
PHYSICAL REVIEW E 69, 016612 ~2004!
Semiclassical coupled-wave theory and its application to TE waves in one-dimensional
photonic crystals
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A semiclassical coupled-wave theory is developed for TE waves in one-dimensional periodic structures. The
theory is used to calculate the bandwidths and reflection/transmission characteristics of such structures, as
functions of the incident wave frequency. The results are in good agreement with exact numerical simulations
for an arbitrary angle of incidence and for any achievable refractive index contrast on a period of the structure.
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I. INTRODUCTION

Photonic crystals, which are repetitive dielectric stru
tures, have attracted considerable attention during the las
years, as they hold promise of applications in photonic
vices. The ideal three-dimensional~3D! photonic crystal
would exhibit absolute photonic band gaps~forbidden bands!
in which the propagation of light is prohibited in any dire
tion. That is, it would behave as an omnidirectional mirror
a specified frequency range. However, to achieve a comp
3D photonic band gap one has to build a perfect 3D die
tric lattice from materials with a refractive index contrast
2 or more, which is still a challenging technological proble
@1#.

Fortunately, it has recently been shown@2,3# that a 1D
periodic structure with high refractive index contrast c
serve as such a photonic crystal. This has sparked ano
surge of interest in wave propagation through on
dimensional layered periodic structures@4–7#. The common
theoretical methods include the Floquet-Bloch approa
coupled-wave theory, and the transfer matrix meth
Among these three, the coupled-wave approach offers s
rior physical insight and moreover gives simple analyti
results in limiting cases.

The assumptions of conventional coupled-wave the
@8–10# ~which is equally applicable to both 2D slanted gra
ings, and 1D periodic structures! include neglect of second
derivatives of the field amplitudes and retention of just o
diffracted wave~in addition to the transmitted wave!. As a
result, the final system of coupled-wave equations conta
only two first-order differential equations which can b
solved analytically. Unfortunately, these approximations
ten lead to obviously incorrect results. This occurs in
case of high refractive index contrast, which is required fo
1D photonic crystal.

Rigorous coupled-wave theory@11,12# allows for the
presence of all possible diffracted waves in the cases of
or 3D periodic structures, and takes into account the sec
derivatives of the field amplitudes as well. The resulting s
tem of coupled-wave equations is exact but involves an i
nite number of second-order differential equations. In pr
tice, the infinite set must be truncated by discarding
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higher-order diffracted waves. The order of the approxim
set of equations depends on the required precision of
final result. Therefore, rigorous coupled-wave theory is p
ticularly suitable for numerical calculations. In that sense
is analogous to the Floquet-Bloch approach, while it has
advantage of a clear physical interpretation. One can say
rigorous coupled-wave theory or the Floquet-Bloch appro
is better suited for specific calculations than for deriving ge
eral properties of wave propagation in periodic structur
Moreover, the rigorous coupled-wave theory is not direc
applicable to 1D periodic structures~pure reflection grat-
ings!, as the transition of the slant angle from near zero
exactly zero involves a singularity@11#.

The transfer matrix method for one-dimensional perio
structures@13,14# is exact and particularly suitable for struc
tures with homogeneous constituent layers. However,
analytical expressions for the widths of forbidden and
lowed bands in terms of characteristic physical paramet
such as refractive indices and thicknesses of the constit
layers, are difficult to analyze even for a bilayer period.

In light of the above, a theory that should be analytica
as simple as the conventional coupled-wave theory but p
vide more accurate results in the case of high refractive in
contrast~deep gratings! is desirable for the description o
wave propagation in 1D photonic crystals. A suitable can
date is a semiclassical version of the Kogelnik coupled-w
theory. This semiclassical coupled-wave theory was initia
introduced in@15# for normal incidence in 1D structures an
was thoroughly reviewed in@16# for the same case. Othe
recent efforts to improve the conventional coupled-wa
theory in the case of high refractive index contrast inclu
@17–20#. However, in our opinion, the semiclassical versi
of the coupled-wave theory is a better choice for 1D str
tures as it provides accurate and relatively simple analyt
results for the bandwidths and reflection/transmission ch
acteristics.

The purpose of this paper is twofold. First, we extend
semiclassical coupled wave theory to the case of obli
propagation of TE electromagnetic waves in 1D perio
structures and show the relation between the solutions
tained within the approximations of this theory and Blo
waves. Second, we work out the second approximation of
©2004 The American Physical Society12-1
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semiclassical coupled-wave theory, which turns out to be
sentially exact for any achievable ratio of the refractive
dices of the layers comprising the 1D photonic crystal.

In the following section, this coupled-wave method is d
veloped in terms of two counterpropagating waves, includ
not only variable amplitudes as in conventional theory,
also variable~geometric-optics! phases. Then we find th
relation between the solutions in terms of coupled waves
in terms of Floquet-Bloch functions. This allows us to co
struct a simple analytical expression for the Bloch pha
which is a key parameter for determination of band structu
These results are illustrated in Sec. III to obtain the widths
forbidden bands and reflection/transmission characteristic
a periodic bilayered dielectric structure for arbitrary angle
incidence and arbitrary ratio of the refractive indices. A
other example in that section shows how to apply our the
to a periodic structure with a continuous profile of the refra
tive index. The conclusions are summarized in Sec. IV.

II. SEMICLASSICAL COUPLED WAVE THEORY

A. Derivation of basic equations

We consider a transparent~no absorption! slab whose nor-
mal is thez axis, occupying the region 0,z,L. The index
of refractionn(z)5n(z1d) varies periodically in thez di-
rection, but does not depend onx or y. The dielectric permit-
tivity e(z) is the square of the refractive index:e(z)
5n2(z). Monochromatic plane waves with angular fr
quencyv and vacuum wave numberk5v/c propagate in-
side the medium parallel to thexz plane. For TE polarized
waves, i.e., for waves withE perpendicular to the plane o
wave propagation,

E5E~z!êyexp@ i ~kbx2vt !#,

H5@Hx~z!êx1Hz~z!êz#exp@ i ~kbx2vt !#. ~1!

Maxwell’s equations inside the periodic medium reduce
the wave equation

d2E~z!

dz2
1k2@n2~z!2b2#E~z!50, ~2!

wherekb is the ~constant! x component of the wave vecto
of modulusk(z)5vn(z)/c inside the medium. If a TE po
larized wave impinges on the periodic medium from the
gion z,0, then

b5n0sinu0 , ~3!

wheren0 is the refractive index of the regionz,0 andu0 is
the angle of incidence measured from the normal.

Equation~2! with an arbitrary periodic functionn(z) is
the Hill equation. According to Floquet-Lyapunov theory,
general solution can be written as a superposition of
Bloch waves,
01661
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E~z!5Fp1~z!exp~ iaz!1Gp2~z!exp~2 iaz!,

p1,2~z!5p1,2~z1d!. ~4!

The quantitya is a so-called characteristic index that is ge
erally complex (a5a81 ia9) and related to the Bloch phas
by f5ad. One can see that the peculiarities of wave pro
gation through a periodic structure depend mainly on
dispersion relationa5a(k), which is conveniently written
in the form of the dispersion equation cosf(k) as a function
of k. There are two physically different regions of paramet
for our structure. In the first, whereucosfu,1, sof is real,
the forward Bloch wavep1(z) propagates without attenua
tion; these we call allowed bands. In the second,f is com-
plex (ucosfu.1), and the forward Bloch wave is expone
tially damped, even in the absence of real absorption. S
regions are called forbidden bands. Physically, in the forb
den bands, especially around their centers, the accumu
Fresnel reflection from variations of the refractive indexn(z)
over the period results in an increase of the amplitude of
backward Bloch wave at the expense of the forward wa
leading to an increase of the reflection probability.

The essence of the semiclassical coupled-wave theor
as follows. It is based on use of the approximation of ge
metrical optics, which is related to the WKB approach
quantum mechanics. It provides a good approximation w
the properties of the medium change slowly over one wa
length. A general solution in the approximation of geome
cal optics is a superposition of two wavesA6exp
@6ic(z)#/@n2(z)2b2#1/4 @21#. In the semiclassical coupled
wave theory we assume that the amplitudesA6 depend onz
as well. This additionalz dependence allows for some sma
transformation of forward waves into backward waves a
vice versa as the waves advance over one period, going
yond the geometrical-optics approximation. Therefore,
stead of Bloch waves, we seek a solution of the Hill equat
~2! in terms of two counterpropagating waves with slow
varying amplitudesA(6)(z) and geometric-optics phase
6c(z), i.e.,

E~z!5
A(1)~z!

@n2~z!2b2#1/4
exp@ ic~z!#1

A(2)~z!

@n2~z!2b2#1/4

3exp@2 ic~z!#, ~5!

where

c~z!5kE
0

z
An2~z8!2b2dz8, ~6!

and one can see thatc(z1d)5c(z)1c(d). For the mag-
netic field we seek a solution in the form

Hx~z!52@n2~z!2b2#1/4A(1)~z!exp@ ic~z!#1@n2~z!

2b2#1/4A(2)~z!exp@2 ic~z!#,
2-2
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Hz~z!5
bA(1)~z!

@n2~z!2b2#1/4
exp@ ic~z!#1

bA(2)~z!

@n2~z!2b2#1/4

3exp@2 ic~z!#. ~7!

After the substitution of expressions~5! and ~7!, Maxwell’s
equations, or, equivalently, the wave equation~12!, become
an identity if the amplitudesA(6)(z) satisfy the system

dA(1)~z!

dz
5S(2)~z!A(2)~z!,

dA(2)~z!

dz
5S(1)~z!A(1)~z!, ~8!

where

S(6)~z!5
n~z!

2@n2~z!2b2#

dn~z!

dz
exp@62ic~z!#. ~9!

The system~8! is exact. Introducing the phase averaged
fractive indexnav,b5c(d)/kd, i.e.,

nav,b5
1

dE0

d
An2~z8!2b2dz8, ~10!

we find that the quantitiesS(6)(z)exp(72iknav,bz) are peri-
odic functions that can be Fourier expanded as

S(6)~z!e72iknav,bz5 (
m52`

m51`

sm
(6)ei2pmz/d. ~11!

The coefficientssm
(6) can be expressed in a form which

particularly suitable for layered periodic structures w
piecewise continuousn(z):

sm
(6)5

1

2d
PE

0

d n~z!

n2~z!2b2

dn~z!

dz

3expF2i S 6c~z!7knav,bz2
p

d
mzD Gdz

1
1

4d (
j

lnFn2~zj10!2b2

n2~zj20!2b2G
3expF2i S 6c~zj !7knav,bzj2

p

d
mzj D G . ~12!

The P implies a principal value integral, and the sum o
j 51,2, . . . takes into account the contribution tosm

(6) of
jumps in the refractive indexn(z) at the points of disconti-
nuity zj within the period. If a discontinuity inn(z) occurs at
the beginning or at the end of a period, we should take
discontinuity into account only once, say at the beginning
the period. The quantitiesn(zj60) are the limiting values of
the refractive indexn(z) to the right/left of a point of dis-
continuity zj . Physically, the coefficientssm

(6) represent the
01661
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magnitude of coupling between the two counterpropaga
waves~5! due to themth Fourier components of the func
tions S6(z).

We can now average over rapid oscillations to obtain fr
the exact system~8! an approximate and simpler set of equ
tions. In practice, the main contribution to the exact solutio
of Eq. ~8! is provided by the slowly varying components
the coefficientsS6(z). It is reasonable to start the analys
from the so-called Bragg resonanceskq5pq/(nav,bd), q
51,2,3, . . . , of ourperiodic structure, which coincide with
the centers of the forbidden bands in the zeroth approxi
tion. Now, introducing the detuningdq from the qth Bragg
resonance

knav,b5
p

d
q1dq , 2

p

2d
,dqÞ1,

p

2d
, 2

p

d
,d1,

p

2d
,

~13!

we can rewrite Eq.~11! in the form

S(1)~z!5Fs2q
(1)1 (

mÞ2q
sm

(1)ei2p(m1q)z/dGe2idqz,

S(2)~z!5Fsq
(2)1 (

mÞq
sm

(2)ei2p(m2q)z/dGe22idqz. ~14!

We see from Eq.~12! thats2m
(1) is just the complex conjugate

of sm
(2) . Therefore, introducing the notationsm

(2)[sm and a
new set of functionsB(6)(z)5A(6)(z)exp(6idqz), we obtain
from the system~8! a new one in the form

dB(1)~z!

dz
5 idqB(1)~z!1Fsq1 (

mÞq
smei2p(m2q)z/dGB(2)~z!,

dB(2)~z!

dz
52 idqB(2)~z!1Fsq*

1 (
mÞq

sm* e2 i2p(m2q)z/dGB(1)~z!. ~15!

This system is still exact. If allsmd,1 anddqd,1, we can
use the method of averaging@22# to obtain an approximate
solution. Further, we will find that this method gives reaso
able results even in cases where some of thesmd.1 and/or
dqd.1.

Following Ref. @22#, we representB(6)(z) as a superpo-
sition of slowly varying termsB̄(6)(z) plus a sum of small
oscillatory terms:

B(1)~z!5B̄(1)~z!1v1~z!B̄(2)~z!1v2~z!B̄(1)~z!1•••,

B(2)~z!5B̄(2)1v1* ~z!B̄(1)~z!1v2* ~z!B̄(2)~z!1•••,
~16!

where the unknown functionv1(z) is a linear function of
small quantities (smd, dqd) in the system~15!, v2(z) is bi-
linear, and so on. For the slowly varying termsB̄(6)(z) we
have a system
2-3
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dB̄(1)~z!

dz
5 idqB̄(1)~z!1c1B̄(2)~z!1c2B̄(1)~z!1•••,

dB̄(2)~z!

dz
52 idqB̄(2)~z!1c1* B̄(1)~z!1c2* B̄(2)~z!1•••,

~17!

where the unknown coefficientc1 is a linear function of
small quantitiessmd anddqd, the unknown coefficientc2 is
a bilinear function, and so on. Substituting the solution~16!
into Eq.~15! and taking into account Eq.~17!, we obtain~for
the details see the Appendix!

c15sq , c25
id

2p (
mÞq

usmu2

m2q2dqd/p
, ~18!

and

v1~z!52
id

2p (
mÞq

smei2p(m2q)z/d

m2q2dqd/p
. ~19!

In the first approximation of smallsmd anddqd, the func-
tionsB(6)(z) are replaced by slowly varying termsB̄(6)(z),
which can be found from the system obtained by averag
Eqs.~15! over one period:

dB̄(1)~z!

dz
5 idqB̄(1)~z!1sqB̄(2)~z!,

dB̄(2)~z!

dz
52 idqB̄(2)~z!1sq* B̄(1)~z!. ~20!

Therefore, the functionsB(6)(z) in the first approximation
have the form

B1
(1)~z!5~g12 idq!Fe2g1z1sqGeg1z,

B1
(2)~z!5~2sq* !Fe2g1z1G~g12 idq!Geg1z, ~21!

whereF and G are constants that depend on the bound
conditions, and

g1~k!5Ausq~k!u22dq
2. ~22!
01661
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The second approximation to the functionsB(6)(z) takes
into account not only the slowly varying termsB̄(6)(z) but
also the first oscillatory termsv1(z)B̄(6)(z) @see Eq.~16!#;
and the slowly varying termsB̄(6)(z) themselves should be
calculated in the second approximation, i.e., from the sys

dB̄(1)~z!

dz
5 idqB̄(1)~z!1sqB̄(2)~z!1c2B̄(1)~z!,

dB̄(2)~z!

dz
52 idqB̄(2)~z!1sq* B̄(1)(z)~z!1c2* B̄(2)~z!,

~23!

rather than from the system~20!. Therefore, the final expres
sions for the functionsB(6)(z) in the second approximation
take the form

B2
(1)~z!5@~g22 ihq!2sq* v1~z!#Fe2g2z1@sq1~g2

2 ihq!v1~z!#Geg2z,

B2
(2)~z!5@2sq* 1~g22 ihq!v1* ~z!#Fe2g2z1@~g22 ihq!

1sqv1* ~z!#Geg2z ~24!

with

g2~k!5Ausq~k!u22hq
2, ~25!

wherehq5dq2 ic2 is a real number.
We can now write the final expressions for the elect

field in terms of two counterpropagating waves~5! inside the
periodic structure in the first and second approximations

E(1)~z!5
F~g12 idq!e2g1z1Gsqeg1z

~n2~z!2b2!1/4
ei [c(z)2dqz]

1
F~2sq* !e2g1z1G~g12 idq!eg1z

~n2~z!2b2!1/4
e2 i [c(z)2dqz]

~26!

and
E(2)~z!5
F@~g22 ihq!2sq* v1~z!#e2g2z1G@sq1~g22 ihq!v1~z!#eg2z

~n2~z!2b2!1/4
ei [c(z)2dqz]

1
F@2sq* 1~g22 ihq!v1* ~z!#e2g2z1G@g22 ihq1sqv1* ~z!#eg2z

~n2~z!2b2!1/4
e2 i [c(z)2dqz] , ~27!

or in terms of two Bloch waves~4! as

E(1)~z!5F
~g12 idq!ei [c(z)2dqz]2sq* e2 i [c(z)2dqz]

@n2~z!2b2#1/4
e2g1z1G

sqei [c(z)2dqz]1~g12 idq!e2 i [c(z)2dqz]

@n2~z!2b2#1/4
eg1z ~28!
2-4
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and

E(2)~z!5F
@g22 ihq2sq* v1~z!#ei [c(z)2dqz]2@sq* 2~g22 ihq!v1* ~z!#e2 i [c(z)2dqz]

~n2~z!2b2!1/4
e2g2z

1G
@sq1~g22 ihq!v1~z!#ei [c(z)2dqz]1@g22 ihq1sqv1* ~z!#e2 i [c(z)2dqz]

@n2~z!2b2#1/4
eg2z. ~29!
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From the expressions~28! and ~29!, we easily obtain that in

each zone along thek axis p(2 1
2 1q)/(nav,bd),k,p( 1

2

1q)/(nav,bd) @see Eq.~13!# the characteristic indexa and
the Bloch phasef in the first and second approximation
take the forms

a1,25
p

d
q1 ig1,2, f1,25pq1 ig1,2d. ~30!

In forbidden bands, whereusqu.udqu ~first approximation! or
usqu.uhqu ~second approximation!, g1,2 is a real positive
number. In allowed bands, whereusqu,udqu ~first approxima-
tion! or usqu,uhqu ~second approximation! g1,2 is a purely
imaginary number:g15 i ug1u if dq,0 and g152 i ug1u if
dq.0; g25 i ug2u if hq,0 andg252 i ug2u if hq.0.

In the first approximation, according to Eqs.~22! and
~13!, the right kR and left kL boundaries of the forbidden
band with the centerkq5pq/(nav,bd) can be found from the
equations

kRnav,b2pq/d5usq~kR!u,

pq/d2kLnav,b5usq~kL!u. ~31!

Adding these two equations, we obtain the width of the f
bidden band to be

wq5
usq~kR!u1usq~kL!u

nav,b
'2

usq~kq!u
nav,b

, ~32!

wheresq(kq) is the coupling coefficient at the Bragg res
nance. We will see from the figures that this is a very ac
rate approximation.

B. Reflection and transmission

First, we calculate the reflection and transmission coe
cients for a wave incident on a matched periodic structu
01661
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By matched, we mean that the refractive index is continu
across the exterior boundaries atz50 andz5L, i.e., there is
no Fresnel reflection from them. As a result, reflection by
entire system 0,z,L is determined only by Bragg reflec
tion from the periodic structure itself.

Equation~5! represents a solution of the Hill equation~1!
in terms of right- and left-moving components. Therefo
the amplitude Bragg reflection and transmission coefficie
for a wave incident on the structure from the left, i.e., fro
the regionz,0, can be found from the expressions

r B5
A(2)~0!

@n2~0!2b2#1/4
exp@2 ic~0!#,

tB5
A(1)~L !

@n2~L !2b2#1/4
exp@ ic~L !#, ~33!

under the conditions

A(1)~0!

@n2~0!2b2#1/4
exp@ ic~0!#51,

A(2)~L !

@n2~L !2b2#1/4
exp@2 ic~L !#50. ~34!

The first relation in Eq.~34! is just a normalization condi-
tion, while the second expresses the radiation principle:
propagation of a left-moving wave in the regionz.L. From
these conditions we can find the constantsF and G to be
substituted into expressions~33! for the reflection and trans
mission amplitudes. The final results in the first and seco
approximations are
r B
(1)5

2sq* sinh~g1L !

g1cosh~g1L !2 idqsinh~g1L !
,

tB
(1)5

g1eipNq

g1cosh~g1L !2 idqsinh~g1L !
, ~35!
2-5
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r B
(2)5

~2sq* 22ihqu* 1squ* 2!sinh~g2L !

~12uuu2!g2cosh~g2L !2 i @~11uuu2!hq22 Im~squ* !#sinh~g2L !
,

tB
(2)5

~12uuu2!g2eipNq

~12uuu2!g2cosh~g2L !2 i @~11uuu2!hq22 Im~squ* !#sinh~g2L !
, ~36!

whereu5v1(0).
As we have already mentioned,g1,2 is real and positive in forbidden bands and becomes a purely imaginary numb

allowed bands. Therefore, for reflection and transmission in allowed bands it is more natural to use the expressions
of the characteristic indexa1,2, which is a real number in these bands. These expressions follow immediately from Eqs~35!
and ~36!, if we take into account Eq.~30!:

r B
(1)5

2sq* sin~a1L !

~a12pq/d!cos~a1L !2 idqsin~a1L !
,

tB
(1)5

~a12pq/d!eipNq

~a12pq/d!cos~a1L !2 idqsin~a1L !
, ~37!

r B
(2)5

~2sq* 22ihqu* 1squ* 2!sin~a2L !

~12uuu2!~a22pq/d!cos~a2L !2 i @~11uuu2!hq22 Im~squ* !#sin~a2L !
,

tB
(2)5

~12uuu2!~a22pq/d!eipNq

~12uuu2!~a22pq/d!cos~a2L !2 i @~11uuu2!hq22 Im~squ* !#sin~a2L !
. ~38!
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For an arbitrary~nonmatched! periodic structure, the field
E(z) of a TE polarized wave~1! in the region outside the
periodic structure takes the form

E~z!5eikAn0
2
2b2z1r Se2 ikAn0

2
2b2z, z,0,

E~z!5tSeikAns
2
2b2(z2L), z.L, ~39!

wherens is the refractive index of the regionz.L. Then, the
amplitude reflectionr S and transmissiontS coefficients of an
arbitrary~nonmatched! periodic structure can be found from
the matrix equation

S 1

r S
D 5S 1/t0 r 0 /t0

r 0 /t0 1/t0
D S 1/tB r B* /tB*

r B /tB 1/tB*
D S 1/ts r s /ts

r s /ts 1/ts
D

3S tS

0 D , ~40!

where the Fresnel coefficients

r 05
An0

22b22A@n~0!#22b2

An0
22b21A@n~0!#22b2

,

t05
2An0

22b2

An0
22b21A@n~0!#22b2

,

01661
r s5
A@n~L !#22b22Ans

22b2

A@n~L !#22b21Ans
22b2

,

ts5
2A@n~L !#22b2

A@n~L !#22b21Ans
22b2

~41!

are responsible for the reflection and transmission on
boundaries of the structure. In these formulasn(0) andn(L)
are the refractive indices of our periodic structure at
pointsz50 andz5L.

The expressions~35! and~37! for the reflection and trans
mission coefficients in the first approximation of the sem
classical coupled-wave theory have the same form as th
in the conventional coupled-wave theory@9,10,16#, if we
take into account the fact that the coupling coefficientsm

(2)

[sm of the semiclassical theory plays the same role as
coupling coefficientism

con of the conventional theory and
s2m

(1)[sm* plays the same role as2 is2m
con . However, the semi-

classical theory even in the first approximation differs fro
the conventional one in several respects. First, the posit
of the Bragg resonances are different:kqnav,bd5pq ~semi-
classical! andkqA«av2b2d5pq ~conventional!. This leads
to a more accurate determination of the centers of the for
den bandskq and, as a result, to a more accurate estimat
of the detuningdq .

Second, the magnitudes of the coupling coefficientss7m
(6)

in the semiclassical theory are determined by expression~12!
rather than bys6m

con5k«6m /(2A«av2b2) as in the conven-
2-6



ic

l
ic
d
th

-
a
p

e
ic

al
c

e

s
in
ou
T

ive

w
ive

u

s
f

he

n

-
e

a

c

e in
ula-

bi-
e

h
an

ve

ork

st,

s

stal

in
ver
ion
ere-
s

nal
all

d-
ge
al-
ths
-
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tional theory.@Here«av is the average value of the dielectr
permittivity «(z) over the period of the structure and«m(m
51,2, . . . ) is themth Fourier harmonic of this function.# As
a result, the coupling coefficientss7m

(6) of the semiclassica
theory take into account multiwave diffraction by period
inhomogeneities of«(z) because this periodically modulate
function makes its appearance under the integral sign in
expression~12!, «(z)5n2(z). This is the key point of depar
ture of our semiclassical theory from the convention
~Kogelnik! one, where only one diffracted wave ex
(2ikA«av2b2z) @in addition to the transmitted wav
exp(ikA«av2b2z)] was assumed to exist within the period
structure.

Finally, the initial approximations of the convention
coupled-wave theory include neglecting boundary diffra
tion, i.e., it is assumed that«0'«av'«s , where«05n0

2 and
«s5ns

2 . To calculate the reflection and transmission in oth
cases we need to use Eq.~40! with A«av instead ofn(L) and
n(0) in Eq. ~41!.

As we shall see in the next section, all these drawback
the conventional coupled-wave theory lead to obviously
correct results in cases where the first approximation of
semiclassical theory already gives reasonable results.
second approximation of the semiclassical theory will g
us a good agreement~within 10%! with exact numerical re-
sults even in the most unfavorable situations.

III. SOME APPLICATIONS OF THE MODIFIED THEORY

A. Bilayer photonic crystal

To illustrate the semiclassical coupled-wave theory,
consider a two-layered periodic medium with real refract
indicesna andnb and layer thicknessesa andb such thatd
5a1b, as shown in Fig. 1. From the results of the previo
section, for such a structure we have

nav,b5
naba1nbbb

d
,

smd5 i lnS nbb

nab
De2 ipmsinS b

d
@pm1ka~nbb2nab!# D ,

~42!

wherena,bb5Ana,b
2 2b2 are the effective refractive indice

of the layersna and nb . As a result, at a given angle o
incidenceu0 (b5n0sinu0) the relative width of the forbid-
den band around the Bragg resonance atkq in the first ap-
proximation can be expressed as

FIG. 1. Two-layered periodic dielectric structure~bilayer photo-
nic crystal!.
01661
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kq
5

2

pq U lnS nbb

nab
D sinS pq

11naba/nbbbD U. ~43!

From the transfer matrix method the relative width of t
same forbidden band can be obtained only numerically~al-
beit accurately! by solving the well-known exact dispersio
relation

cosf5cos~knaba!cos~knbbb!

2
nab

2 1nbb
2

2nabnbb
sin~knaba!sin~knbbb! ~44!

for ucosfu.1 ~the Bloch phasef is complex in forbidden
bands!.

In Fig. 2 we show the reflection coefficient for a two
layered periodic structure ofN58 periods whose layers hav
refractive indicesna52.0 and nb51.5 and thicknessesa
5100 nm andb5250 nm. The structure is surrounded by
homogeneous medium with refractive indexn05ns'A«av

5A(na
2a1nb

2b)/d. A TE polarized plane monochromati
wave impinges on the structure at angleu0510°. We see
that for this set of parameters all three approaches ar
good agreement with the results of exact numerical calc
tions.

In Fig. 3 we consider a more demanding situation: a
layer photonic crystal ofN54 periods whose layers hav
refractive indicesna51.34 (Na3AlF6) and nb52.6 ~ZnSe!
and thicknessesa5b590 nm, placed on a substrate wit
ns5na51.34. These parameters correspond to those in
experiment of Chigrinet al. @3#. A TE polarized plane mono-
chromatic wave impinges on the crystal from the airn051 at
angle u0545°. We see that conventional coupled-wa
theory fails completely in the second zone along thek axis,
3
2 p/(navd),k, 5

2 p/(navd), while the first and especially
the second approximation of the semiclassical theory w
well for all frequencies of the incoming waves.

In Fig. 4 we further increase the refractive index contra
with a bilayer photonic crystal ofN54 periods whose layers
have refractive indicesna54.6 ~tellurium! and nb51.6
~polystyrene! and thicknessesa5800 nm andb51650 nm,
placed on a substrate withns5na54.6. These parameter
correspond to those in an experiment of Finket al. @2#. A TE
polarized monochromatic plane wave impinges on the cry
from the airn051 at angleu0580°. Here, only the second
approximation of the semiclassical coupled-wave theory is
good agreement with the exact numerical calculations o
the entire frequency range. However, the first approximat
gives reasonable results within the forbidden bands. Th
fore, formula~43! for the widths of forbidden bands remain
a good approximation.

The above figures illustrate the fact that conventio
coupled-wave theory gives reasonable results only for sm
angles and small modulation depths (dn5nb2na'0.5) ~see
Fig. 1!. The first approximation of the semiclassical couple
wave theory works well in forbidden bands for a broad ran
of incident angles and modulation depths, but it fails in
lowed bands for high angles and large modulation dep
(dn'2.0, . . .,3.0) ~see Fig. 4!. The second approxima
2-7
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tion developed in this paper is essentially exact for any pr
tically achievable modulation depth and angle of inciden

B. Periodic structure with triangular profile
of refractive index

As a second application of our theory, we consider a
riodic structure with a~symmetric! triangular refractive in-
dex profile. As sketched in Fig. 5, the index of refracti
increases linearly fromna to nb along the first half of the
periodd, and then returns tona . An electromagnetic wave is
normally (u050°) incident upon the structure from the r

FIG. 2. Reflection vs frequency for a small angle of incidence
the first two zones along thek axis, 0,k,5p/2(nav,bd), of the
two-layered periodic structure with small refractive index modu
tion. The parameters of the structure are as described in text~a!
Conventional coupled-wave theory~thick solid line!; ~b! first ap-
proximation of the semiclassical theory~thick solid line!; ~c! second
approximation of the semiclassical theory~squares!. The exact nu-
merical results are shown in all cases by a thin line.
01661
c-
.

-

gion z,0. In the case of normal incidence, light polarizatio
does not play a role, and the results given below are valid
TM as well as TE waves. In accordance with Eqs.~10! and
~12!, for such a structure we have

nav5
na1nb

2
,

smd5
I 11I 2

2
, ~45!

where

I 15E
0

d/2 ei [k(nb2na)(d22z)22pm]z/d

z1nad/@2~nb2na!#
dz,

-

FIG. 3. Reflection vs frequency for a moderate angle of in
dence in the first two zones along thek axis, 0,k
,5p/2(nav,bd), of the bilayer photonic crystal with moderate re
fractive index modulation. The parameters of the structure are
described in the text. The lines are as in Fig. 2.
2-8
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I 25e2 ipmE
0

d/2 ei [k(na2nb)(d22z)22pm]z/d

z1nbd/[2~na2nb!]
dz. ~46!

To illustrate the advantages of our theory, we take a str
ture of N55 periods with a huge modulation depthna

FIG. 4. Reflection vs frequency for a large angle of incidence
the first two zones along thek axis, 0,k,5p/2(nav,bd), of the
bilayer photonic crystal with large refractive index modulation. T
parameters of the structure are as described in text. The lines a
in Fig. 2.

FIG. 5. Periodic dielectric structure with triangular profile of th
refractive index.
01661
c-

51.3 andnb54.8, on a period ofd5500 nm, surrounded by
a homogeneous medium with refractive indexn05ns51. In
Fig. 6 we see that, as before, only the second approxima
of the semiclassical coupled-wave theory is in good agr
ment with exact numerical calculations over the entire f
quency range.

IV. CONCLUSIONS

The semiclassical coupled-wave theory has been exten
to the case of oblique incidence for TE waves. The the
was also extended to second order; it turns out to be es
tially exact for any achievable refractive index contrast in 1
photonic crystals. Expressions for the reflection and tra
mission coefficients as well as for the bandwidths in the fi
and second approximations were obtained for o

n

as

FIG. 6. Reflection vs frequency for normal incidence in the fi
two zones along thek axis, 0,k,5p/2(nav,bd), of the dielectric
periodic structure with a symmetric triangular profile of the refra
tive index with large modulation. The parameters of the struct
are as described in the text. The lines are as in the Fig. 2.
2-9
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MOROZOV, SPRUNG, AND MARTORELL PHYSICAL REVIEW E69, 016612 ~2004!
dimensional finite periodic structures. The analytical relat
between solutions in terms of Bloch waves and in terms
semiclassical coupled waves has been established. App
tions to two types of cells illustrate how the theory can
used.

The theory presented here provides a convenient wa
derive analytic solutions for waves propagating in on
dimensional periodic structures, solutions that are both r
tively simple and essentially exact. The remaining task is
extend the work to the case of TM waves.
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APPENDIX: DERIVATION OF THE SECOND
APPROXIMATION

As was stated in the main text, in accordance with
method of averaging~see Ref.@22#!, we seek a solution o
the exact system~15!, as a superposition of slowly varyin
terms B̄(6)(z) plus a sum of small oscillatory terms~16!.
Further, according to this method, there is a simpler sys
~17! for the slowly varying terms only.

Let us substitute the solutions~16! into the system~15!.
This gives

dB̄(1)

dz
1

dv1

dz
B̄(2)1v1

dB̄(2)

dz
1

dv2

dz
B̄(1)1v2

dB̄(1)

dz
1•••

5 idq~B̄(1)1v1B̄(2)1v2B̄(1)1••• !

1(
m

smei2p(m2q)z/d~B̄(2)1v1* B̄(1)1••• !,

dB̄(2)

dz
1

dv1*

dz
B̄(1)1v1*

dB̄(1)

dz
1

dv2*

dz
B̄(2)1v2*

dB̄(2)

dz
1•••

52 idq~B̄(2)1v1* B̄(1)1v2* B̄(2)1••• !

1(
m

sm* e2 i2p(m2q)z/d~B̄(1)1v1B̄(2)1••• !. ~A1!
hn
di

o

.
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Corresponding expressions fordB̄(1)/dz and dB̄(2)/dz can
be taken from the system~17!. Then, after some algebra, th
relations~A1! take the form

S c11
dv1~z!

dz
22idqv1~z! D B̄(2)~z!

1S c21
dv2~z!

dz
1c1* v1~z! D B̄(1)~z!1•••

5S sq1 (
mÞq

smei2p(m2q)z/dD
3@B̄(2)~z!1v1* ~z!B̄(1)~z!1•••#,

S c1* 1
dv1* ~z!

dz
12idqv1* ~z! D B̄(1)~z!

1S c2* 1
dv2* ~z!

dz
1c1v1* ~z! D B̄(2)~z!1•••

5S sq* 1 (
mÞq

sm* e2 i2p(m2q)z/dD
3@B̄(1)~z!1v1~z!B̄(2)~z!1•••#. ~A2!

Extracting from this system those terms which are linear
the small quantitiessmd anddqd, we obtain

c11
dv1

dz
22idqv1~z!5sq1 (

mÞq
smei2p(m2q)z/d,

c1* 1
dv1*

dz
12idqv1* ~z!5sq* 1 (

mÞq
sm* e2 i2p(m2q)z/d.

~A3!

The coefficientc1 does not depend onz. Therefore, the first
of the relations~18! and the relation~19! follow immediately
from Eq. ~A3!. Similarly, extracting the terms that are bilin
ear in the small quantitiessmd and dqd, and taking into
account the fact that the coefficientc2 also does not depen
on z, we obtain the second of the relations~18!.
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