation~with and without convection! the number of struc-
tures times their respective area must be constant. From
follows that for a growing spatial extension of the structur
their number must decrease~one observes that smaller stru
tures are unstable and vanish in favor of the larger on!.
Since their number now is antiproportional to thesquareof
the linear dimension, the total interface length~which is pro-
portional to the number and the linear extension! will de-
creasewith time. In the undisturbed problem without mixin
we could simply define

L~ t !5 K E E dx dy~12x2!L
x

.

Because of the pronounced sharpness of the interface~see
Fig. 1! this area was practically identical to the total interfa
length. We found in I thatL(t)}t21/3. In the disturbed case
with mixing the interface now gets sensibly broader. In F
1 we show the~normalized! distribution of x at time
t5500 for zero noise and foru0

250.0870. Since it is eviden
from Fig. 1 that the above definition will not yield the inte

FIG. 1. Representation of the distribution ofx at t5500 for two
different values of the flow intensity.~Solid line: u0

250, broken
line: u0

250.0870.! In the mixed case the interface gets sensibly le
sharp, so that a ‘‘zero’’ width assumption is no longer valid. S
text for details.~Grid sizeN5128, x050.0, l52, andn51, 10
realizations!.
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56 1663DIFFUSION IN SPATIALLY AND TEMPORARILY . . .
face length, but rather the total interface area, some care
to be taken. We therefore contrasted our results by calcu
ing also the characteristic linear size of the structures. Th
evaluated as usual from the circular averageg(r ,t) of the
correlation function

G~rW,t !5K 1

N2(
rW8

@x~rW1rW8,t !x~rW8,t !2x0
2#L

x,vW

,

~where N is the size of the system!. The ‘‘characteristic’’
sizeR(t) of the structures is now determined by the first ze
of the functiong(r ,t) with respect tor . Calculations of this
type, though, yield for the time range considered here res
that are relatively independent of the noise intensities us
This is because we are still in the coarsening regime@7#, i.e.,
the dominant process is still the coalescence of drop
rather than their being moved around by the flow. This
also expressed by the fact that we do not find a growth p
portional to the Lifshitz-Slyozovt1/3 law.

In view of the results concerningD(t) to be presented
later on and realizing also from Eq.~8! that the ‘‘indirect’’
term gets contributions from the whole interfacial area,
more consistent measure for our time range isL(t), as de-
fined above. We will hence base our argumentation on
interfacial area.

We have calculatedL(t) for different choices of the pa
rameterse, l, andn. One finds the following results.

~a! The interface area decreases in aslowermanner with a
growing intensity of the random flow@see Fig. 2~a!#. Mixing
is therefore more effective.

~b! The interface area decreasesfaster with growing n,
i.e., decreasingcorrelation time.

~c! The same is true for growingl. Changingl, though,
changes allu0

2, l 0, and t0. In view of the importance of the
intensity, changing justl is inconclusive.

~d! For a given intensity of the random flowu0
2, the tem-

poral development of the interface is~almost! independent of
the different possible choices ofe0 and l @see Fig. 2~b!#.
Note that here—as in~c!—t0 is changed. Additionally keep
ing t0 constant@inset of Fig. 2~b!#, the results are statisticall
equal.

Results ~d! might at first sight be a little unexpected
keeping in mind that according to Eq.~9! raisingl for con-
stantu0

2 we are going in the direction of frozen growth. The
show, though, that forL(t) the most important parameter
the intensityof the turbulent flow.

We have also calculated the equal point correlation fu
tion of ^x(rW,t)x(rW,t1s)& r ,x,vW as a measure of the change
structure. The qualitative results are the same as abov
Fig. 3 we show this nonstationary correlation function f
three values of the noise parametere050, 20, and 35. Ini-
tially one finds for thet chosen an increasing correlatio
which is essentially due to the fact that at very short tim
the solutions of the Cahn-Hilliard equation have not y
reached their equilibrium values of61. So, typically, one
finds that initially the ‘‘bulk’’ values grow until they reach
said values. The much more interesting and relevant in
mation here is naturally the decay of the correlation. As to
expected, the correlation decays much more rapidly when
phase mixture is ‘‘stirred.’’
as
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Summarizing, one can say that the total interface area
continuous function of the parameters of the flow. Not on
very near the limit for frozen growth, but also further awa
the time dependence ofL(t) changes considerably with th
intensity of the flow. While correlation time does have
influence, though of second order, correlation length see
to play a minor role.

III. INFLUENCE OF THE FLOW ON THE DIFFUSION
OF THE SCALAR

After having discussed in some detail the influence o
turbulent flow on the structurization of the underlying m
dium, we now proceed to discuss diffusion in such a dyna
cally evolving medium. In I we gave evidence to the fact th
the interface in anundisturbedproblem plays a major role. In
fact, we found—as mentioned earlier—that the temporal

FIG. 2. Double-logarithmic representation of the total interfa
areaL(t) in dependence of time as a function of the parameters
the flow. ~a! Varying the intensityu0

2 of the flow u0
2. ~Solid line:

u0
250.0000, long dashes:u0

250.0249, short dashes:u0
250.0497,

dots:u0
250.0622, and dot dashes:u0

250.0807;l52, n51.! In ~b!
we show results for two constant intensities of the flo
u0

250.0249 ~solid lines! and 0.0870~dashed lines! varying both
e0 andl (n51). Note thatt0 varies here. In the inset of~b! results
for constantu0

250.0249and constantt054 are shown.~Solid line:
l52.0, n51, long dashes:l52.5, n51.5625, short dashe
l53.0, n52.25.! See text for details.~Grid size N5128,
x050.0, 10 realizations.!



ow

he

o
io
n
iff

e
th
o
,

th
ef-

on-

re-
by

ven
m

n-
is

ct.
ec-

in
u-
o-
igh

ide.
e of

at
os-

-
g,
ellar
ctly
me

s.
ld
to
we
ig.

,

n

f

al

n

s.

ith
in
me-
h a

1664 56H. LEHR, F. SAGUÉS, AND J. M. SANCHO
velopment of the total interface length determines h
D(t) approaches its asymptotic value~which we calculated
using the first order effective medium approximation; for t
latter see, e.g.,@16#!. Now including a turbulent flow field,
the analysis of I changes considerably. As described ab
and in I, the cause for the very prolonged abnormal diffus
was the ‘‘reservoir effect’’ which in turn depends heavily o
the absence of a transport mechanism other than pure d
sion.

In Fig. 4 we show results forD(t) corresponding to dif-
ferent intensities of noiseu0

2. Apart from finite size effects
we find, for already rather weak noises, a diffusional regim
Quite expectedly, mixing has a destructive influence on
behavior described in I. In order to estimate the efficiency
the mixing, we also calculatedD(t) for the same parameters

FIG. 3. The nonstationary correlation functio

c(t,s)5^x(rW,t)x(rW,t1s)& r ,x,vW for e050 ~solid line!, e0520 ~long
dashes!, ande0535 ~short dashes! as a function of the time differ-
ence. (t56.25 was chosen such that the initial structurizationx has
advanced considerably;N5128,l52,n51; 10 realizations.!

FIG. 4. Temporal development ofD(t) for different intensities
of the flow (l52, n51). Even for relatively small intensities o
the flow, the prolonged abnormal diffusion observed foru0

250 is
not found anymore. A diffusional regime is reached within the c
culation time. Note, however, that for the constant^D&5D* (1
2ax0)50.5 this depends on the average composition. The fi
dropping of the curves is due to finite size effects.~Results averaged
over 10 runs with system sizeN5128.!
ve
n

u-

.
e
f

but puttinga50. This gives a homogeneous medium wi
the diffusion coefficient equal to the average diffusion co
ficient of the inhomogeneous problem~in the case of
x050). We could not estimateDDH ~the deviation of the
computed diffusion constant from the average diffusion c
stant in the homogeneous case! from the analysis made in
@5#, because here we are not in the limit of very short cor
lation times of the flow. Approximate results obtained
numerical simulation@simply putting a50 in Eq. ~4!# are
shown in Table I. From there and Fig. 4 we can see that e
with an intensity of the flow that in a homogeneous mediu
would result in 20% elevation of the effective diffusion co
stant only, the abnormal behavior found without mixing
not observed anymore.@In our numerical simulations we
found diffusional behavior foru0

2>0.0497 (l52,n51).#
Turbulent mixing seems to be very efficient in this respe
In Table I we also show the numerical estimate of the eff
tive diffusion constant for this scenario. We see that even
the case of higher intensity of the flow, the effective diff
sion constant is considerably lower than it was for a hom
geneous medium with the same characteristics. For very h
intensities, though, we can expect the two values to coinc
A very rough estimate based on the linear dependenc
both DDH andDD I ~inhomogeneous case! says that for val-
ues aboveu0

250.16~for n51; see below! we may expect the
two to coincide.~One has to take into account, though, th
higher intensity stirring stops phase separation, so that p
sibly this will be reached even earlier.!

We have also calculatedD(t) for two other average com
positionsx0560.4 as in I. This might have been interestin
because in those cases we found droplets instead of lam
structures. The results, though, are—again as in I—stri
analogous to the ones presented in Fig. 4, albeit in so
cases we had even more problems with finite size effect

As we mentioned in the Introduction, the diffusing fie
c couples both directly and indirectly to the flow. In order
estimate the influence of these two different couplings,
performed calculations neglecting either one of them. In F
5 we show the corresponding results of calculatingD(t) ~a!
without any coupling or, equivalently, foru0

250 @solid line#,
~b! dropping the convective term in~5! @long dashes#, ~c!
dropping the convective term in~1! @short dashes#, and ~d!
taking both couplings into account@dots#. The results shown

-

al

TABLE I. Estimate of effective differential diffusion constant
DDH was evaluated by numerical simulation puttinga50 which is
equivalent to obtaining it from a homogeneous medium w
D50.5 @see Eq.~4!#. DD I was estimated from the data shown
Fig. 4 for the case of zero average composition. Although the
dium is inhomogeneous and dynamically evolving, we do reac
diffusional regime within calculation time and thereforeDD I can be
estimated.~The size of the system wasN5128, and the average
was made over 10 runs up tot5500 or 20 000 time steps;x050,
l52, andn51.!

e0 u0
2 DDH DD I

20 0.0497 0.108 0.035
25 0.0622 0.133 0.070
30 0.0746 0.158 0.103
35 0.0870 0.183 0.119
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56 1665DIFFUSION IN SPATIALLY AND TEMPORARILY . . .
and those for higher intensities of the flow, indicate that
indirect coupling is of minor importance. In effect, althoug
there is a dependency of the results on the intensity also
the case of dropping the direct coupling, calculatingD(t)
with only the convective term in the evolution equation f
c, yields statistically the same results as in Fig. 4. In spite
the fact that, physically speaking, dropping one of the c
vection terms is not very sensible, it shows us that the tra
port of matter due to the mixing really is very effective. Th
important role of the underlying inhomogeneous medium
imposing a non-normal diffusion due to the formation
reservoirs is strongly reduced by adding a turbulent flow
the problem.

Let us now proceed to discuss the dependency of the
ferent parameters involved. Apart from the dependency
D* and ^D& already discussed in I, for the dependency
the parameters of the flow, we can adopt exactly the sa
position as in the preceding section, where we discussed
influence on the total interface area. As to varyingn @and
l#, we find strictly the same behavior as above: since
mixing effectivity is proportional to the correlation time~and
antiproportional to the correlation length!, diminishingn @or
l# we observe a transition from anomalous to diffusion
behavior.~Let us remark once more, though, that chang
only l is of lesser interest, because besides the correla
length, both intensity and correlation time are also chang!

There is, though, a distinction in the relevance of the c
relation time. This can be seen in Figs. 6~a! and 6~b!. In Fig.
6~a! we showD(t) for constantu0

250.0249, analogous to
Fig. 2~b!, i.e., with constantn and therefore variablet0. In
the preceding section we showed that the interface area
pends very little on (e0 ,l), as long asu0

2 is constant. Here
the case is very different. In fact, we again observe a tra
tion from anomalous to diffusional behavior, in spite of t
fact thatl grows. If we compare this with Fig. 6~b!, where
also t054 is kept constant, the reason seems to be clea

FIG. 5. Temporal development ofD(t) for different couplings
to the flow. Solid line shows results foru0

250 or, equivalently, no
coupling. The long dashed line was obtained calculatingD(t) by
dropping the convection term the differential equation forc. The
short dashed line was obtained in a similar manner, only this t
dropping the convection term in the Cahn-Hilliard type equat
with convection. Finally, the dotted line includes both coupling
(u0

250.0497,l52, n51, and x050. System size wasN5128,
and results were averaged over 10 runs.!
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Fig. 6~b! we do not only not observe such a transition, b
find also that all the results are similar. This means that
the temporal development ofD(t) the correlationtime plays
a much more important role than the correlationlengthof the
flow. This was not so in the case ofL(t), which depended
very little on t0 for constantu0

2. Clearly, intensity and corre
lation time are here of similar importance.

IV. SUMMARY AND DISCUSSION

In this paper we discussed diffusion in a dynamica
evolving, phase2separating system with convection. Bas
on the results of I, we were mainly interested in the quest
of whether the earlier found prolonged anomalous dif
sional process was able to stand up against turbulent mix
Realizing that in our model the scalar variablec, or the
density of the diffusing substanceC, couples both directly
and indirectly~via the binary mediumx) to the flow, we first
discussed possible effects of the mixing onx.

In I we gave evidence that the ‘‘mechanism,’’ responsib
for the ~‘‘infinitely’’ ! long anomalous diffusion in such

e

.

FIG. 6. D(t) for constantu0
250.0249, varying bothe0 and l

~solid lines:e0510,l52, long dashes:e0524.4141,l52.5, short
dashes:e0550.6250,l53). ~a! For constant viscosityn51. One
observes a transition of diffusional to anomalous behavior w
growing l. ~b! Varying alson, keeping thus constant bothu0

2 and
t054. Here the above transition is not observed; on the oppo
results are very similar~taking statistical error into account!. In ~b!,
solid line: n51, long dashes:n51.5625, and short dashes
n52.25. The other parameters mentioned are as in Fig. 4.
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system, was what we named the ‘‘reservoir effect’’ with
appropriate measure being the total interface area. Q
naturally then, upon including the turbulent flow we conce
trated on its effect on the latter quantity. In@7# it had been
shown that there exists a threshold or criticallc , such that
for l.lc the structures cease to grow. In this paper we g
further evidence of this fact, showing that this is a contin
ous process depending on the mixing efficiency. From ph
cal reasoning we know that the latter must be antiprop
tional to the eddy size~or correlation length of the flow! and
proportional to the correlation time. CalculatingL(t) for dif-
ferent values ofl andn this was confirmed. Varyinge0 and
l for constantsu0

2 andn resulted in only small differences i
the results. This indicates that the most important param
here is the intensity of the flow, though a certain depende
on the correlation time exists.

Turning now to the evaluation ofD(t), we found that
turbulent mixing very effectively facilitates matter inte
change, such that even for smaller intensities of the flow
purely diffusional regime is reached in medium time. In fa
the mixing is so effective~depending naturally on the rela
tive weight, i.e., onD* and u0

2) that by far the dominan
coupling is the direct one. The changes in the temporal
havior of the total interface area are by far not sufficient
explain the distinct behavior with and without flow. On th
other hand, neglecting the latter, i.e., dropping the coup
of x to the flow, resulted in very similar results compar
with those where all couplings were included.

Apart from the competition between the two distin
mechanisms of matter transport, the concept of mixing e
ciency is central to explaining both the dependencies
L(t) andD(t). So, it was found thatD(t) varies in the same
manner asL(t) with n. Up to the time calculated (t5500)
we found transitions from anomalous to diffusional behav
upon diminishingn ~or l). On the other hand, we found tha
in the case ofD(t) both fundamental parametersu0

2 and t0
are of similar importance. Keeping constant both intens
and correlation time of the flow, very similar results we
found, indicating that there is little or no dependence on
correlation length~within the range of correlation length
J

ite
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e

used!. We suspect that the asymptotic value ofD(t) depends
on u0

2 and t0.
This result is interesting if looked at from the viewpoi

of the distribution of energy. The intensity of the flow a
pears herein as the integral over the wavelength of said s
trum, while the correlation time does not appear at all in
equilibrium distribution. Reformulating the results in th
context seems to indicate that the distribution of the ene
on the different wavelengths involved plays a minor ro
compared to its intensity and dissipation. It would be int
esting to investigate whether similar results as the o
shown here could be obtained by a single mode flow.

Finally let us remark on the generality of our model ch
sen here. From our viewpoint, this model has two ma
drawbacks. The medium used~i.e., the mixture of the sub-
stancesA and B) is characterized only by different bul
diffusion coefficients. Up to now, we assumed~as in the
majority of articles published in this area! equal viscosities
for both phases. Naturally, this is a rather harsh restriction
the future we would like to include ax-dependent~and
therefore space-dependent and time-dependent! viscosity.
First attempts have revealed the complexity of this proble
Secondly, we have been dealing with binary alloys, th
completely neglecting the hydrodynamical modes of a m
complete ansatz that would be applicable to fluids also. F
rell and Valls have stressed in a series of papers~see@17,18#
and references therein! the importance of currents in th
growth dynamics. As the currents affect the growth rate i
relevant manner„they find—depending on the model—
exponents@R(t)}tn# n of up to 0.69 as opposed to 1/3 of th
Lifshitz-Slyozov time law… it is most interesting to investi-
gate the influence of said current~s! in diffusion in inhomo-
geneous media. Both subjects are now under investigati
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