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Selection, shape, and relaxation of fronts: A numerical study of the effects of inertia
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We study the problem of front propagation in the presence of inertia. We extend the analytical approach for
the overdamped problem to this case, and present numerical results to support our theoretical predictions.
Specifically, we conclude that the velocity and shape selection problem can still be described in terms of the
metastable, nonlinear, and linear overdamped regimes. We study the characteristic relaxation dynamics of
these three regimes, and the existence of degengi@ienched”) solutions.
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[. INTRODUCTION of the front edges, the existence of degenerate solutions, and
the relaxation to a steady state in the different regimes. We
Front propagation is a subject of intense study due to itstudy the problem from a numerical point of view, trying to
relevance in a variety of contexts]. In almost all cases, this obtain accurate results in every regime. In addition, we show
prob]em was modeled by parabo”c partia| differential how theoretical predictions can be obtained in a simple way
equation. This research was devoted to the case of a globalithin @ scheme similar to that in Reff8]. The results so
stable state that invades an unstable or metastable state, fPtained are relevant in a more general context, with the
cusing on the velocity and profile selection probld@s11.  same phenomenology but without exact solutions, providing
A relevant result is that the phenomenology can be classified Way to identify the different regimes from numerical ex-

into three regimes: metastable, nonlinear, and liigee Sec. Periments. The paper is organized as follows: In Sec. Il, we
Il below for further details introduce the model and briefly review the results for the

An important question regarding this prob'em is the re|_OVerdamped case. SeCtion Il iS deVOted to a theoretical and
evance of inertia(i.e., when can a parabolic equation be numerical study of the inertial dynamics of fronts. Conclu-
used and what are its main effects on the overdamped scesSions are summarized in Sec. IV.
nario. To this end, we will consider a damped, hyperbolic
partial differential equation. We emphasize that models of [I. MODEL AND BACKGROUND
this type arise when one considers a more realistic jump
process for individuals whose probability density is de-
scribed by the partial differential equation. Moreover, hyper-
bolic equations of this kind describe many actual physical
phenomena, such as, e.g., population dynamics, nonlinear €yt o= dxxtf(h,a). (1)

transmission lines, cell motion, branching random walks, dy- . o . .
namics of ferroelectric domains, and othEt&—18. There- The parabolic or overdamped limit is obtained by letting

fore, it is physically crucial in all those contexts to know — O [15.17], which leads tdnote that it is a singular pertur-

whether or not one can use the simpler, parabolic equationl?at'on)

To our knowledge, the above issue has not been system-
atically addressed in the past. Important results were ob- d=duxtf( ), 2
tained by Hadelef15], who found a mathematical proof of ) ) )
the relationship of both equations, although without an ex\Vhich, being well known, will be taken as the reference sce-
plicit discussion of the three main regimes and the shape diario. As a representative example of a nonlinear reaction
the selected front. More recently, in RgL7] a damped hy- (€M we take
perbolic equation was studied, but only in the linear regime.
Finally, there was a brief mention of the hyperbolic problem f(¢,a)=¢(1-¢)(a+ ), ©)
in Ref.[19] in connection with the algebraic relaxation of the ) . )
front velocity, although the corresponding asymptotic anaVhich can be obtained from a locddistablg potential
lytical prediction was not checked numerically.

In this paper, we address the question of how the selection _a , l-a ., 1 ,
problem is affected, concerning both the velocity and shape V(g.a)=— §¢’ - T¢ + Z¢ : (4)

The front dynamics subject to inertia is generically mod-
eled by the dimensionless hyperbolic equafi®5,17,19

It is then straightforward to show that the steady states are
*URL: http://jgisc.uc3m.es $1=0,0,=1, and¢p;= —a. Front solutiongkinks) connect
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the (unstable or metastable, depending @n state ¢,=0 d(x,1)=p(Bx—At)= p(y). (8)
with the globally stable state),=1, with boundary condi-
tions ¢p(—,t) =5, d(+,t)= ;. Substitution of this expression into E@.) leads to an equa-

The parameter acts as an external control parameter.tion for ¢(y), given by
The allowed interval for, (— 1/2,1], ensures the global sta-
bility of the ¢, state. We then have the following regimes. byt Ady+i(¢,a)=0, ©)
(i) Forae(—1/2,0), ¢4 is a metastable state. It can be
proven in this case that the kinklike solution

knly
1—tan|‘( 2 )

which fulfills the boundary conditions, is unique, and that it 2)].

. . . ; . It is important to note that, at this level of theoretical
invades thap, state with velocityy,; and spatial asymptotic analysis, both modelEEgs. (1) and (2)] are esentially the

which is the same equation one would obtain beginning with
Eqg. (2). The parameteré andB have to be taken as

1 - A=v(a), B=\1+¢€A? (10)

S 1+ekay’

1
$(Y)=5
wherev(a) is the front velocity of the parabolic ca$&q.

decaykp;: same. What makes them different is the presence of the pa-
pat1 rameterB and, very Iikely, the dynamics, becaqse it is as-
vo(a)= . ky(a)=2"12 (6) sumed that the selgctlon problem is a dynam_lcal one and
212 then the necessary information cannot be obtained from Eg.
(9) alone.
This is called themetastable regime From Egs.(8)—(10), we find that the velocity is
(i) Forae[0,1], ¢4 is an unstable state. In this case, the
situation is somewhat more rich. A wv(a) 1
(a) ae[1/2,1]. The linear-marginal-stability criterion ap- v(ea)= B B Jetv(a) 2’ (1D

plies[8]: Initial conditions with compact support evolve to-

caying profile is given by Let us now focus on the shape of the frontlike solution, an
aspect which has not been studied before for the hyperbolic
k(a)=Va, vi(a)=2\a. (7)) case, to our knowledge, but which is immediately understood

. _ o _ . within the present analysis. The front behavesea¥* for
This is thelinear regime in which the front velocity relaxes ... aAg k(a) is the spatial decay of the leading front

to a stationary value following an algebraic law, instead ofyegcribed by the solution of Eq9), the corresponding
the exponential decay found in other instansee Ref[19] k(e,a) has to be ’

and references thergin

(b) ae[0,1/2]. The linear-marginal-stability criterion now k(e,a)=Bk(a)=+1+ evZ(a)k(a). (12)
fails, and a full nonlinear solution of E€R) is needed, so we
are in thenonlinear regimewith solutions(5) and(6). It can  Of course, fore=0 we recover the parabolic or overdamped
be shown that initial conditions witk>k* = \/2a propagate, ~values[Egs. (6) and (7)], whereas in the opposite limit
after a short transient, with the nonlinear veloaity of the  —o andv(e,a)~e 2
unique solution of the metastable regitigandk,, . In principle, these two equatioril) and(12) give us the

In the last two regimes higher propagation velocities carinformation we were looking for, provided(a) and k(a)
exist by choosing suitable initial conditions with an are known, which implies that the parabolic problem has to
asymptotic spatial decay given ly<k, or k;<k*, respec- be solved for the three regimes. A remarkable conclusion of
tively. In fact, there is a continuous degeneracy of solutionur theoretical analysis is that the boundary between linear
for steadily propagating fronts as well as, correspondingly, @nd nonlinear regimesa& 1/2) coincides for both models,
continuum of possible velocities. All those solutions behavendependently of the inertia parameterHowever, these be-
ase " asx— (the front travels to the right in view of the ing nonrigorously proved analytical results, we have to check
boundary conditions with a k-dependent velocity. Such whether these solutions are observable through numerical
fronts maintain their shape as far as the asymptotic decay &imulations of the full partial differential equatidiq. (1)].

concerned, and propagate with a veloai;tyt(ki2+ a?)/k;. We begin the discussion of the numerical results with
These degenerate solutions are usually referred to adiscussing Fig. 1, which contains data regarding the verifi-
quenched fronts. cation of the theoretical prediction fer(e,a) [Eqg. (11)]. In
all cases, the initial profilap(x,0) is a steplike function,
. RESULTS which is allowed to evolve numerically under a fourth-order

Runge-Kutta schemg20]. The plotted velocities are mea-
We begin with a study of the effects of inertia correspond-sured after transients have died out. As can be seen, the
ing to Eq.(1). We expect that the system will exhibit front- agreement between theory and simulations is excellent, even
like solutions¢(x—uvt). In accordance to this, let us assumefor values ofe= 10, which can hardly be regarded as a small
that Eq.(1) has a generic frontlike solution of the forf7] perturbation. As for the front shape, we observed that during

056608-2



SELECTION, SHAPE, AND RELAXATION @ . .. PHYSICAL REVIEW E 63 056608

200 [ TABLE I. Back-end ) and forward(k) spatial decay coeffi-
cients obtained from numerical simulations and compared to theo-
retical predictions I(‘sh, k™. Numerical values fok are computed

5, 1.50 | from exponential fits to the tail.
3 th h
° € a ks K k K
2 1.00
S 0 -0.25 0.706 0.707 0.707
= 0 0.25 0.707 0.707 0.707
050 -~ | 0 0.75 0715 0715 0888  0.866
R emnn A= - f------- Lg ------- L------ A
0.00 . ‘ ‘. . ‘ 1 -0.25 0.749 0.750 0.750
-025 0.00 025 050 0.75 1.00 1 0.25 1.030 1.030 1.031
a 1 0.75 1.429 1.430 1.726 1.732

FIG. 1. Comparison of analyticdlines) and numerical results

(symbols The solid line corresponds to the overdamped case ( |y Table | we present the results of numerical simulations
=0), whereas dashed lines represent the analytical r¢&idts11)  \yhich confirm these predictions with only minor round-off
for the velocitieslupper paneland Eq.(12) for k (lower panellfor o5 \We have also verified that the same analysis works
the inertial case. M, NL, and L indicate the metastable, linear, ancior the model of Ref[21]. However, we note that this is not
nc_)nlinear regimes, r_espectively. Symbols=0 (squares e=1 a general approach as, for instance, the model i)
(circles, ande=10 (triangles. =¢+d¢p>— ¢° proposed in Refl8] does not fulfill the con-
dition ks=k,, [8].

As for the degenerate or quenched solutions, we have
Eound that, much in the same way as in the parabolic model,
we also have the possibility of generating metastable solu-
larger time needed for transients to die out. tions which move faster than the selected one in the hyper-

We have to note that in both the linear and the nonlineapOIIC problem. This phenomenon appearsdor0. The idea

regimes there is the possibility of two front solutions with |Esto %replarehan |n|t|?l front prqﬁle Wgh a sm;l! Valtljeikfln
different values ok but the same velocity. This can be ob- g. (5. In the nonlinear regime the condition ’

tained from the linear approximation of EQ.) by substitut- vyhere k* .iS evaluated i!". Eq(l4) using vni(€,a). For the
ing the leading contribution of the front, linear regime, the condition ik;<k(e,a). We have found

numerically that the velocities of these solutions agree with

the numerical evolution, the initial step transformed into a
tanh-like front, similar to expressio(b). Again, there is a
nice agreement between theory and the simulations, a littl
worse for very large values of anda~1 because of the

p~e K& st (13 Eq. (14) up to an accuracy better than 0.1%, and that their
spatial decay remains the same as that of the initial condi-
into EQ. (1). In this way we find tion. For these particular solutions, it can be analytically
- 5 shown that the back-end spatial relaxatiknis different
ek“v +kv=k"+a, (149 from k;. Furthermore, fore>1/2, the possibility arises that

the relaxation of the back end to the stable state is oscillatory
instead of simply exponential. Both predictions have been
Qerified satisfactorily by numerical simulations.

To complete our study of the selection problem, we have
also considered the way the velocity approaches its
. : . i asymptotic value. In the overdamped case, the steplike pro-
as in Eq.(14) by performing a linear analysis around the fjie accelerates and changes its shape until the stationary
st_ablc_a statep=1. Substituting the relaxing or back-end con- shape and velocity are reached. In the underdamped prob-
tribution of the front, lem, we have found that, in general, the scenario is the same,

b—1—estvD xept, (15) aIthough_thQ approach to.the_ asymptoti_c.\_/elocity is non-
monotonic, i.e., the velocity increases initially to values
larger than the asymptotic one, and then relaxes to it in a
damped, oscillatory manner, the number and amplitude of
the oscillations depending on the model parameters. Leaving
ek?v?— ko =k2—(a+1). (16)  aside these initial oscillations, we have checked thd)
relaxes exponentially in the metastable regime. This behav-
It is worth mentioning here that the nonlinear soluti@is ior, predicted by theor{8], can be seen in the inset of Fig. 2,
a solution of both Eqs(14) and(16). Expression16) gives ~ wWhich shows that it is very clear in the parabolic model,

us eitherv(ks) or ke(v) as a function of the model param- Whereas in the hyperbolic model it is masked by the above
eters: mentioned oscillationgsee the insg¢t However, the relax-

ation time is of the same order as that of the parabolic prob-
ke=k(€,a)[(2+ 1/a)?—1]<k(€,a). a7 lem, and therefore the behavior is roughly the same. Com-

an equation which has two solutionskrfor everyv value.

In the same way, we can analyze the spatial tail of th
back-end front, which is characterized by a spatial dégay
In the metastable and nonlinear regimes, Gygis a solution,
and therk;=k(€,a). In the linear regime, we can proceed

into Eq. (1), we find another expresion far(ks), different
from Eq. (14):
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In(® FIG. 3. Approach to the asympotic velocity fa=1 (linear

FIG. 2. Approach to the asympotic velocity in the nonlinear case¢ and e_zl. Circles: numt_arical solution. D_ot-dashed line: Eq.
(lower curves,a=0.25) and linear regimesupper curves,a (18) up to first order. Dotted line: Eq18). Full line: Full Eq.(18)

=0.75). Solid lines are the overdamped cases, and dashed lin¥dth the theoretical velocity replaced by the asymptotic velocity
correspond t&= 1. v ,¢,mpis the asymptotic velocity reached in the obtained from the numerical simulation. Note that the difference

simulation. The inset is a plot of the metaestable regirae ( Petween full and dotted lines is less than 0.2%.
—0.25), exhibiting its exponential decay.

) ) _ matic whene#0 becauseD is very small, and then the
versely, in the linear regime, we have found a power [aw,qymntotic is much slower and practically irrelevant, as
relaxation with an exponent1, for the parabolic model,

and some evidence of smaller exponefdscreasing with shown in Fig. 3.
increasinge) in the hyperbolic model. Examples of this are

shown in Fig. 2upper curves We note that the+ 0 curves

bend slightly at long times; this could imply a deviation from

the power law behavior, but we cannot exclude that it might ) ) o
come from the manipulation of the numerical data. Hence, To summarize this work about inertial effects on front
we are more confident of the initial part of the curve, anddynamics, we have numerically checked that fronts governed
thus we conclude that the decay is of power law form in thedy the hyperbolic equatiofl) behave in a fashion qualita-
linear regime. Finally, for the nonlinear regingthe lower tively very similar to the parabolic case, the inertial term
curves in Fig. 2, both models give a slow relaxatigmot  Yielding mostly quantitative corrections. In particular, the
exponential, whose functional form is not really clear, al- separation into metastable, linear, and nonlinear regimes
though it might be fitted with some accuracy by a stretchedholds for the underdamped case, even for very large values

exponential. In any event, the data indicate that the decay isf the inertial parameter. This includes the selected velocity
neither power law nor exponential in this case. for the propagating front, the spatial decay constémsh in
Regarding this problem of the approach to the asymptoti¢he back-end and the forward partthe possibility of
for the casea=1 in Ref.[19], namely, (with special emphasis on thee=1 case.
Moreover, it is possible to understand this separation with
3 o the same approach and the ideas of the linear- and nonlinear-
U(t)=v*—m(l— 5
k°Dt ing the same as in the overdamped case. This is an important
result for two reasons: First, it shows that, for actual physical
wherev* =v,(e,1), k=k/(€,1), andD=(1+4¢) 2. Inview  Systems where the overdamped approximation may or may
of this claim, we have verified this prediction in simulations. should expect is not changed qualitatively by neglecting in-
Our result is shown in Fig. 3 foe=1, and the agreement is ertial terms. On the other hand, this result provides a starting
very good. In fact, as can be seen from the plot, if one subpoint to study the effect of any other perturbation that may
value (as discussed in Ref19]), the theoretical prediction known framework worked out for the overdamped front dy-
overlaps the numerical results. We have verified that thisiamics to interpret the effects of possible additional perturb-
agreement holds for several valueseadnd, in particular, is ing terms.
the theoretical value* in Eq.(18). In addition, in this over-  results reported here to related problems. The theoretical pre-
damped limit, it is clearly seen the need for thé’’term in  dictions and their excellent agreement with the numerical
Eq. (18) for the prediction to be accurate. This is less dra-results have permitted us to establish very firmly the exis-

IV. CONCLUSIONS

velocity, it is interesting to check the theoretical predictionquenched fronts, and the approach to the asymptotic velocity
+0(t™?), (18) marginal-stability criteria, the boundaries between them be-
of the fact that Refl19] did not contain any numerical check not be accurate, the picture of the phenomenology that one
stitutes v (e,1) with the numerically obtained asymptotic affect the front dynamics, allowing one to stick to the well
much better fore=0, for which there is no need to modify Finally, it is worth commenting on the applicability of the
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