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Semiclassical coupled-wave theory and its application to TE waves in one-dimensional
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A semiclassical coupled-wave theory is developed for TE waves in one-dimensional periodic structures. The
theory is used to calculate the bandwidths and reflection/transmission characteristics of such structures, as
functions of the incident wave frequency. The results are in good agreement with exact numerical simulations
for an arbitrary angle of incidence and for any achievable refractive index contrast on a period of the structure.
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[. INTRODUCTION higher-order diffracted waves. The order of the approximate
set of equations depends on the required precision of the
Photonic crystals, which are repetitive dielectric struc-final result. Therefore, rigorous coupled-wave theory is par-
tures, have attracted considerable attention during the last ltieularly suitable for numerical calculations. In that sense it
years, as they hold promise of applications in photonic deis analogous to the Floquet-Bloch approach, while it has the
vices. The ideal three-dimension@D) photonic crystal advantage of a clear physical interpretation. One can say that
would exhibit absolute photonic band gafsrbidden bands  rigorous coupled-wave theory or the Floquet-Bloch approach
in which the propagation of light is prohibited in any direc- is better suited for specific calculations than for deriving gen-
tion. That is, it would behave as an omnidirectional mirror ineral properties of wave propagation in periodic structures.
a specified frequency range. However, to achieve a completdoreover, the rigorous coupled-wave theory is not directly
3D photonic band gap one has to build a perfect 3D dielecapplicable to 1D periodic structurgpure reflection grat-
tric lattice from materials with a refractive index contrast of ings), as the transition of the slant angle from near zero to
2 or more, which is still a challenging technological problemexactly zero involves a singularifyL1].

[1]. The transfer matrix method for one-dimensional periodic
Fortunately, it has recently been shoWn3] that a 1D  structure§13,14] is exact and particularly suitable for struc-
periodic structure with high refractive index contrast cantures with homogeneous constituent layers. However, the
serve as such a photonic crystal. This has sparked anothanalytical expressions for the widths of forbidden and al-
surge of interest in wave propagation through onedowed bands in terms of characteristic physical parameters,
dimensional layered periodic structufgs-7]. The common  such as refractive indices and thicknesses of the constituent

theoretical methods include the Floquet-Bloch approachlayers, are difficult to analyze even for a bilayer period.
coupled-wave theory, and the transfer matrix method. In light of the above, a theory that should be analytically
Among these three, the coupled-wave approach offers supas simple as the conventional coupled-wave theory but pro-
rior physical insight and moreover gives simple analyticalvide more accurate results in the case of high refractive index
results in limiting cases. contrast(deep gratingsis desirable for the description of
The assumptions of conventional coupled-wave theorywave propagation in 1D photonic crystals. A suitable candi-
[8—1Q] (which is equally applicable to both 2D slanted grat- date is a semiclassical version of the Kogelnik coupled-wave
ings, and 1D periodic structuregclude neglect of second theory. This semiclassical coupled-wave theory was initially
derivatives of the field amplitudes and retention of just onentroduced in[15] for normal incidence in 1D structures and
diffracted wave(in addition to the transmitted wayeAs a  was thoroughly reviewed if16] for the same case. Other
result, the final system of coupled-wave equations containeecent efforts to improve the conventional coupled-wave
only two first-order differential equations which can be theory in the case of high refractive index contrast include
solved analytically. Unfortunately, these approximations of{17-20. However, in our opinion, the semiclassical version
ten lead to obviously incorrect results. This occurs in theof the coupled-wave theory is a better choice for 1D struc-
case of high refractive index contrast, which is required for a@ures as it provides accurate and relatively simple analytical
1D photonic crystal. results for the bandwidths and reflection/transmission char-
Rigorous coupled-wave theorjl11,17] allows for the acteristics.
presence of all possible diffracted waves in the cases of 2D The purpose of this paper is twofold. First, we extend the
or 3D periodic structures, and takes into account the secongsemiclassical coupled wave theory to the case of oblique
derivatives of the field amplitudes as well. The resulting syspropagation of TE electromagnetic waves in 1D periodic
tem of coupled-wave equations is exact but involves an infistructures and show the relation between the solutions ob-
nite number of second-order differential equations. In practained within the approximations of this theory and Bloch
tice, the infinite set must be truncated by discarding thevaves. Second, we work out the second approximation of the
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semiclassical coupled-wave theory, which turns out to be es- E(z)=Fpi(2)expiiaz)+ Gp,(z)exp —iaz),
sentially exact for any achievable ratio of the refractive in-
dices of the layers comprising the 1D photonic crystal.

In the following section, this coupled-wave method is de- P1A2)=p1Az+d). )
veloped in terms of two counterpropagating waves, including
not only variable amplitudes as in conventional theory, bufThe quantityx is a so-called characteristic index that is gen-
also variable(geometric-optics phases. Then we find the erally complex @¢=a'+ia") and related to the Bloch phase
relation between the solutions in terms of coupled waves antly ¢ = ad. One can see that the peculiarities of wave propa-
in terms of Floguet-Bloch functions. This allows us to con-gation through a periodic structure depend mainly on the
struct a simple analytical expression for the Bloch phasedispersion relationr= «(k), which is conveniently written
which is a key parameter for determination of band structurein the form of the dispersion equation c6&) as a function
These results are illustrated in Sec. Ill to obtain the widths obf k. There are two physically different regions of parameters
forbidden bands and reflection/transmission characteristics dbr our structure. In the first, wheleos$|<1, so ¢ is real,
a periodic bilayered dielectric structure for arbitrary angle ofthe forward Bloch wavep,(z) propagates without attenua-
incidence and arbitrary ratio of the refractive indices. An-tion; these we call allowed bands. In the secofds com-
other example in that section shows how to apply our theorylex (|cos¢|>1), and the forward Bloch wave is exponen-
to a periodic structure with a continuous profile of the refrac-tially damped, even in the absence of real absorption. Such
tive index. The conclusions are summarized in Sec. IV.  regions are called forbidden bands. Physically, in the forbid-

den bands, especially around their centers, the accumulated

1I. SEMICLASSICAL COUPLED WAVE THEORY Fresnel reflection from variations of the refractive inagx)
o . . over the period results in an increase of the amplitude of the
A. Derivation of basic equations backward Bloch wave at the expense of the forward wave,
We consider a transparefmo absorptiohslab whose nor- leading to an increase of the reflection probability.
mal is thez axis, occupying the region<0z<L. The index The essence of the semiclassical coupled-wave theory is
of refractionn(z) =n(z+d) varies periodically in the di-  as follows. It is based on use of the approximation of geo-

rection, but does not depend mror y. The dielectric permit-  metrical optics, which is related to the WKB approach in

tivity e(z) is the square of the refractive index(z) quantum m'echanlcs. It pr_owdesagood approximation when
= nz(z)_ Monochromatic p|ane waves with angu|ar fre- the propertles of the m_edlgm Change SlOle over one WaV-e-
quencyw and vacuum wave numb«r: w/c propagate in_ Iength A general solution in the apprOXImatlon of geomet”'

side the medium parallel to thez plane. For TE polarized Cal optics is a superposition of two waveA~exp

waves, i.e., for waves witE perpendicular to the plane of [Fi¥(2V[n(2—p1" [21]. In the semiclassical coupled-
wave propagation, wave theory we assume that the amplitudesdepend orz

as well. This additionat dependence allows for some small
- . transformation of forward waves into backward waves and
E=E(z)eexdi(kpx—wt)], vice versa as the waves advance over one period, going be-
yond the geometrical-optics approximation. Therefore, in-
stead of Bloch waves, we seek a solution of the Hill equation
(2) in terms of two counterpropagating waves with slowly

. . (i) . ~ .
Maxwell's equations inside the periodic medium reduce o 2Ny amplitudesA™(z) and geometric-optics phases

H=[H,(2)e+H,(z)e,]exdi(kBx— t)]. (1)

the wave equation (), ie,
PE(2) E)— AN (z) s AT@
K2 - AIE) =0, @ D7 ) - g VT o) gy
Xexd —iy(2)], )
wherekg is the (constant x component of the wave vector
of modulusk(z) = wn(z)/c inside the medium. If a TE po- where

larized wave impinges on the periodic medium from the re-
gion z<0, then

W2)=k fOZJn%z')—ﬁZdz', ®)

B=ngsind,, (3)

whereny is the refractive index of the regian<0 andfyis  and one can see thai(z+d)=¢(z)+ (d). For the mag-
the angle of incidence measured from the normal. netic field we seek a solution in the form

Equation(2) with an arbitrary periodic functiom(z) is
the Hill equation. According to Floquet-Lyapunov theory, its H,(2)=—[n%(2) - B1Y*A) (z)exd i (2) ]+ [n2(2)
general solution can be written as a superposition of two
Bloch waves, — B () exd —i g (2)],
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BA)(2) BAC)(2) magnitude of coupling between the two counterpropagating
H(2)= ———exdip()]+ ———— waves(5) due to themth Fourier components of the func-
[n“(2)—pB~] [n“(2)—pB”] tions S*(z).
xexd —i(2)]. @) We can now average over rapid oscillations to obtain from

the exact syster(B) an approximate and simpler set of equa-

After the substitution of expressiors) and (7), Maxwell’s  tions. In practice, the main contribution to the exact solutions
equations, or, equivalently, the wave equati@@), become ©Of Eq. (8) is provided by the slowly varying components of

an identity if the amplitude&\(*)(z) satisfy the system the coefficientsS*(z). It is reasonable to start the analysis
from the so-called Bragg resonancks= mq/(n,, sd), q
dA()(z) ) ) =1,2,3..., of ourperiodic structure, which coincide with
dz =S (A (2), the centers of the forbidden bands in the zeroth approxima-
tion. Now, introducing the detuning, from the gth Bragg
dA()(z resonance
@ s, ®)
o k _ 1 T 4, T T é
where nau,ﬁ—a‘ﬁ' » T 59 %S5y T g%t g
(13
n(z) dn(z) ) . -
S(i)(z = exd +2i y(2)]. (9) we can rewrite Eq(11) in the form
2[n*(2)-p°] dz
(+)(7) =] g(+) (+) pi2m(Mm+q)z/d | 12 8,2
The system(8) is exact. Introducing the phase averaged re- ST2)=] 55 +m;_q Sm '€ e
fractive indexn,, 5= (d)/kd, i.e.,
1 d S(f) Z)= S(7)+ S(f)eiZﬂ'(qu)Z/d efZi‘qu. 14
o= | = 10 @=|s7* &, o (9
0

We see from Eq(12) thats'™) is just the complex conjugate
of s{.) . Therefore, introducing the notatiay, '=s., and a
new set of function8(*)(z) = A*)(z) exp(xi&,2), we obtain

we find that the quantitie§™)(z)exp(+2ikn,, 42) are peri-
odic functions that can be Fourier expanded as

m= 4o from the systen(8) a new one in the form
*) F2ikng, g7 () @i27mzd
S (z)emeime m;w Sm "€ ' ) dB()(z) N i2m(m-q)z/d | p(~
—g; 6B+ Sqt D Spe'2mmm9Zd|B(7)(z),
=+ . . . #
The coefficientss!”) can be expressed in a form which is m
particularly suitable for layered periodic structures with dB)(2)
piecewise continuous(z): Tz—iﬁqBH(z)ﬂL Sq
(+)_ 1 d n(z) dn(z) _
Sm T2d on(z)- g2 dz +r§q ske i2m(m=azd | g(+)(z) (15
Xexr{Zi( + (2) F KNy, pz— Zmz) dz This system is still exact. If alb,d<1 andé,d<1, we can
' d use the method of averaging?2] to obtain an approximate

solution. Further, we will find that this method gives reason-
1 n(z;+0)— B2 able results even in cases where some ofsfe=>1 and/or
;i n nz(z-—O)—,Bz 5qd>1.
J Following Ref.[22], we represenB(*)(z) as a superpo-

. _ ™ sition of slowly varying terms(*)(z) plus a sum of small
X ex;{ 2i ( *Y(z)) FKng, pZj— M7 ) } - (12 oscillatory terms:

The P implies a principal value integral, and the sum over B(")(z)=B(*)(2)+v,(2)B{)(2)+v,(2)BM(2)+- - -,
j=1,2,... takes into account the contribution &%~ of

jumps in the refractive inder(z) at the points of disconti- B()(z)=B)+v*(2)B)(2) +vi(2)B () +- - -,
nuity z; within the period. If a discontinuity im(z) occurs at (16)
the beginning or at the end of a period, we should take this

discontinuity into account only once, say at the beginning ohere the unknown function,(z) is a linear function of
the period. The quantities(z;+0) are the limiting values of ~small quantities ,,d, 54d) in the system(15), v,(2) is bi-
the refractive index(z) to the right/left of a point of dis- linear, and so on. For the slowly varying terfd§")(z) we
continuity z; . Physically, the coefficientsﬁni) represent the have a system

016612-3



MOROZOV, SPRUNG, AND MARTORELL

dB*)(z _ _ _

T()=i6qB(+)(z)+clB(*)(z)+czB(+)(z)+ o
dB)(z _ _ _
T()=—i5qB(’)(z)+c’l‘B(+)(z)+c§BH(z)+ e

7

where the unknown coefficient; is a linear function of
small quantitiess,,d and 64d, the unknown coefficient, is
a bilinear function, and so on. Substituting the soluti®f)
into Eq.(15) and taking into account E@17), we obtain(for
the details see the Appendlix

S S L.
YR 2o f g m—q—o,dim’
and
id s & 2m(m-azd
vl(Z)——ng:,q —m—q—(Sqd/Tr' (19

In the first approximation of smadi,,d and 64d, the func-
tions B(*)(z) are replaced by slowly varying terni=)(z),

which can be found from the system obtained by averaging

Egs.(15) over one period:

dB)(z) = _ —
—q; —198(@2+sB(2),
dB()(2) e =
55 =198 (2+s;BM(2). (20

Therefore, the function8(*)(z) in the first approximation
have the form

B{"(2)=(y,—i8y)Fe "*+s,Ge"?,

B{)(2)=(—s})Fe "2+ G(y;—i18,)Ge"? (21

whereF and G are constants that depend on the boundary

conditions, and

y1(K) = [ s4(k)[2— &2

(22

E@)(z)=

FL(y2—ing) —sgva(2)]e” 7+ G[sq+ (y,—ing)va(2)]€7?*

PHYSICAL REVIEW E59, 016612 (2004

The second approximation to the functioBS™)(z) takes
into account not only the slowly virying ternis“)(z) but
also the first oscillatory terms,(z)B*)(z2) [see Eq.(16)];

and the slowly varying termB(*)(z) themselves should be
calculated in the second approximation, i.e., from the system

dB™)(z) . — _ _
T=|5qB(+>(z)+qu<—>(z)+c28<+>(z),
Bz o « 5@ *B(-)
Tz—léqB (z)+qu (z)+c5BY 7 (2),

(23

rather than from the syste(@0). Therefore, the final expres-
sions for the function8*)(z) in the second approximation
take the form

B (2)=[(y2—imq) —Stvi(2)IFe™ 722+ 54+ (72
—ingv(2)]Ge"?,

BS (2)=[ =St + (y2—i ng)vi (2)]Fe 22+ (yo—ing)
+sqv}(2)]Ger? (24)
with

¥Ya(K) = |sq(K)|2 = 75,

where 7= d4—ic, is a real number.

We can now write the final expressions for the electric
field in terms of two counterpropagating wav@s inside the
periodic structure in the first and second approximations as

(25

F(yi—id5)e "+ Gse”?
(n%(2)- 7)1
. F(—sg)e "+ G(y,—16,)e"*
(nZ(Z) _ ﬂZ) 1/4

il i)~ 5,7

EM(z)=

o= il¥(2)~ 52

(nZ(Z) _ EZ) 1/4

N FL—sg T (v2—ingvi(2)]e "+ G[y,—ing+sqi(2)]e7?*

or in terms of two Bloch wave#4) as

(26)
and
il 42— 5¢7]
e_i[l//(z)_ 5qz], (27)
(n*(2)— %)™
s.e VD=0 1 (v —is Ve ilUD~542
e 7124 G (7199 ent (29

(71— 8q)€!lHD 0 _ g il - o2

EM(z)=F
“ [n2(2)— 621

[n%(z) - 71
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and
[Y2—inq—stv1(2)]eVO A —[s} —(y,~ing)v} (2)]e VA~ %
(n°(z)— B*)"
o [Sat (721 7g)0a(@1eT D4 [y gt s (2)]e 1
[nz(z)_ﬁz]m

e Y2z

E@(z)=F

ere?, (29

From the expression®8) and(29), we easily obtain that in By matched, we mean that the refractive index is continuous
each zone along thk axis m(—3+@)/(n,, zd)<k<m(3  across the exterior boundarieszat0 andz=L, i.e., there is

+0)/(ny, gd) [see Eq(13)] the characteristic index and ~ NO Fresnel reflection from them. As a result, reflection by the

the Bloch phasep in the first and second approximations €ntiré system &z<L is determined only by Bragg reflec-
take the forms tion from the periodic structure itself.

Equation(5) represents a solution of the Hill equati@t)
T _ in terms of right- and left-moving components. Therefore,
a1,2=EQ+|71,2, $1=mq+iy; A (30 the amplitude Bragg reflection and transmission coefficients
for a wave incident on the structure from the left, i.e., from
In forbidden bands, whets,|> |8,/ (first approximationor  the regionz<0, can be found from the expressions
Isq/>|74| (second approximation y; , is a real positive

number. In allowed bands, whe®| <| 8,/ (first approxima- SR i (0
tion) or |sy|<| 74| (second approximationy; , is a purely rB_[nz(o)_ﬁz]mqu (0],
imaginary number:y;=i|y,| if 6,<0 andy;=—i|y,| if
84>0; yo=il|vy| if 7q<0 andy,=—i|y,| if 7¢>0.
In the first approximation, according to Eq&2) and A(L) _
(13), the rightkg and leftk, boundaries of the forbidden tszmexdllﬂ(l-)], (33
band with the centek,= 7q/(n,, gd) can be found from the
equations

under the conditions
kRnau,ﬁ_ mq/d= |Sq(kR)|y

7q/d—K Ny 5=|Sq(k0)|. (31) A (0) .

VA= p=ISo(ko)] o g SHiv(0]=1,
Adding these two equations, we obtain the width of the for- [n*(0)=£7]
bidden band to be

(L)
|sq(kr) |+ [8q(kD)| _[sq(kg)l Lexq—iw(L)]zo (34)
o= Nav,8 =2 Nav.g (32 [n?(L)— B2

wheresq(kq) is the coupling coefficient at the Bragg reso- The first relation in Eq(34) is just a normalization condi-

nance. We will see from the figures that this is a very aCCtion, while the second expresses the radiation principle: no
rate approximation. ’ p principle:

propagation of a left-moving wave in the regiarL. From
these conditions we can find the constaRtand G to be
substituted into expressioii83) for the reflection and trans-

First, we calculate the reflection and transmission coeffimission amplitudes. The final results in the first and second
cients for a wave incident on a matched periodic structureapproximations are

B. Reflection and transmission

—spsinh( ;L)
r= g SN 72~ ,
yicosh{y1L) —idgsinh(yL)

" ,yleiﬂ'Nq

ty’= - - ,
B yicoshyiL)—id,sinh(y,L)

(39

016612-5



MOROZOV, SPRUNG, AND MARTORELL PHYSICAL REVIEW E59, 016612 (2004

@) (=S5 = 2i pqu* +squ*?)sinh( y,L)

® (1 |ul?) yacosh yoL) —i[(1+]u|?) 77— 2 Im(squ* ) Isinh( y,L)

1@ = (1_|u|2)72eiWNq

B = 2 : > P , (36)
(1=[u[?) yacosh y,L) =i[(1+]ul*) 7q—2 Im(squ*) ]sinh(y,L)

whereu=v,(0).

As we have already mentionedl; , is real and positive in forbidden bands and becomes a purely imaginary number in
allowed bands. Therefore, for reflection and transmission in allowed bands it is more natural to use the expressions in terms
of the characteristic indeu; ,, which is a real number in these bands. These expressions follow immediately frorf8%&qs.
and (36), if we take into account Eq30):

) —sgsin(a;L)
B (ay;—mqld)cog a; L) —i dgsin(a; L)’

(@ (a;— qld)e' ™

8 (ay—mg/d)cog a;L) —i S sin(a;l)’ (37)

(—s§ —2i pgu* +squ*?)sin(a,L)

(2)—
(1 uP) (ap— mald)cos agl) L1+ [uf?) mg— 2 Im(su™)Isim L)

(@ (1= |ul®)(az— mq/d)e' ™
° (1—|U|2)(a2— Wq/d)COS(aZL)—i[(1+|u|2) 77q_2 |m(SqU*)]Sin(a'2L) .

(39

For an arbitrary\nonmatchegperiodic structure, the field JIn(D) 2= g2— JnZ= &2
E(z) of a TE polarized wavdl) in the region outside the re= — z ,
periodic structure takes the form VIn(L) 2= B2+ ni-B

E(z)=ek ngfﬁzz_krzefik\/ngfﬁzz, 7<0, - 2\/[n(L)]2—,8?
* VIn(L)1?= B2+ \nZ— B2

(41)

_+ aiky/n2=p2(z-L) -
E(z)=tse™ - zzL (39 are responsible for the reflection and transmission on the

boundaries of the structure. In these formuié8) andn(L)
are the refractive indices of our periodic structure at the
pointsz=0 andz=L.

The expression&5) and(37) for the reflection and trans-
mission coefficients in the first approximation of the semi-
classical coupled-wave theory have the same form as those

whereny is the refractive index of the regia»L. Then, the
amplitude reflectiomy and transmissioty coefficients of an
arbitrary (nonmatchegperiodic structure can be found from
the matrix equation

1\ [ 1o rolto)[ e r/tg|[ s rslts in the conventional coupled-wave theof9,10,16, if we
re] \rolte  Aftg |\ rglts 15 ) \reits 1t take into account the fact that the coupling coefficisiyt
=s,, of the semiclassical theory plays the same role as the
« ty (40 coupling coefficientis;’" of the conventional theory and
0/’ st )=s* plays the same role asis®3". However, the semi-
classical theory even in the first approximation differs from
where the Fresnel coefficients the conventional one in several respects. First, the positions
of the Bragg resonances are differekyn,, zd=mq (semi-
\/ng—,Bz— J[n(0) 2= A2 classical and kq\/sav—ﬂzd.: 7q (conventional. This leads _
Fo=—T— —. to a more accurate determination of the centers of the_ fort_>|d-
Vng—B2+\[n(0)1*-8 den bandk, and, as a result, to a more accurate estimation
of the detuningdy .
PNy ~ Second, the magnitudes of the coupling coefficiag%
to=—"—5— —, in the semiclassical theory are determined by expreg4ign
Vng—B2+\[n(0)1?- 8 rather than bysS°"=ke .,/ (24, — B%) as in the conven-
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n(z) w 2 n T
n =" |In ﬁ)sin ™ . (43
ke mq Nag 1+ngga/nygb
Ne 3 i
n, Lag. b, @2l T e From the transfer matrix method the relative width of the
same forbidden band can be obtained only numeridally
0 d (N-1)d No 2 beit accurately by solving the well-known exact dispersion
relation
FIG. 1. Two-layered periodic dielectric structuiglayer photo- !
nic crysta). cos¢=cog kngza)cod knysb)
tional theory[Heree,, is the average value of the dielectric n§ﬁ+ nﬁﬁ . .
permittivity £(z) over the period of the structure amsg,(m T 2NagNos sin(kngga)sin(knpb) (44)

=1,2,...) is themth Fourier harmonic of this functiohAs
a result, the coupling coefficiens”) of the semiclassical for |cos¢|>1 (the Bloch phasep is complex in forbidden
theory take into account multiwave diffraction by periodic bands.

inhomogeneities of (z) because this periodically modulated  In Fig. 2 we show the reflection coefficient for a two-
function makes its appearance under the integral sign in thigyered periodic structure ®f=8 periods whose layers have
expressior(12), £(z) =n?(z). This is the key point of depar- refractive indicesn,=2.0 andn,=1.5 and thicknessea
ture of our semiclassical theory from the conventional=100 nm ando=250 nm. The structure is surrounded by a
(Kogelnik) one, where only one diffracted wave exp homogeneous medium with refractive index=ngs~+/e,,

(—ik\ea—B%2) [in addition to the transmitted wave =./(nZa+n2b)/d. A TE polarized plane monochromatic
exp(ky/e,, — B22)] was assumed to exist within the periodic wave impinges on the structure at anglg=10°. We see
structure. that for this set of parameters all three approaches are in

Finally, the initial approximations of the conventional good agreement with the results of exact numerical calcula-
coupled-wave theory include neglecting boundary diffrac-tions.
tion, i.e., it is assumed thaty~¢,,~¢5, wheresozng and In Fig. 3 we consider a more demanding situation: a bi-
es=nZ. To calculate the reflection and transmission in othefayer photonic crystal oN=4 periods whose layers have
cases we need to use H40) with e, instead ofn(L) and  refractive indicesn,=1.34 (NaAlFs) and n,=2.6 (ZnSe
n(0) in Eq. (41). and thicknessesa=b=90 nm, placed on a substrate with

As we shall see in the next section, all these drawbacks dis=N,=1.34. These parameters correspond to those in an
the conventional coupled-wave theory lead to obviously in-€xperiment of Chigriret al. [3]. ATE polarized plane mono-
correct results in cases where the first approximation of oughromatic wave impinges on the crystal from thergj= 1 at
semiclassical theory already gives reasonable results. Trgle 6,=45°. We see that conventional coupled-wave
second approximation of the semiclassical theory will givetheory fails completely in the second zone along khexis,
us a good agreemefivithin 10%) with exact numerical re- 5 m/(n,,d) <k<3m/(n,,d), while the first and especially
sults even in the most unfavorable situations. the second approximation of the semiclassical theory work
well for all frequencies of the incoming waves.

In Fig. 4 we further increase the refractive index contrast,
with a bilayer photonic crystal dfl=4 periods whose layers

A. Bilayer photonic crystal have refractive indicesn,=4.6 (tellurium) and n,=1.6

To illustrate the semiclassical coupled-wave theory, wePOlystyreng and thicknessea==800 nm andb=1650 nm,
consider a two-layered periodic medium with real refractivePlaced on a substra_te with,= n?=4.6. Th_ese parameters
indicesn, andn, and layer thicknessesandb such thatd correspond to those in an experiment of Fetial. [2]. ATE

—a+b, as shown in Fig. 1. From the results of the preViouspolarized monochromatic plane wave impinges on the crystal
section. for such a structure we have from the airn,=1 at angled,=80°. Here, only the second

approximation of the semiclassical coupled-wave theory is in
Naga+Npgh good agreement with the exact numerical calculations over
nav,B:Ta the entire frequency range. However, the first approximation
gives reasonable results within the forbidden bands. There-
fore, formula(43) for the widths of forbidden bands remains
a good approximation.
The above figures illustrate the fact that conventional
(42) coupled-wave theory gives reasonable results only for small
angles and small modulation depth#h& n,—n,~0.5) (see
wheren, 5= \/naz’b—,b’2 are the effective refractive indices Fig. 1). The first approximation of the semiclassical coupled-
of the layersn, and n,. As a result, at a given angle of wave theory works well in forbidden bands for a broad range
incidenced, (B=ngsinf) the relative width of the forbid- of incident angles and modulation depths, but it fails in al-
den band around the Bragg resonancéain the first ap- lowed bands for high angles and large modulation depths
proximation can be expressed as (6n=2.0,...,3.0) (see Fig. 4 The second approxima-

IIl. SOME APPLICATIONS OF THE MODIFIED THEORY

. Npg| _. (b
Smd=iIn| — e '™ Msin —[7m+ka(nyz—Nape) ]|,
Nag d
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FIG. 2. Reflection vs frequency for a small angle of incidence in
the first two zones along thle axis, 0<k<5w/2(n,, gd), of the
two-layered periodic structure with small refractive index modula-
tion. The parameters of the structure are as described in (8Xxt.
Conventional coupled-wave theofthick solid ling; (b) first ap-
proximation of the semiclassical thedithick solid ling; (c) second
approximation of the semiclassical thegsguares The exact nu-
merical results are shown in all cases by a thin line.

tion developed in this paper is essentially exact for any prac-
tically achievable modulation depth and angle of incidence.

B. Periodic structure with triangular profile

As a second application of our theory, we consider a pe-
riodic structure with alsymmetrig triangular refractive in-
dex profile. As sketched in Fig. 5, the index of refraction
increases linearly frorm, to n, along the first half of the
periodd, and then returns to, . An electromagnetic wave is
normally (6,=0°) incident upon the structure from the re-

A

1 2

T wr

3 4 145
Frequency, 10  Hz

of refractive index

4

6
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0.21

0 2 4 6 8 10
Frequency, 1014 Hz

FIG. 3. Reflection vs frequency for a moderate angle of inci-
ence in the first two zones along th& axis, 0<k
<57/2(ny, gd), of the bilayer photonic crystal with moderate re-
fractive index modulation. The parameters of the structure are as
described in the text. The lines are as in Fig. 2.

gionz<0. In the case of normal incidence, light polarization
does not play a role, and the results given below are valid for
TM as well as TE waves. In accordance with EG) and
(12), for such a structure we have

ﬂa+ Ny
Nay = 2
Ii+1,
Sm = 2 1 (45)

where

dre ei[k(nb*na)(dfzz)*Zﬂ'm]Z/d
Il_ f

o zFndl2n—ny] 9%
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FIG. 4. Reflection vs frequency for a large angle of incidence in  FIG. 6. Reflection vs frequency for normal incidence in the first
the first two zones along thle axis, 0<k<5m/2(n,, zd), of the  two zones along thé& axis, 0<k<5m/2(n,, zd), of the dielectric
bilayer photonic crystal with large refractive index modulation. The periodic structure with a symmetric triangular profile of the refrac-
parameters of the structure are as described in text. The lines are tige index with large modulation. The parameters of the structure
in Fig. 2. are as described in the text. The lines are as in the Fig. 2.

dz.  (46) =1.3 andn,=4.8, on a period ofl=500 nm, surrounded by
0 z+npd/[2(ng—np)] a homogeneous medium with refractive indeyens=1. In

To illustrate the advant ¢ th tak " Fig. 6 we see that, as before, only the second approximation
o ustrate the advantages ot our theory, we take a SliuCq¢ 1 semiclassical coupled-wave theory is in good agree-

ture of N=5 periods with a huge modulation depth, ment with exact numerical calculations over the entire fre-
n(z) quency range.

_ a2 ei[k(nafnb)(d72z)727rm]zld
| ”= e*lﬂ'mf

n, < IV. CONCLUSIONS

The semiclassical coupled-wave theory has been extended
to the case of oblique incidence for TE waves. The theory
was also extended to second order; it turns out to be essen-
0o d2 d (N-1)d Nd Z tially exact for any achievable refractive index contrast in 1D

photonic crystals. Expressions for the reflection and trans-

FIG. 5. Periodic dielectric structure with triangular profile of the mission coefficients as well as for the bandwidths in the first
refractive index. and second approximations were obtained for one-

Ny LM
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dimensional finite periodic structures. The analytical relationcorresponding expressions fdB(*)/dz anddB(~)/dz can
between solutions in terms of Bloch waves and in terms ohe taken from the syste7). Then, after some algebra, the
semiclassical coupled waves has been established. Applicge|ations(A1) take the form

tions to two types of cells illustrate how the theory can be
used.

The theory presented here provides a convenient way to (Cl+ dv.(2)
derive analytic solutions for waves propagating in one- dz
dimensional periodic structures, solutions that are both rela-
tively simple and essentially exact. The remaining task is to +

—2i5qvl(z)>§<>(z)

dv,(2)

extend the work to the case of TM waves. dz
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APPENDIX: DERIVATION OF THE SECOND dv*(z) o
APPROXIMATION e+ "t (2)|BO(2)+- - -
2 dz 1Y1

As was stated in the main text, in accordance with the
method of averagingsee Ref[22]), we seek a solution of _
the exact systenil5), as a superposition of slowly varying
terms B(*)(z) plus a sum of small oscillatory termdé).
Further, according to this method, there is a simpler system
(17) for the slowly varying terms only.
Let us substitute the solutior{6) into the systen(15).  Extracting from this system those terms which are linear in

S;-i- E Smefi2w(qu)z/d
m#q

X[B™)(2)+v4.(2)B T (2)+-- -1 (A2)

This gives the small quantities,,d and 5,d, we obtain
dB™)  duy, dB) duy—, dB™)
+ —B)+ + g+t 4 +.. dv .
dz Tz tvraz Ta® Ty Cit == —2i801(2) =Sg+ ) Sye'2m(m-aZd,
dZ q a m#q
=i34(B" +0v,B) +p,B 4. )
. _ _ dvy -
+D 5ei2m M DZYB) 4y Bl 4., i+, H2idgi(D)=s5+ > skeizm(m-a)zd
m m#q
(A3)
dB(7)  dvi_ dB(*)  dvi_ dB)
+ ——BH) 4 p* + —2B() 4y 4. - .
dz dz 1 4z dz 2 4z The coefficientc; does not depend on Therefore, the first
o . o of the relationg18) and the relatior§19) follow immediately
=—i6,(BT+0viBM+035B)+. 1) from Eq. (A3). Similarly, extracting the terms that are bilin-

ear in the small quantities,,d and 5,d, and taking into
(A1) account the fact that the coefficietyt also does not depend

+ >, ske izmm=aZd(Bl+) 4 BT 4., ; .
% m ( ! ) on z, we obtain the second of the relatiofis).
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