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Selection, shape, and relaxation of fronts: A numerical study of the effects of inertia
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We study the problem of front propagation in the presence of inertia. We extend the analytical approach for
the overdamped problem to this case, and present numerical results to support our theoretical predictions.
Specifically, we conclude that the velocity and shape selection problem can still be described in terms of the
metastable, nonlinear, and linear overdamped regimes. We study the characteristic relaxation dynamics of
these three regimes, and the existence of degenerate~‘‘quenched’’! solutions.
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I. INTRODUCTION

Front propagation is a subject of intense study due to
relevance in a variety of contexts@1#. In almost all cases, this
problem was modeled by aparabolic partial differential
equation. This research was devoted to the case of a glob
stable state that invades an unstable or metastable stat
cusing on the velocity and profile selection problems@2–11#.
A relevant result is that the phenomenology can be class
into three regimes: metastable, nonlinear, and linear~see Sec.
II below for further details!.

An important question regarding this problem is the r
evance of inertia~i.e., when can a parabolic equation b
used! and what are its main effects on the overdamped s
nario. To this end, we will consider a damped, hyperbo
partial differential equation. We emphasize that models
this type arise when one considers a more realistic ju
process for individuals whose probability density is d
scribed by the partial differential equation. Moreover, hyp
bolic equations of this kind describe many actual physi
phenomena, such as, e.g., population dynamics, nonli
transmission lines, cell motion, branching random walks,
namics of ferroelectric domains, and others@12–18#. There-
fore, it is physically crucial in all those contexts to kno
whether or not one can use the simpler, parabolic equat

To our knowledge, the above issue has not been sys
atically addressed in the past. Important results were
tained by Hadeler@15#, who found a mathematical proof o
the relationship of both equations, although without an
plicit discussion of the three main regimes and the shap
the selected front. More recently, in Ref.@17# a damped hy-
perbolic equation was studied, but only in the linear regim
Finally, there was a brief mention of the hyperbolic proble
in Ref. @19# in connection with the algebraic relaxation of th
front velocity, although the corresponding asymptotic a
lytical prediction was not checked numerically.

In this paper, we address the question of how the selec
problem is affected, concerning both the velocity and sh
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of the front edges, the existence of degenerate solutions,
the relaxation to a steady state in the different regimes.
study the problem from a numerical point of view, trying
obtain accurate results in every regime. In addition, we sh
how theoretical predictions can be obtained in a simple w
within a scheme similar to that in Ref.@8#. The results so
obtained are relevant in a more general context, with
same phenomenology but without exact solutions, provid
a way to identify the different regimes from numerical e
periments. The paper is organized as follows: In Sec. II,
introduce the model and briefly review the results for t
overdamped case. Section III is devoted to a theoretical
numerical study of the inertial dynamics of fronts. Concl
sions are summarized in Sec. IV.

II. MODEL AND BACKGROUND

The front dynamics subject to inertia is generically mo
eled by the dimensionless hyperbolic equation@15,17,19#

ef tt1f t5fxx1 f ~f,a!. ~1!

The parabolic or overdamped limit is obtained by lettinge
→0 @15,17#, which leads to~note that it is a singular pertur
bation!

f t5fxx1 f ~f,a!, ~2!

which, being well known, will be taken as the reference s
nario. As a representative example of a nonlinear reac
term we take

f ~f,a!5f~12f!~a1f!, ~3!

which can be obtained from a local~bistable! potential

V~f,a!52
a

2
f22

12a

3
f31

1

4
f4. ~4!

It is then straightforward to show that the steady states
f150,f251, andf352a. Front solutions~kinks! connect
©2001 The American Physical Society08-1
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the ~unstable or metastable, depending ona) statef150
with the globally stable statef251, with boundary condi-
tions f(2`,t)5f2 , f(1`,t)5f1.

The parametera acts as an external control paramet
The allowed interval fora, (21/2,1#, ensures the global sta
bility of the f2 state. We then have the following regimes

~i! For aP(21/2,0), f1 is a metastable state. It can b
proven in this case that the kinklike solution

f~y!5
1

2 F12tanhS knly

2 D G5
1

11eknly
, ~5!

which fulfills the boundary conditions, is unique, and tha
invades thef1 state with velocityvnl and spatial asymptotic
decayknl :

vnl~a!5
2a11

21/2
, knl~a!5221/2. ~6!

This is called themetastable regime.
~ii ! For aP@0,1#, f1 is an unstable state. In this case, t

situation is somewhat more rich.
~a! aP@1/2,1#. The linear-marginal-stability criterion ap

plies @8#: Initial conditions with compact support evolve to
ward a solution with minimum velocity, whose spatial d
caying profile is given by

kl~a!5Aa, v l~a!52Aa. ~7!

This is thelinear regime, in which the front velocity relaxes
to a stationary value following an algebraic law, instead
the exponential decay found in other instances~see Ref.@19#
and references therein!.

~b! aP@0,1/2#. The linear-marginal-stability criterion now
fails, and a full nonlinear solution of Eq.~2! is needed, so we
are in thenonlinear regimewith solutions~5! and~6!. It can
be shown that initial conditions withk.k* 5A2a propagate,
after a short transient, with the nonlinear velocityvnl of the
unique solution of the metastable regime~i! andknl .

In the last two regimes higher propagation velocities c
exist by choosing suitable initial conditions with a
asymptotic spatial decay given byki,kl or ki,k* , respec-
tively. In fact, there is a continuous degeneracy of solutio
for steadily propagating fronts as well as, correspondingl
continuum of possible velocities. All those solutions beha
ase2kx asx→` ~the front travels to the right in view of the
boundary conditions!, with a k-dependent velocity. Such
fronts maintain their shape as far as the asymptotic deca
concerned, and propagate with a velocityv5(ki

21a2)/ki .
These degenerate solutions are usually referred to
quenched fronts.

III. RESULTS

We begin with a study of the effects of inertia correspon
ing to Eq.~1!. We expect that the system will exhibit fron
like solutionsf(x2vt). In accordance to this, let us assum
that Eq.~1! has a generic frontlike solution of the form@17#
05660
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f~x,t !5f~Bx2At!5f~y!. ~8!

Substitution of this expression into Eq.~1! leads to an equa
tion for f(y), given by

fyy1Afy1 f ~f,a!50, ~9!

which is the same equation one would obtain beginning w
Eq. ~2!. The parametersA andB have to be taken as

A5v~a!, B5A11eA2, ~10!

wherev(a) is the front velocity of the parabolic case@Eq.
~2!#.

It is important to note that, at this level of theoretic
analysis, both models@Eqs. ~1! and ~2!# are esentially the
same. What makes them different is the presence of the
rameterB and, very likely, the dynamics, because it is a
sumed that the selection problem is a dynamical one
then the necessary information cannot be obtained from
~9! alone.

From Eqs.~8!–~10!, we find that the velocity is

v~e,a!5
A

B
5

v~a!

B
5

1

Ae1v~a!22
, ~11!

in agreement with the rigorous result of Ref.@15#.
Let us now focus on the shape of the frontlike solution,

aspect which has not been studied before for the hyperb
case, to our knowledge, but which is immediately understo
within the present analysis. The front behaves ase2kx for
x→`: As k(a) is the spatial decay of the leading fron
described by the solution of Eq.~9!, the corresponding
k(e,a) has to be

k~e,a!5Bk~a!5A11ev2~a!k~a!. ~12!

Of course, fore50 we recover the parabolic or overdamp
values @Eqs. ~6! and ~7!#, whereas in the opposite limite
→` andv(e,a);e21/2.

In principle, these two equations~11! and~12! give us the
information we were looking for, providedv(a) and k(a)
are known, which implies that the parabolic problem has
be solved for the three regimes. A remarkable conclusion
our theoretical analysis is that the boundary between lin
and nonlinear regimes (a51/2) coincides for both models
independently of the inertia parametere. However, these be
ing nonrigorously proved analytical results, we have to che
whether these solutions are observable through nume
simulations of the full partial differential equation@Eq. ~1!#.

We begin the discussion of the numerical results w
discussing Fig. 1, which contains data regarding the ve
cation of the theoretical prediction forv(e,a) @Eq. ~11!#. In
all cases, the initial profilef(x,0) is a steplike function,
which is allowed to evolve numerically under a fourth-ord
Runge-Kutta scheme@20#. The plotted velocities are mea
sured after transients have died out. As can be seen,
agreement between theory and simulations is excellent, e
for values ofe510, which can hardly be regarded as a sm
perturbation. As for the front shape, we observed that dur
8-2
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SELECTION, SHAPE, AND RELAXATION OF . . . PHYSICAL REVIEW E 63 056608
the numerical evolution, the initial step transformed into
tanh-like front, similar to expression~5!. Again, there is a
nice agreement between theory and the simulations, a
worse for very large values ofe and a'1 because of the
larger time needed for transients to die out.

We have to note that in both the linear and the nonlin
regimes there is the possibility of two front solutions wi
different values ofk but the same velocity. This can be o
tained from the linear approximation of Eq.~1! by substitut-
ing the leading contribution of the front,

f;e2k(x2vt), x@vt, ~13!

into Eq. ~1!. In this way we find

ek2v21kv5k21a, ~14!

an equation which has two solutions ink for everyv value.
In the same way, we can analyze the spatial tail of

back-end front, which is characterized by a spatial decayks .
In the metastable and nonlinear regimes, Eq.~5! is a solution,
and thenks5knl(e,a). In the linear regime, we can procee
as in Eq.~14! by performing a linear analysis around th
stable statef51. Substituting the relaxing or back-end co
tribution of the front,

f;12eks(x2vt), x!vt, ~15!

into Eq. ~1!, we find another expresion forv(ks), different
from Eq. ~14!:

eks
2v22ksv5ks

22~a11!. ~16!

It is worth mentioning here that the nonlinear solution~6! is
a solution of both Eqs.~14! and ~16!. Expression~16! gives
us eitherv(ks) or ks(v) as a function of the model param
eters:

ks5kl~e,a!@~211/a!1/221#,kl~e,a!. ~17!

FIG. 1. Comparison of analytical~lines! and numerical results
~symbols! The solid line corresponds to the overdamped casee
50), whereas dashed lines represent the analytical results@Eq. ~11!
for the velocities~upper panel! and Eq.~12! for k ~lower panel!# for
the inertial case. M, NL, and L indicate the metastable, linear,
nonlinear regimes, respectively. Symbols:e50 ~squares!, e51
~circles!, ande510 ~triangles!.
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In Table I we present the results of numerical simulatio
which confirm these predictions with only minor round-o
errors. We have also verified that the same analysis wo
for the model of Ref.@21#. However, we note that this is no
a general approach as, for instance, the model withf (f)
5f1df32f5 proposed in Ref.@8# does not fulfill the con-
dition ks5knl @8#.

As for the degenerate or quenched solutions, we h
found that, much in the same way as in the parabolic mo
we also have the possibility of generating metastable s
tions which move faster than the selected one in the hyp
bolic problem. This phenomenon appears fora.0. The idea
is to prepare an initial front profile with a small value ofki in
Eq. ~5!. In the nonlinear regime the condition isk,k* ,
where k* is evaluated in Eq.~14! using vnl(e,a). For the
linear regime, the condition iski,kl(e,a). We have found
numerically that the velocities of these solutions agree w
Eq. ~14! up to an accuracy better than 0.1%, and that th
spatial decay remains the same as that of the initial co
tion. For these particular solutions, it can be analytica
shown that the back-end spatial relaxationks is different
from ki . Furthermore, fore.1/2, the possibility arises tha
the relaxation of the back end to the stable state is oscilla
instead of simply exponential. Both predictions have be
verified satisfactorily by numerical simulations.

To complete our study of the selection problem, we ha
also considered the way the velocity approaches
asymptotic value. In the overdamped case, the steplike
file accelerates and changes its shape until the statio
shape and velocity are reached. In the underdamped p
lem, we have found that, in general, the scenario is the sa
although the approach to the asymptotic velocity is no
monotonic, i.e., the velocity increases initially to valu
larger than the asymptotic one, and then relaxes to it i
damped, oscillatory manner, the number and amplitude
the oscillations depending on the model parameters. Lea
aside these initial oscillations, we have checked thatv(t)
relaxes exponentially in the metastable regime. This beh
ior, predicted by theory@8#, can be seen in the inset of Fig. 2
which shows that it is very clear in the parabolic mod
whereas in the hyperbolic model it is masked by the ab
mentioned oscillations~see the inset!. However, the relax-
ation time is of the same order as that of the parabolic pr
lem, and therefore the behavior is roughly the same. Co

d

TABLE I. Back-end (ks) and forward~k! spatial decay coeffi-
cients obtained from numerical simulations and compared to th
retical predictions (ks

th , kth). Numerical values fork are computed
from exponential fits to the tail.

e a ks ks
th k kth

0 20.25 0.706 0.707 0.707
0 0.25 0.707 0.707 0.707
0 0.75 0.715 0.715 0.888 0.866

1 20.25 0.749 0.750 0.750
1 0.25 1.030 1.030 1.031
1 0.75 1.429 1.430 1.726 1.732
8-3
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versely, in the linear regime, we have found a power l
relaxation with an exponent;1, for the parabolic model
and some evidence of smaller exponents~decreasing with
increasinge) in the hyperbolic model. Examples of this a
shown in Fig. 2~upper curves!. We note that theeÞ0 curves
bend slightly at long times; this could imply a deviation fro
the power law behavior, but we cannot exclude that it mi
come from the manipulation of the numerical data. Hen
we are more confident of the initial part of the curve, a
thus we conclude that the decay is of power law form in
linear regime. Finally, for the nonlinear regime~the lower
curves in Fig. 2!, both models give a slow relaxation~not
exponential!, whose functional form is not really clear, a
though it might be fitted with some accuracy by a stretch
exponential. In any event, the data indicate that the deca
neither power law nor exponential in this case.

Regarding this problem of the approach to the asympt
velocity, it is interesting to check the theoretical predicti
for the casea51 in Ref. @19#, namely,

v~ t !5v* 2
3

2kt S 12A p

k2Dt
D 1O~ t22!, ~18!

wherev* 5v l(e,1), k5kl(e,1), andD5(114e)22. In view
of the fact that Ref.@19# did not contain any numerical chec
of this claim, we have verified this prediction in simulation
Our result is shown in Fig. 3 fore51, and the agreement i
very good. In fact, as can be seen from the plot, if one s
stitutes v(e,1) with the numerically obtained asymptot
value ~as discussed in Ref.@19#!, the theoretical prediction
overlaps the numerical results. We have verified that
agreement holds for several values ofe and, in particular, is
much better fore50, for which there is no need to modif
the theoretical valuev* in Eq. ~18!. In addition, in this over-
damped limit, it is clearly seen the need for thet23/2 term in
Eq. ~18! for the prediction to be accurate. This is less d

FIG. 2. Approach to the asympotic velocity in the nonline
~lower curves, a50.25) and linear regimes~upper curves,a
50.75). Solid lines are the overdamped cases, and dashed
correspond toe51. vasympis the asymptotic velocity reached in th
simulation. The inset is a plot of the metaestable regime (a5
20.25), exhibiting its exponential decay.
05660
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matic wheneÞ0 becauseD is very small, and then the
asymptotic is much slower and practically irrelevant,
shown in Fig. 3.

IV. CONCLUSIONS

To summarize this work about inertial effects on fro
dynamics, we have numerically checked that fronts gover
by the hyperbolic equation~1! behave in a fashion qualita
tively very similar to the parabolic case, the inertial ter
yielding mostly quantitative corrections. In particular, th
separation into metastable, linear, and nonlinear regim
holds for the underdamped case, even for very large va
of the inertial parameter. This includes the selected velo
for the propagating front, the spatial decay constants~both in
the back-end and the forward parts!, the possibility of
quenched fronts, and the approach to the asymptotic velo
~with special emphasis on thea51 case!.

Moreover, it is possible to understand this separation w
the same approach and the ideas of the linear- and nonlin
marginal-stability criteria, the boundaries between them
ing the same as in the overdamped case. This is an impo
result for two reasons: First, it shows that, for actual physi
systems where the overdamped approximation may or m
not be accurate, the picture of the phenomenology that
should expect is not changed qualitatively by neglecting
ertial terms. On the other hand, this result provides a star
point to study the effect of any other perturbation that m
affect the front dynamics, allowing one to stick to the we
known framework worked out for the overdamped front d
namics to interpret the effects of possible additional pertu
ing terms.

Finally, it is worth commenting on the applicability of th
results reported here to related problems. The theoretical
dictions and their excellent agreement with the numeri
results have permitted us to establish very firmly the ex

es

FIG. 3. Approach to the asympotic velocity fora51 ~linear
case! and e51. Circles: numerical solution. Dot-dashed line: E
~18! up to first order. Dotted line: Eq.~18!. Full line: Full Eq.~18!
with the theoretical velocity replaced by the asymptotic veloc
obtained from the numerical simulation. Note that the differen
between full and dotted lines is less than 0.2%.
8-4



re
is
fe
ef
an
m

rk

SELECTION, SHAPE, AND RELAXATION OF . . . PHYSICAL REVIEW E 63 056608
tence, range of validity, and main features of the three
gimes for the underdamped case. We believe that this
general result. In this case, the characterization of the dif
ent temporal decays of the front velocities can then be us
to identify the border between the metastable, nonlinear,
linear regimes in other, non tractable models directly fro
simulations.
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