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Dynamical properties of discrete breathers in curved chains with first
and second neighbor interactions
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We present the study of discrete breather dynamics in curved polymerlike chains consisting of masses
connected via nonlinear springs. The polymer chains are one dimensional but not rectilinear and their motion
takes place on a plane. After constructing breathers following numerically accurate procedures, we launch them
in the chains and investigate properties of their propagation dynamics. We find that breather motion is strongly
affected by the presence of curved regions of polymers, while the breathers themselves show a very strong
resilience and remarkable stability in the presence of geometrical changes. For chains with strong angular
rigidity we find that breathers either pass through bent regions or get reflected while retaining their frequency.
Their motion is practically lossless and seems to be determined through local energy conservation. For less
rigid chains modeled via second neighbor interactions, we find similarly that chain geometry typically does not
destroy the localized breather states but, contrary to the angularly rigid chains, it induces some small but
constant energy loss. Furthermore, we find that a curved segment acts as an active gate reflecting or refracting
the incident breather and transforming its velocity to a value that depends on the discrete breathers frequency.
We analyze the physical reasoning behind these seemingly general breather properties.
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I. INTRODUCTION

The basic question to be addressed in this paper relat
the dynamics of space localized lattice oscillation modes
ferred to as intrinsic localized modes~ILM’s ! or discrete
breathers~DB’s! in elastic polymeric chains with rigidity
@1–20#. Unlike solitons, DB’s appear to be generic modes
nonlinear lattices provided the latter are equipped with th
two basic ingredients: nonlinearity in the interactions a
lattice discreteness. During the last several years there
been an abundance of theoretical work dealing with vari
aspects of DB properties, including generation@1–8#, rigor-
ous existence@6#, dynamics and mobility@9#, thermodynam-
ics and statistical properties@11,13#, quantum features
@10,16#, etc. As a result, many of the basic DB properti
have been revealed and are now relatively well understo
On the experimental front, a recent avalanche of results
large variety of systems demonstrating DB presence, o
least strong indications for it, has set the whole area on v
solid and promising new grounds@17–20#. There can now be
more precise studies of specific condensed matter, chem
and biological systems, as well as discussion on the desig
breather based materials. The work to be presented in
paper points also in this direction, as it attempts to dev
from simple one-dimensional lattice models by introduci
one additional new element, that of single chain elastic
We will thus be concerned here with polymeric chains
masses coupled with springs that can move, in principle
the whole (x,y) plane and are characterized by local a
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global elastic properties. Our basic question is how ene
localization in the form of DB’s interplays with single chai
polymer elasticity.

Our basic model will be an arbitrarily shaped chain
equal masses coupled typically via nonlinear springs invo
ing only two-body polynomial-type interactions. Unlike re
cent work on the same general topic@21#, we will not con-
sider long-range interactions presently so that we keep
complexity of the model and the number of parameters u
to a minimum. We will instead use first and second neigh
interactions that have the same form but enter with differ
strengths and equilibrium distances. After the first stage
our analysis we will initially ‘‘turn off’’ the second neighbo
interaction and study the simplest possible nonlinear b
and spring model, while subsequently the second neigh
interaction will be included and comparisons will be ma
between the two cases. Since our main interest is in un
standing the physics of breathers in biomolecules such
proteins @22# rather than general homopolymers, we w
have to somehow restrict our study to rigid and quasiri
polymer geometries. This can only be done artificia
through constraints when only first neighbor interactions
taken into account due to the high level of degeneracy of
chain. The source of the latter is geometric since there
multiple equilibrium states that are distributed in vario
configurations on the plane while preserving the nea
neighbor equilibrium distances. However, when the sec
neighbor interaction is turned on, the chain degeneracy
duces substantially and there is no need for additional ex
nal constraints.

As mentioned earlier, the questions to be addressed
will focus on the interplay of energy localization in the for
of DB’s and biopolymer spatial structure. Since this prese
a rather broad topic we will narrow the questions in th
study down to the following three:~a! can a stable breathe
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be generated in a curved polymer with some rigidity;~b! can
a breather propagate in curved portions of a polymer
what are the features of its kinetics as it traverses straight
curved segments of the polymer; and~c! can the breathe
motion affect the polymer geometry? In order to tackle th
questions it is critical to have a systematic method of g
eration of localized DB modes with different frequencies a
also to be able to make them mobile at desired poss
velocities. These systematic tools already exist and with
propriate modifications and improvements have been use
the present study. For the numerically exact generation
one-dimensional DB’s we used the construction from the
ticontinuous limit @8#, while for a faster, yet accurate ap
proximate construction we used the algebraic method@23#.
Furthermore, for rendering the DB mobile we used a sim
variant of the pinning mode excitation method@9#. These
methods provide systematic tools for breather construc
and dynamics.

The basic results of this study can be summarized in
following: ~a! Discrete breathers can be generated in cu
linear polymeric chains, are surprisingly stable, and c
propagate quite easily through curved parts of the ch
They can be reflected at interfaces of regions with differ
curvature without losing their integrity.~b! The evolution of
DB’s seems to be taking place through conservation of th
internal and translational energy. This law of energy cons
vation enables appropriate internal to/from translational
ergy transformations that, in turn, dictate the DB shape
extent as well as kinetics while the DB frequency does
change. Some small constant energy loss is observed in
less rigid chains that forces breathers to change slightly t
form while propagating.~c! The presence of a DB in a
flexible polymeric chain induces large chain amplitude m
tion that destabilizes the polymer when only first neighb
interactions are used, but without much affecting the brea
if second neighbor interactions are incorporated. The sp
ficity of this effect depends primarily on the breather fr
quency or internal energy. Based on these results, which
be elaborated on below, we can make some more gen
statements regarding the possible role of breathers
biopolymers. It appears that stable breather modes ca
only be generated easily in curved chains but can a
traverse parts of the polymer in an adaptive fashion retain
their basic features. They can thus transfer energy pac
across segments of the polymer. These features make br
ers very appealing energy managers of internal biopoly
organization since they accomplish three functions simu
neously, viz., they can be generated locally through chem
to localized vibrational energy conversion, facilitate ene
transfer through adaptive transport, and possibly convert
calized vibrational to mechanical energy at an alterna
site.

In order to cover the topics briefly touched above we w
use the following structure in the remainder of the paper
Sec. II, we introduce the model and discuss the aspect
interest by making a connection with biomolecular mode
Since we are mostly interested in polymers with some rig
ity, we introduce in Sec. III a first neighbor model with co
straints that simulate the latter. The model rigidity is set
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constraining the angles between adjacent polymeric s
ments to constant but arbitrary values. This reduced mod
the workhorse of our study since it gives the basic feature
breather dynamics in curved spaces. In this section, we
give all details regarding generation of mobile DB’s and w
will present the results of the DB dynamics in curves. W
will also demonstrate here one of the basic results of
work, viz., that of the adaptive breather evolution govern
by a local form of the law of conservation of energy. We w
finally investigate the dependence of the phenomenon on
DB frequency. In this section, we will also test the stabil
of our results in chains that are weakly perturbed with sta
disorder. In Sec. IV, we will include the second neighb
interaction and we will repeat some of the previous work b
in the fully two-dimensional model. The presence of th
second neighbor interaction augments the structural stab
of the chain and assists in the DB stability. Finally, in Sec.
we will conclude by presenting a summary of the work a
an outlook on this work for its potential use in biomolecule

II. THE MODEL

Let us consider a curvilinear polymer chain such as
one depicted in Fig. 1~a!. The chain consists ofN molecular
units interacting through pairwise two-body interactions. W
will make the following three assumptions:~a! all unit
masses are identical and equal tom, ~b! there are only first
and second neighbor interactions between the molec
units, and~c! the polymer lies on the (x,y) plane. Clearly in
a true biomolecular chain none of these assumptions
strictly valid. They are made here, however, since they
compatible with the basic spirit of this work, viz., keepin
model complexity to a minimum so that the role of nonline
dynamical localization becomes transparent. If the polym

FIG. 1. ~a! Picture of the model. The interaction between near
neighbors is controlled by potentialV(dn) and depends on thei
relative distancedn ~full lines!. There is also an interaction betwee
second neighbors controlled byW(en), which depends on their rela
tive distanceen ~broken lines!. ~b! Equilibrium distancesan5a and
bn between adjacent masses and next nearest neighbors, re
tively, as a function of the relative anglean .
2-2
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DYNAMICAL PROPERTIES OF DISCRETE BREATHERS . . . PHYSICAL REVIEW E 65 041902
we have in mind is a protein segment, assumption~a! would
be compatible with considering the units as being part o
backbone consisting of carbon or nitrogen atoms that o
differ slightly and ignoring amino acid side chains,~b! with
assuming very quickly decaying intermolecular interactio
as well as the absence of hydrogen bonding, and~c! the
absence ofa helices. While these are reasonable for so
protein segments, they are not true in general; they can e
be lifted, however, in a more specific system stu

Each mass unit in the chain is labeled by an indexn,
while its location is specified through the pair (xn ,yn) de-
noting its location on the plane with respect to an abso
Cartesian system. Since we will use first and second ne
bor interaction potentials we need to introduce the follow
two Euclidean distances:

dn5@~xn2xn21!21~yn2yn21!2#1/2, ~1!

en5@~xn2xn22!21~yn2yn22!2#1/2. ~2!

We note thatdn ,en are simply the distances on the pla
between thenth unit and the (n21)th and (n22)th units,
respectively. The polymer chain plasticity as well as rigid
are controlled by the ensemble of first and second neigh
constant equilibrium distances$an% and $bn%, respectively.
The constantan is the equilibrium oscillator distance be
tween unitsn and (n21), while bn is that between thenth
and (n22)th units. The explicit configuration of these tw
sets of constants fixes the desired equilibrium geometry
the polymer chain. Although the derivation presented her
general, in the following sections we will restrict ourselv
to the casean5a ;n, and bn depends on the geometric
structure we want to study, i.e., it fixes the relative anglesan
@see Fig. 1~b!#.

Let us finally define the interaction potentials. Althoug
we will present below general equations of motion for ar
trary pairwise potentials, in the specifics we will use t
following Fermi-Pasta-Ulam~FPU! -type potentials:

V~dn!5K1

~dn2an!2

2
1b1

~dn2an!4

4
, ~3!

W~en!5K2

~en2bn!2

2
1b2

~en2bn!4

4
. ~4!

The Hamiltonian for the planar polymer chain can be th
written as

H5(
n

m

2
~ ẋn

21 ẏn
2!1(

n
$V~dn!1W~en!%, ~5!

where the indexn runs over all polymer masses. The resu
ing equations of motion are

mẍn52
]

]xn
Un , mÿn52

]

]yn
Un ~6!

with

Un5V~dn!1V~dn11!1W~en!1W~en12!, ~7!
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mẍn5
xn2xn21

dn
f n2

xn112xn

dn11
f n111

xn2xn22

en
gn

2
xn122xn

en12
gn12 , ~8!

mÿn5
yn2yn21

dn
f n2

yn112yn

dn11
f n111

yn2yn22

en
gn

2
yn122yn

en12
gn12 , ~9!

where

f n[2dV~dn!/ddn , gn[2dW~en!/den . ~10!

The form of the equations suggests the introduction of
relative variablesjn andrn that will be also normalized us
ing a characteristic lengtha,

jn[~xn2xn21!/a,

rn[~yn2yn21!/a. ~11!

In terms of these new variables the Euclidean distances
come dn5a2@jn

21rn
2#1/2 and en5a2@(jn1jn21)21(rn

1rn21)2#1/2, respectively. Introducing now the adimension
complex coordinatezn5jn1 irn , we obtain the following
compact form for the equations of motion:

z̈n5Rn111Rn2122Rn

1Qn122Qn212Qn1Qn21 ~12!

with

Rn52
zn

uznu
f n , ~13!

Qn52
zn1zn21

uzn1zn21u
gn , ~14!

where for the specific FPU potentials of Eqs.~3! and~4!, we
have

Rn5
zn

uznu @~ uznu2ãn!1g1~ uznu2ãn!3#, ~15!

Qn5
zn1zn21

uzn1zn21u @l~ uzn1zn21u2b̃n!

1g2~ uzn1zn21u2b̃n!3#, ~16!

where time has been adimensionalized ast→tAK1/m and
the parameters areg15a2b1 /K1, l5K2 /K1, g2

5a2b2 /K1, ãn5an /a, andb̃n5bn /a.
Equations~8! and ~9! or the compact forms in comple

variables~12! are the basic equations to be used in this wo
2-3
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M. IBAÑES, J. M. SANCHO, AND G. P. TSIRONIS PHYSICAL REVIEW E65 041902
A Runge-Kutta algorithm of fourth order has been used
integrate the equations of motion with a time stepdt
50.005.

III. A RESTRICTED MODEL

A. A modified FPU equation

In the preceding section, we wrote the general equati
of motion that govern an arbitrary polymeric chain on t
plane when the masses interact with specific first and sec
neighbor interactions. If only first neighbor interactions a
taken into account the resulting chain is characterized b
high degree of flexibility, multiplicity of stationary points
and a high degree of degeneracy and instabilities@24,25#.
While the study of this completely flexible polymeric cha
is interesting, it is not in tune with our main objectiv
here—to work with models that are compatible with biopo
mers. Since the latter are characterized by a high degre
rigidity, we need to introduce external, additional constrain
if we want to stay at the lowest level of polymer descriptio
viz., that of retaining only first neighbor interactions. T
achieve this goal, we introduce rigidity in this model by co
straining the relative angles between adjacent bonds to
stant but arbitrary values. This can be accomplished easi
we write Eq.~12! with only first neighbor interactions usin
the polar representationzn5r n exp(iun) and introduce addi-
tionally the local relative displacementtn[r n2ãn . The
constraint of fixed relative angles in these new variab
readsün5 u̇n50, un(t)5un(0).

We finally obtain a reduced dynamical model describ
by the equations

ẗn5en11,nf̂ n111en,n21 f̂ n2122 f̂ n ,

en,n215cos~un2un21!,

f̂ n52 f n . ~17!

In the specific case of the FPU potential of Eq.~3!, we have

f̂ n5tn1g1tn
3 . ~18!

We will term Eqs.~17! and~18! modified Fermi-Pasta-Ulam
~mFPU! equation. For a straight line geometry,un5u° ;n,
the mFPU is equivalent to the FPU model (en11,n51),
which can be obtained from Hamiltonian~5! in a one-
dimensional space. In contrast, for an arbitrary geome
there is no Hamiltonian associated with the mFPU equati
of motion except in the form of a two-dimensional one w
holonomic constraints.

For the numerically exact generation of one-dimensio
DB’s, we used the construction from the anticontinuous lim
@8#, or an alternative algebraic method@23# that renders ac-
curate DB’s rapidly. In Fig. 2 different breathers are sho
for several values ofen11,n5C<1 ;n, which correspond to
circular or zig-zag geometries. Note that exact DB’s of t
mFPU model withen11,n5C ;n correspond to intermediat
steps of the anticontinuous limit method for generating ex
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DB’s in FPU chains (en11,n varies smoothly from 0 to 1 in
the anticontinuous limit method!.

For rendering DB’s mobile, we use a simple modificati
of the pinning mode method@9#. We assign an initial DB
velocity proportional to the gradient of the absolute value
its amplitudes; the velocity vector thus constructed is para
to the dominant antisymmetric stability eigenvector of R
@9#. The resulting mobile DB is not exact and thus she
initially a phononic wave packet that travels at the sou
velocity. With this method and for a sound velocity equal
unity, we are able to render DB’s mobile within the veloci
window vP@0.035,0.15#, i.e., the fastest DB generated
this fashion has a speed approximately equal to 15% of
sound velocity.

B. Breather motion in curved rigid polymers

After having explained the restricted model structure a
the methods of construction of mobile DB’s, we are now in
position to perform numerical experiments dealing with t
dynamics of DB’s when passing through a curved region
particular, we consider a hairpin geometry such as the
depicted in Fig. 3, characterized by anglea and equilibrium
distances between particlesa; the specific choice of the ge
ometry has been inspired byb sheets of proteins. Neverthe

FIG. 2. DB solutions~algebraic method! with Tb52.122 for the
mFPU model for different values ofa. As expected, the solution
tend to the one-dimensional DB solution corresponding toa50.

FIG. 3. Hairpin geometry characterized by anglea and equilib-
rium distancea between adjacent particles.
2-4
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DYNAMICAL PROPERTIES OF DISCRETE BREATHERS . . . PHYSICAL REVIEW E 65 041902
less, the general kinetic breather results are not specifi
this geometry, as alternative curves would not affect the
sults qualitatively.

We first construct an exact FPU breather, correspondin
an exact DB of the mFPU model in a straight chain geo
etry, with periodTb52.122. The parameter values for th
FPU potential~3! are K15b151 andan5a510 ;n. The
amplitude of the central site of the DB is 1.68!a. The re-
sulting DB moves with velocities in the rangevmin'0.03
andvmax'0.15, where length is measured ina units. These
velocities are much slower than the sound velocity,c51.

In Fig. 4, we plot the position of the DB as a function
time for different initial velocities~top! and for different
hairpin geometries~bottom!; we see that a DB traverses
curved region or rebounces depending on its initial veloc
and on the local curvature. For a given hairpin geometry,
DB rebounces for small velocities, while for higher veloc
ties it traverses the curved region~top picture!. For a given
initial velocity in the straight region, the DB rebounces
enters into the curved region depending ona. There is a
critical curvature below which the DB is able to pass a
above which the DB is reflected~bottom picture!. In some
cases, for critical velocities or critical anglesa, the DB is
trapped in the bend. When rebouncing, the DB velocity
mains unchanged. In contrast, when traversing the cur
region, the DB velocity decreases but once the DB reac
the other straight segment it recovers the initial velocity.

Let us now consider the DB velocities when the DB e
ters the bend. The velocity inside the curved region fo
given hairpin geometry as a function of the initial velocity
the straight segment is plotted in Fig. 5~a!. As the initial
velocity increases the velocity inside the curved region a

FIG. 4. Site where the center of the DB is located as a func
of time. The DB starts moving in the straight region of the hairp
The curved region is inside the horizontal dashed lines.~Top! For a
given curvature,a5p/16, the DB enters into the curved region
rebounces depending on the initial velocity.~Bottom! For a given
initial velocity, depending on the curvature, the DB enters into
curved region or rebounces. The parameter values areK15b151
anda510 in this work.
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increases in a seemingly linear fashion. In Fig. 5~b!, we plot
for a fixed initial velocity, the velocity inside the curve
region as the curvature increases. As the curvature decre
the reduction of the velocity inside the curved region d
creases. Figures 5~a! and 5~b! correspond to initial velocities
above the critical one and to hairpin angles below the criti
value, respectively.

In Fig. 6, we plot the amplitude of oscillations of differen
sites of the chain as a function of time when a DB goes i
the curved region. We have checked that the DB mainta
its amplitude and period while traversing the curved regi
The main differences between oscillations of masses out
and inside the curved region is the length of the time inter

n
.

e

FIG. 5. ~Top! Velocity inside the curved region of the hairpinv1

as a function of the velocity in the straight regionv0 for a hairpin
with a5p/42. ~Bottom! Ratio between velocities inside (v1) and
outside (v0) the hairpin as a function of the characteristic angle
the hairpin. All the data in~b! correspond tov050.113. Broken
lines are a guide to the eye.

FIG. 6. DB amplitudetn as the DB’s moves along a straight lin
and enters into a curved region, which starts at siten018. As all tn

oscillate around zero, we have displaced them bytn5tn1nC,
whereC50.4. The characteristic angle of the hairpin isa5p/25.
2-5
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M. IBAÑES, J. M. SANCHO, AND G. P. TSIRONIS PHYSICAL REVIEW E65 041902
during which the mass oscillates. In the curved region, si
the velocity is smaller, the time interval is larger.

We have also computed the critical angle for DB’s w
two different frequencies~see Fig. 7!. For the range of ve-
locities we are able to move the DB, the critical angle abo
which the DB can enter into the bend increases linearly w
the incident velocity. As the frequency decreases, the crit
angle increases. In other words, for a given initial velocity
DB with lower frequency traverses more easily the curv
region than a DB with a higher frequency.

Although the results presented here focus on those cu
regions corresponding to hairpin geometries, we also h
checked what occurs for different geometries, such as
straight linked segments forming a total anglea and a
curved part given by a hyperbolic tangent. The results
qualitatively the same as for a perfect hairpin geometry,
only difference being the specific values of the critical an
and the velocities inside the curved regions. We have a
tested this behavior for disordered chain geometries: tak
the hairpin geometry as reference, we slightly perturb
relative angles between particles and launch a DB on
imperfect hairpin geometry. If this disorder is small enou
the behavior of the DB is qualitatively the same.

C. Energetics of breather dynamics

In the preceding section, we addressed the specifics of
motion in curved geometry for an angle constrained mo
with only first neighbor interaction. We found that DB’s e
ther propagate through the bend or reflect while they prin
ply keep their identity and basic features. We will search
this section the roots of this behavior and see that they
determined quite simply by local DB energy conservatio
Let us begin by constructing via the numerically exact p
cedure from the anticontinuous limit a static, i.e., nonmov

FIG. 7. Critical angle for a DB passing a hairpin structure a
function of the velocity in the straight region, just before enteri
the curved region. Empty circles correspond to results for a
with periodTb52.5 and full circles to a DB withTb52.122. The
angle is given in degrees. The sound velocity is 1.
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DB of periodTb52.122, place it in the rectilinear part of th
chain, and follow its time evolution. During this evolutio
the DB energy alternates between the two extremes of h
ing all the energy in the potential form and the other
having it completely in the kinetic form. We designate b
EDB the internal breather energy and observe in Fig. 8 tha
is to a high accuracy (;1028) constant. We note that in al
DB energy estimations we calculate the energy by selectin
lattice window that includes all dominant DB lattice site
the typical number of sites chosen is 11. According to E
~3! and~5!, and subsequent variable changes made in Sec
and III A, the potential and kinetic energies are computed
follows:

Epot5 (
n5n025

n015 H 1

4
K1a2~tn

21tn11
2 !1

1

8
b1a4~tn

41tn11
4 !J

~19!

and

Ekin5
1

2 (
n5n025

n015

$ẋn
21 ẏn

2%, ~20!

wheren0 is the central site of the DB,ẋn and ẏn are com-
puted according toẋn5 ẋn211aṫn cos(un), and ẏn5 ẏn21

1aṫn sin(un), where$un% are the initial fixed angles.
The total energy of the breather is thus

EDB5Epot1Ekin . ~21!

Since we do not have an exact Hamiltonian for the mF
model for arbitrary nonuniform angles, i.e., in the bend
gion, we only use the exact expressions of the breather
ergy in the straight sections of the hairpin.

Let us now come to the case of a mobile breather; in or
to investigate its dynamical profile we select appropriatel
movinglattice window centered on the central DB site. T
corresponding behavior for the breather in the rectilinear s

a

B

FIG. 8. Energy of astatic DB with Tb52.122 in a straight line
~FPU model!. Energy is in units ofa2 in all figures.
2-6
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tion of the hairpin is almost the same as in Fig. 8. The lo
energy exchanges between kinetic and potential ene
seemingly proceed in a fashion similar to the one of the st
DB. Nevertheless, some small in magnitude but clearly d
cernible differences emerge, as is seen in the inset of Fig
which magnifies a selected segment. We can verify that
ther the maximum potential nor the maximum kinetic en
gies are equal toEDB and additionally that there is a clea
asymmetry between these two maximum values. The rea
for this asymmetry clearly lies in the fact that the mobile D
should have sometranslationalenergy. Let us designate b
DE1 , DE2 the differences, respectively, of the maximu
potential and kinetic breather energies from the total DB
ergy, EDB . We would like to estimate the instantaneo
translational breather energy. WhenEkin5Ekin

max the differ-
enceDE2 is pure potential energy, while whenEpot5Epot

max

the differenceDE1 is pure kinetic DB energy. A good est
mation thus for the translational DB energy is simply

Etr5Ekin
max2Epot

max[DE12DE2 . ~22!

We observe in the inset of Fig. 9 that the translational D
energyEtras is only a small fraction of its total energyEDB
(Etras is at most 1% ofEDB). The evaluation ofEtras is
done after averaging over several DB periods (;50). The
measured translational energy as a function of the DB ve
ity is plotted in Fig. 9. By fitting the translational energy as
kinetic energy of a compound object, we obtain an effect
breather mass that turns out to be much smaller than
individual particle mass.

In order to explore the influence of the curved region
the total energy of the DB, we calculate the breather ene
after crossing the curved region. Before entering into
curved region and after exiting, the DB energy decays ex
nentially with a very slow decay rate of order;1026, due to

FIG. 9. Translational energy of a mobile DB in a straight li
~FPU model! as a function of the velocity. The sound velocity he
is 10. The dashed line is a parabolic fit, corresponding tovmin50.
Inset: Amplification of the energies of amobile DB with Tb

52.122 andv051.545 in a straight line~FPU model!. Velocities
are in 0.1a units.
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the nonexact character of the mobile DB. There is no ex
loss of energy just after exiting compared to just before
tering. Therefore, we can consider that there are no ap
ciable energy losses as a result of motion in the curved
of the chain, and thus roughly speaking we can say that
motion in curved chains conserves the breather energy.

As a result of this study of the restricted model we o
serve that the dynamics of DB’s through a bent region o
polymer with angular rigidity can be parallelized to ge
metrical optics. Depending on their state, breathers are e
reflected or refracted through the bent segment, which
like a medium with an index of refraction different from th
of the straight segment. In all cases, the energy of the lo
ized packet is conserved, provided the DB is launched wit
a velocity window. In some sense, the curved, angularly ri
segment of the polymer acts as a gate or a filter that sele
breather depending on its individual characteristics, viz.,
frequency and velocity.

IV. SECOND NEIGHBOR INTERACTIONS

A. Hairpin geometry

In the preceding section, we investigated the dynamics
DB’s in bend polymeric chains with only first neighbor in
teractions but with rigid angular constraints that enable o
to fix the chain geometry to a desired shape. The ang
constraint has been included so that the chain acquires r
ity and resembles more biomolecular systems rather t
general homopolymers. Clearly, this angular restriction
very drastic, since it induces an artificially local strain in t
chain, which, on the other hand, makes the analysis m
easier. We will now lift this angular restriction in a way th
enables the chain to retain rigidity around a prescribed sh
This will be done by including, in addition to first neighbo
interactions, also second neighbor interactions. As note
Sec. II, both first and second neighbor interactions will
taken to be similar but with different coefficients, i.e., sym
metric quartic polynomials in the relative displacements
tween masses with different quadratic and quartic streng
However, while the equilibrium spacing of the first neighb
interaction is taken to be the same constant across the c
the next nearest neighbor distancebn varies locally in such a
way that a desired geometry in the equilibrium chain str
ture is produced, as can be seen in Fig. 1~b!. In particular,
when the relative angle between two next neighbor
masses isan , their distance is chosen asbn52a cos(an/2).
The nearest neighbor nonlinear interaction is mostly resp
sible for the local longitudinal dynamics, whereas the n
nearest neighbor interaction is for the geometric and ang
rigidity of the chain. The next nearest neighbor interaction
thus playing a role similar to the angular constraint of t
restricted model, while, on the other hand permitting tra
versally both flexibility and focusing.

Since we are interested in a comparison of the DB dyna
ics of the restricted model, we will impose the same hair
geometry~see Fig. 3! on our polymeric chain and investigat
several cases with different parameter values for the c
plete model introduced in Sec. II@Eqs. ~8! and ~9!#. Since
interactions decay with distance, first neighbor interactio
2-7
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are stronger than second neighbor interactions, i.e.,K1.K2
and b1.b2. In this case, the almost exact longitudinal D
that is obtained from the algebraic method nearly coinci
with the exact DB of the FPU model~no second neighbo
interactions!. We have worked with the same DB perio
Tb52.122, as before. We note that, by construction, our
is accurate in the longitudinal direction of the chain but do
not involve any transversal motion, and as a result it is no
general an exact breather for the arbitrarily shaped chain

As in the preceding section, we are interested in the
namics of a DB along a rigid curve. We first explore t
effect of second neighbor interactions on the rigidity a
stability of the chain. We consider a hairpin structure, laun
the DB in the straight region, while removing any line
sound modes possibly induced initially on the lattice a
result of the breather kick. The propagation of the DB in
hairpin shaped chain with first and second interactions
shown in Fig. 10. We observe that the inclusion of seco
neighbor interactions adds rigidity and stability to the ch
structure, the chain acts similarly to the rigidly constrain
chain with only first neighbor interaction and DB motio
being quite stable. We note that in the absence of b
second neighbor interaction and angular constraints the c
dynamics is unstable yet DB propagation is s
possible@26#.

As regards the DB energy~Fig. 11!, when the strength o
the second neighbor interactions increase~the rigidity of the
chain increases!, the loss of energy when entering into th
curved region is smaller, which is in agreement with t
results of the restricted model. A small reduction of the D
frequency is also observed. Fine tuning of the second ne
bor interaction valuesK2 and b2 can reduce these losse
The final velocity does not seem to depend very much on
harmonic or anharmonic nature of the second neighbor in
actions nor on the strengths of the parameters. Note tha
DB abruptly loses some energy while entering the curv

FIG. 10. Chain geometry and breather position at different tim
for a chain with first and second neighbor interactions (K15b1

51 andK25b250.3). The center, which occupies two sites, of t
DB is marked with the black circles. The hairpin geometry is giv
by a5p/16 anda510. x andy are in units of 0.1a in all figures.
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region but not at the exit. This behavior will be analyzed
the end of the section.

As a result, with the inclusion of second neighbor inte
actions we obtain a rigid chain of masses that can sus
localized oscillations. In particular, the harmonic part of t
second neighbor interaction,K2 , seems to be the main rea
son for the stability and rigidity of the chain, whereas t
anharmonic part,b2 , increases the DB stability while reduc
ing its energy loss. Other possible scenarios that mimic ri
chains are possible; see, for example, Ref.@28#. Now we
proceed by studying the basic features of the DB kinetics
this chain with hairpin geometry.

As in the restricted model the DB enters the curved reg
for low curvatures and rebounces for high curvatures~see
Fig. 12!. However, since this model is not as rigid as t
restricted one, the critical angle increases. Thus, the m
rigid the chain is, the smaller the critical angle below whi
the DB rebounces seems to be and the less energy the
loses when finding a curved region.

In contrast to the restricted model, the critical angle see
not to depend very much on the initial velocity of the DB,
seen in Fig. 12. In addition, we found that DB’s always r
bounce or exit the curved region with approximately t
same asymptotic velocityvF independently of the initial ve-
locity and the curvature. If the initial velocity of the DB i
lower thanvF , the DB increases its velocity when enterin
into the curved region or while rebouncing~Fig. 12!. If the
initial velocity is abovevF , the DB decelerates when tra
versing the curved region~see Fig. 13!. When it exits the
curved part and enters in the second straight region,
change in velocity is much smaller than at the entran
Thus, the hairpin is transparent for DB’s with a velocity ne
vF .

In this case the hairpin structure acts as a more active
than in the restricted model. The curved segment can cha
the velocity of the DB, thus allowing it to transverse a po
sible next curve of a much more complicated biopolym

s FIG. 11. Position of the DB center~top! and energy of the DB
~bottom! as a function of time for a hairpin curvature given bya
5p/26 anda510 as the second neighbor interactions are chang
Parameter values:K15b151 andTb52.122.
2-8
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DYNAMICAL PROPERTIES OF DISCRETE BREATHERS . . . PHYSICAL REVIEW E 65 041902
without significant loss of energy and without significa
change of speed.

B. Alternative geometries

The general features of DB motion that we presented
the polymer with first and second neighbor interactions
not particular to the hairpin geometry. In order to elucida
the influence of local or extended bends in the dynamics
breathers, we consider a sequence of lattice configurat
with beginning and ending straight sections and a bend
between~Fig. 14!. Performing the DB launching experimen
in these chains we obtain the results that are depicted in

FIG. 12. Position of the DB center as a function of time for tw
initial velocities and two hairpin curvatures given bya5p/6 ~top!
and a5p/8 ~bottom!. Depending on the curvature, the DB ente
into the curved region or rebounces. Parameter values:K15b1

51, K25b250.3, andTb52.122.

FIG. 13. Position of the DB center as a function of time for
hairpin curvaturea5p/26 and different initial velocities. Same pa
rameters as in the previous figure.
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15 and can be summarized as follows: Upon interaction
the breather with the bend region there is a change in
motional state accompanied by a substantial loss of its
ergy. Subsequently, the breather accelerates to a velocity
changes very smoothly after exiting to reach an asympt
velocity vF that does not depend on the length of the be
and that coincides with the one previously found for t
hairpin geometry. After the initial substantial drop of th
breather energy, the rate of loss decreases and remain
proximately constant for the duration of the simulation. W
note that in all cases presented in Fig. 14, and in two of th
plotted in Fig. 15, the terminal velocityvF is approximately
constant, i.e., very weakly dependent on the specifics of
bend geometry.

As a result of this and the previous studies, we find t
DB motion in the polymeric chains contains two seeming

FIG. 14. Different chain geometries corresponding to tw
straight segments jointed by a curved region with the same cu
ture a5p/10. Distance between adjacent particles isa510.

FIG. 15. ~Top! Position of the DB center as a function of tim
for two of the geometries of the previous figure and~bottom! ener-
gies as a function of time. The parameter values areK15b151,
K25b250.3, a510, and the initial DB has periodTb52.122.
2-9



ss
m
e
e
o
e
ge
e

h
te
th
el
ac
o

th
fir
th

c
nd
u
i
a

he
a

-
rg

ia
m

ec

ult
not
r it
all
rgy

otic
B

rved
or
ave
an

c-
act

ic
itia
th
Pa

of
e
ere

nd

rba-
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general features, i.e., that geometry induces an energy lo
the breather and also a selection mechanism for an opti
propagational velocity. The energy loss is clearly induc
initially at the bend region but it is preserved at much slow
rates even when the breather returns in a rectilinear ge
etry. The terminal velocity, on the other hand, does not se
to be very sensitive to the specifics of the chain or the
ometry of the bend and its value for the specific DB fr
quency studied is nearc/4, wherec is the speed of sound in
the system. Since these phenomena are absent from bot
general one-dimensional model as well as the restric
model with angular constraints, their source is related to
additional chain flexibility in the transversal direction as w
as the fact that the initially injected breather is not an ex
two-dimensional breather, either for the straight section
the bend region. Thus, we need to elucidate on the role
the transversal degrees of freedom play in the chain with
and second neighbor interactions; this will be done in
following section.

C. Breather acceleration, damping through dephasing,
and terminal velocity

We consider now the polymeric chain with first and se
ond neighbor interactions but include no geometric be
i.e., we take it to be rectilinear. We set a breather in the us
way, adding, however, some small random perturbation in
initial transversal shape. Thus, the initially static longitudin
DB is found to oscillate on a two-dimensional chain. T
results of this experiment are presented in Fig. 16. For
initially stationary breather (v i50) with transversal pertur
bation we find that the breather initially loses some ene
begins moving, and shortly reaches the terminal velocityvF ,
while at this stage its energy loss becomes substant
lower than the initial one. We thus find that an initial rando
perturbation in the transversal breather direction has eff

FIG. 16. ~Top! Position of the DB center and~bottom! energies
as a function of time for DB’s in a straight chain. An initial stat
DB and a moving DB have been considered. In the former an in
perpendicular perturbation is made where the DB is set. In
latter, the DB, while moving, finds the transverse perturbation.
rameter values as in Fig. 15.
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very similar to those of the geometric bend. A similar res
is observed if, for instance, the transversal perturbation is
included initially in the breather shape but is effected afte
is launched at some other spatial region. We note that in
cases studied the small but not negligible breather ene
loss persists at all times. As seen in Fig. 17 the asympt
velocity vF and the rate of energy loss depend on the D
frequency. In Fig. 18 the explicit dependence ofvF on the
DB frequencyvb is shown.

Finally, we stress that the existence of an asymptoticvF
and a sudden decrease of the DB energy is not obse
when longitudinal perturbations are set in the system,
when DB is crossed by phonons. Thus the features we h
described are due to the flexibility of the chain, which c
move in two dimensions.

We will now give qualitative arguments based on the a
cumulated numerical experimentation that points to the f

l
e
-

FIG. 17. Position of the DB center and energies as a function
time for two DB’s with different period in a straight chain. Th
DB’s are initially static and a transverse perturbation is made wh
the DB is located. Parameter values are as in Fig. 15.

FIG. 18. Ratio between the asymptotic velocity and the sou
velocity (c5AK114K2) of an initially static DB in a straight chain
with second neighbor interactions and with a transverse pertu
tion applied on it vs DB frequency. The phonon band is belowv
'2. Parameter values are as in Fig. 15.
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DYNAMICAL PROPERTIES OF DISCRETE BREATHERS . . . PHYSICAL REVIEW E 65 041902
that the phenomena of breather acceleration~or decelera-
tion!, the onset of a terminal velocity, as well as the ne
constant energy loss stem from the same intricate nonlin
feedback mechanism that is operative between the cou
longitudinal and transversal polymer degrees of freedom
quantitative explanation will be presented elsewhere. T
feedback loop that leads to the observed facts involves
following links. Stage I: A coherent signal with frequenc
vB ~breather! is injected longitudinally and either throug
perturbations or geometry~bend! couples to transversal de
grees of freedom. Stage II: The horizontal-transversal c
pling induces oscillatory motion in the center of mass of
particles in the transversal direction at a frequencyvTCM that
can be close but need not be identical tovB . Stage III:
Particles that move in the transversal direction with frequ
cies substantially different fromvTCM introduce a dephasing
mechanism that depends on the amount of their detunin
well as their amplitudes. This gives rise to damping throu
dephasing, a mechanism related to linear Landau dam
@27# and that damps the transversal, and through the coup
to some extent, also the longitudinal oscillations. T
dephasing mechanism now makes the coherent oscilla
vTCM spectrally cleaner since it damps the more incoher
part of the transversal motion. Stage IV: The cleanervTCM
signal as well as the induced longitudinal oscillations in
tails couple resonantly through the interaction term to
main longitudinal one; since it is a higher order effect,
most cases it does not affect directly the coherent signalvB ,
but couples to its modes depending on symmetry. If
transversal mode is antisymmetric~as in most cases pre
sented here!, it couples to the dominant DB antisymmetr
mode, i.e., the pinning mode that is linearly responsible
DB motion @9# and accelerates the breather. As a result th
is an increase in DB velocity until a characteristic maxim
valuevF that depends mainly on the DB frequency and n
on the specific characteristics of the geometry and the in
actions, as long as the chain has enough flexibility. In ca
where the breather initially was injected with velociti
higher than the terminal one, the dephasing induces dam
through the coupling and can also lead to breather dece
tion to the terminal velocity.

In Fig. 19 the longitudinal and transversal motions
neighboring sites of the chain are plotted for a hairpin geo
etry with a5p/8, when the change of speed and sudd
decrease of energy occur. Note that while neighboring s
oscillate in the opposite phase in the longitudinal direct
~thin lines!, the phase of neighboring sites in the transver
motion changes from an opposite phase oscillation to a
phase oscillation. When this dephasing occurs, and thus
symmetry of oscillations in the transverse direction chang
the DB changes its speed and decreases its energy.

In defense of the previously presented mechanism,
note that in all cases studied numerically we typically o
serve DB energy loss that is approximately exponential
characterized by more than one exponent; the faster
takes place when the signal encounters the transversal
turbation while the slower near constant loss occurs when
DB has reached thevF regime. Clearly, in the earlier stag
there is substantially more dephasing leading to a larger
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faster energy loss. Additionally, when the induced transve
oscillation is not dominantly antisymmetric, no accelerati
~or deceleration! to vF is observed, although dampin
through dephasing is clearly present@28#. Finally, since
damping through dephasing is ubiquitous, there is a ques
as to whether this will lead asymptotically to DB destructio
Long term simulations have not shown either decay of
near constant damping rate or, however, substantial brea
decay. It is possible, however, that after very long times,
linear dephasing regime ceases and nonlinearity comes
to rescue the breather from a linear death; this issue will h
to be addressed through careful long term simulations.

V. CONCLUSIONS

Research work during the last decade has demonstr
that intrinsic localized modes are discrete lattice states w
interesting dynamical and kinetic properties. Our main mo
vation in the present work has been to depart from sim
lattice models and extend nonlinear localization research
more complex systems with additional properties such
elasticity. We chose as our basic model a simple polymerl
chain of masses connected via nonlinear springs that
entirely on the plane. The main reason for selecting suc
model has been our interest in extending breather resear
the direction of biopolymers. In our polymeric nonline
chain, we used short range first and second neighbor inte
tions only in order to understand their specific role in t
dynamical processes without making the models too co
plex. Among the multiplicity of questions that one could a
in such a polymeric dynamical system, we focused prima
on the interplay of nonlinear localization with controlle
polymer elasticity. Our methodology has been to use for
most part well-established, numerically accurate techniq
for discrete breather construction, render them mobile,

FIG. 19. Longitudinal ~thin line! and tranverse~thick line!
oscillations as a function of time, for different masses:n, n11,
n12, n13, andn14 ~from bottom to top!. Parameter values are a
in Fig. 15 anda5p/8.
2-11
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subsequently study their transport properties in the syste
various geometries. We used primarily the geometric c
figuration of a hairpin since it provides the typical shape i
b sheet, one of the most abundant protein segment con
rations.

In order to move the upward ladder of biomolecular co
plexity in a systematic and controllable fashion, we fi
studied a polymeric chain with only nearest neighbor int
actions. Since the absence of other interactions makes
system too flexible to represent any biomolecule, we int
duced rigidity by imposing angular constraints; as a resul
the latter, our initial two-dimensional model with quartic in
teractions was transformed into a modified FPU model. T
mFPU model is one dimensional and chain geometry is
cluded in its coupling constants. The derivation of such
effective model was a major advance since it enabled u
investigate DB kinetics using standard one-dimensional te
niques. In particular, we found that the DB’s initiall
launched in a rectilinear segment of the hairpin can trave
the bend region by altering their velocity while in the be
and reverting back to their initial state after exiting this r
gion. On other occasions, when the initial DB velocity
small, DB’s cannot penetrate the bend region, but rebou
without appreciable energy loss. Thus the bend region ac
an active gate selecting a DB according to its frequency
velocity. By studying in detail the local energetics of th
process we found that DB motion seems to be dictated
local energy conservation. During these processes the
DB energy is conserved to a high degree and, as a resul
do not observe substantial DB frequency shifts.

After establishing the basic properties of DB dynamics
the simple, constrained mFPU chain we moved on to a m
complicated polymeric chain where second neighbor inte
tions were also included and were of the same form as th
of the first neighbor ones. This system is more realistic a
mimics better a biopolymer in that it uses the first neighb
interaction for its basic dynamics, the second neighbor
for structural stability, while ignoring longer-range intera
tions. The question of DB dynamics is now more comp
cated due to the possibility of affecting more extended ch
segments, especially in bend regions. When an initia
launched breather approaches the bend region, the pres
of the second neighbor interaction extends the influence
the bend on the breather core before it enters the bend
other words, the perturbation caused by the beginning of
bend region is felt by the breather center earlier than in
previous case and as result a more appreciable breathe
ergy loss to the lattice is observed. The kinetic DB proper
were studied extensively and we found two important diff
ences in comparison to the mFPU constrained model:~a!
There is substantial energy loss of the DB as it enters
curved region that persists at later times although at subs
tially reduced rates. The initial energy loss in the entry of
curve has a decay rate of order 1023 or 1024 while later the
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drop is of the order of 1025. ~b! As a result of the energy los
there is an appreciable change in the breather character
its kinetics. In particular, in most cases the DBacceleratesto
a higher velocity while in the bend region and retains
velocity upon exiting, in marked contrast to the behavior
the constrained chain. The basic reason for this behavior
in the additional translational and rotational flexibility th
the chain has now and the intricate feedback mechanism
tween the longitudinal and transversal degrees of freed
This results in a more efficient DB energetic adaption to
local environment while the increase~or decrease! in speed
is attributed to the resonant energy exchange between tr
verse and longitudinal internal modes of the breather
channeling of some additional energy into the translatio
degrees of freedom. The higher demand for strain energ
the bend is substantially offset by the second neighbor in
actions, resulting in a DB with higher translational energ
The resulting state with a maximal velocity is seen to pro
gate efficiently also in the rectilinear segment since, due
the original energy loss, it is not possible energetically
revert to the originally injected state. In chains with strong
rigidity, where no such translational flexibility exists, like th
mFPU chain presented here, or like the chain in Ref.@28#,
the existence of an asymptotic velocity was not observed

As a result of this study the discrete breather emerge
an efficient energy transfer agent in more complex geo
etries. It is seen as able to be generated as a local depos
of energy, transport it across chain segments with differ
local geometric properties, survive local environme
changes, and adapt to the local strain requirements. Its
namics does not seem to be lossless, nevertheless the
nitude of the energy loss is relatively small and most o
occurs at the interfaces with curvature changes. Even tho
its dynamics occurs with losses, it seems that it can c
with it by altering self-consistently its geometric configur
tion and dynamic state and thus its motion. The paradox
behavior of an increase in DB velocity after a substan
energy loss is attributed to this effect and it critically depen
on the presence of transversal degrees of freedom. We
thus that DB’s can transfer localized energy quite efficien
in these chains and as a result we expect that they are
sibly playing a crucial role in the bioenergetics of true bi
molecules.
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