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ABSTRACT Causal Queries are usually estimated by means of an estimand, a formula consisting of
observational terms that can be computed using passive data. Each query results in a different formula,
which makes estimand-based methods extremely ad-hoc. In this work, we propose an estimand-agnostic
framework capable of computing any identifiable causal query on an arbitrary Causal Graph (even in the
presence of latent confounders) with only one general model. We provide multiple implementations of this
general framework that leverage the expressive power of Neural Networks and Normalizing Flows to model
complex distributions, and we derive estimation procedures for all kinds of observational, interventional and
counterfactual queries, valid for any kind of graph for which the query is identifiable. Finally, we test our
techniques in a modelling setting and an estimation benchmark to show how, despite being a query-agnostic
framework, it can compete with query-specific models. Our proposal includes an open-source library that
allows easy application and extension of our techniques for researchers and practitioners alike.

INDEX TERMS Causality, Structural Causal Model, Causal Query Estimation, Counterfactuals

I. INTRODUCTION AND RELATED WORK

Answering causal queries, such as "What is the recovery rate
when administering the treatment?", traditionally required a
randomized experiment (interventional data), where partic-
ipants are randomly assigned a treatment, thereby measuring
the treatment effect while isolating other causes of recovery.
This is not always feasible (due to ethical or economic con-
cerns, for example), so an alternative approach is required,
which consists of using passively-obtained datasets (obser-
vational data) consisting of samples that were naturally
assigned a treatment depending on other factors combined
with Causal Query Estimators. The theory is well established
([5], [7], [24], [26]) but its practical solutions are too specific
and ad-hoc to the problem and query at hand, which makes
them hard to apply to real-world scenarios. Our work focuses
on defining an alternative general framework capable of
answering any (identifiable) causal queries using one single
model, always trained in the same way.

Let us consider an observational dataset D, consisting of
N i.i.d. samples. Let D be a list of patients with variables: X ,
each patient’s health history; T , whether a certain treatment
was administered; and Y , their eventual recovery. From these
samples we can extract descriptive statistics (observational

queries), such as the recovery rate for the patients that were
given the treatment (P (Y | T = 1)). This is not the same
as the treatment effect on the recovery rate, however, as any
confounding factor in X that affects both T and Y (e.g.,
the severity of the symptoms, which influences the choice
of treatment) would bias the result. Assuming that dataset D
resulted from an underlying Data Generating Process (DGP)
M, which generated its samples, if we also had access to
M, it would be possible to answer interventional queries
such as the aforementioned treatment effect by replicating the
process to impose a forced choice of treatment. Naturally, we
do not have access to the DGP in most real-world scenarios,
but Causal Theory is able to circumvent this problem.

Causal Query Estimation is the field concerned with
defining estimators, i.e. methods to answer Causal Queries
only through observational data. This is tackled from two
different perspectives: Potential Outcomes [27] or Causal
Graphs [23]. We focus on the latter, defining which pairs of
variables are causally connected, resulting in a Causal Graph.
This graph informs which queries can be answered, and the
procedures needed to do so.

From this perspective, when attempting to answer a Causal
Query (be it interventional, "What is the expected survival
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(a) Estimand-based approach: for every identifiable query, derive an
estimand and use it to estimate the query by using data.
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(b) Estimand-agnostic approach: create a model from a graph and
data, and then use it to estimate any identifiable query.

FIGURE 1: Comparison between estimand-based and
estimand-agnostic approaches for Causal Query Estimation.

rate when giving the treatment?", or counterfactual, "What
would my salary be if I were a man?"), practitioners are
presented with a wide range of methods, each concerned
with a particular kind of query and a specific graph structure.
This is due to the fact that most of these methods operate
with an estimand, a formula to transform a causal query
into observational terms that can be estimated with data.
Hence, given a new query, a specific estimand is extracted
and models are defined around it, which is non-trivial for
complex expressions. Since estimands depend on the Causal
Graph underlying the data and the Causal Query to be esti-
mated, estimand-based approaches are extremely ad-hoc:
for every query and every graph structure, a new estimand is
derived and a new model must be trained. Not only that, but
were we to formulate a different query on the same causal
structure, we might need to redefine and train a new model.

In response to this problem, we can consider estimand-
agnostic approaches. These are normally based on the con-
cept of Structural Causal Models (SCMs) [23], which repre-
sent a graph with each variable as a function of its parents
and a noise signal. By learning a proxy-SCM that follows
the same causal structure as the underlying DGP and training
it towards modelling the observational distribution, we can
then use this SCM to answer causal queries, provided that
these are identifiable (that is, reliably estimated only through
the observational distribution). As such, estimand-agnostic
frameworks train once per graph/dataset, and any identifiable
queries can later be answered by that single model. The two
approaches are summarized in Fig. 1.

SCM-based approaches have been studied previously, be-
ginning with Wright’s [38] first SCM, which consisted of
linear equations. However, their modelling capabilities have
typically been limited by simplistic architectures or restric-
tive distributions (e.g., Bernoulli, Normal). Since a proxy-

SCM needs to model the observational distribution of the
underlying DGP in order to correctly estimate causal queries,
this was not a feasible approach for real-world data until
very recently, when the latest advances in density estimation
provided by Deep Learning strategies were adapted to the
field of Causal Query Estimation. Some of such strategies
employ Generative Adversarial Networks (GANs), with ex-
amples including CausalGAN [10] or Variational Autoen-
coders (VAEs), such as CEVAE [15] or VACA [28]. Adopting
a different perspective focused on modelling each node’s
distribution through a network function, we can mention two
parallel works that share some aspects with our techniques.
Pawlowski et al. [22] proposed Deep SCMs (DSCMs), pow-
ered with Normalizing Flows for continuous multidimen-
sional variables, applied to image generation. Xia et al. [39]
followed a similar approach and proposed Neural Causal
Models (NCMs), but their work is concerned with theoretical
aspects of proxy-SCM estimation and is currently limited to
discrete datasets in the examples they provide.

Although these works suggest several avenues for tackling
the problem of estimand-agnostic estimation, we find that
they lack several desirable aspects for such a system. Let
us define the following desiderata for a practitioner-ready,
Deep Learning powered, estimand-agnostic framework:

1) Explicit Likelihood: being able to estimate likelihood
queries (e.g., P (Y | Z)), with or without interventions
or conditioning terms. In addition to estimating like-
lihoods of variables, this also helps with conditional
sampling, as we will see in section III-B3.

2) Latent Confounders: accounting for the existence of
latent confounders, without restricting1 the kinds of
identifiable queries that can be estimated.

3) Counterfactuals: allowing counterfactual estimation,
not only purely interventional queries. This means
enabling abduction of factual variables to propagate
their abducted noise to the counterfactual graph.

4) Expressiveness: providing expressive implementa-
tions capable of modelling complex real-world data.
Finding the appropriate probability distribution for
each and every node can be time-consuming (not scal-
able) or even unfeasible (real-world data need not fit
within any of these families), so a method adopting this
approach would not fulfill the requirement.

5) Scalability: instead of defining a different network for
each node, defining a single network for all variables
at the same time. This limits the number of trainable
parameters in the model for graphs with a large number
of variables, therefore mitigating overfitting.

6) Generality: the method can follow the structure of
arbitrary causal graphs, and its training and estimation
procedures should be immediately applicable. Most
methods derive an expression for each graph and query

1Compiling two confounded variables into a single variable lets us model
them as part of a graph, but prevents us from intervening on only one of
them.
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they want to estimate, instead of defining general pro-
cedures that can adapt to each situation.

With this in mind, we propose Deep Causal Graphs
(DCGs), a general, modular, estimand-agnostic framework,
which fulfills all of the above points, and is therefore ready
for practitioners to use. In order to present our contributions
and explain the differences from previous and parallel works,
we provide Table 1, which lists the items in the desiderata
covered by each method. Together with our proposal (DCG)
we include Distributional Causal Nodes (DCN) [21], our
first contribution to the problem, in which we introduced the
most basic implementation of our approach, later discussed in
section III-A1. We encourage readers to refer back to this list
once the full technique has been presented, as the reasoning
behind each item will be clearer.

It is worth noting that only DSCMs provide a method
for computing the explicit likelihood of a sample (given
an invertible-explicit implementation for its nodes). Latent
Confounders are only covered in CEVAE (the latent space)
and NCMs, whereas VACA proposes collapsing variables af-
fected by the same latent confounder as a multidimensional,
heterogenous node, which limits the kinds of queries the
model can answer. Counterfactuals are only discussed in
VACA and DSCM; the NCM paper talks about the third rung
on Pearl’s Ladder of Causation [24], the counterfactual level,
but focuses on purely interventional queries P (Y | do(X))
in the examples given. Regarding expressiveness, we say
that CEVAE and NCM are not expressive enough in the
implementations that they provide, since they require the
assumption of a certain probability distribution in modelling
each node rather than a more flexible alternative, such as the
Normalizing Flows used in our own approach or DSCMs.
With respect to scalability, every method except for VACA
requires defining a separate network for each node, which
leads to overfitting on larger graphs. Finally, in relation to
generality, we say that CausalGAN and CEVAE are not gen-
eral since the former requires the definition of a discriminator
and two labeller networks for the GAN node, which it is not
clear how to extend when modelling more than one node
with GANs. Also, the latter defines a specific architecture
for the particular kind of graph the authors work with, with
no indication of how that structure would change with other
kinds of graphs. As for our initial proposal, DCNs, we did not
cover either the latent confounder case or counterfactual es-
timation, focusing instead on an implementation very similar
to the one later found in NCM, which limited expressiveness.
Neither did we use our new Graphical Conditioner (see
section III-C), which affected scalability.

Furthermore, none of these methods provide an algorith-
mic solution for estimating general queries, leaving the
derivation to the reader, which is not trivial in some cases.
We devote section III-B to this problem, covering observa-
tional/interventional/counterfactual sampling, likelihood and
expectation queries, all with or without a conditioning term.
We also provide an open-source library with all of our im-
plementations ready for practitioners to use and researchers

to extend. This library and all the experiments in this work
can be found at https://github.com/aparafita/dcg_supp.

In summary, the contributions of this work are as follows:

1) The definition of a general, modular, estimand-agnostic
framework, along with its training and estimation pro-
cedures, encompassing many kinds of Causal Query
Estimation problems.

2) The specification of a Normalizing Flow imple-
mentation2 for this framework, which allows us to
model complex continuous distributions, while flexible
enough to adopt any advances in the topic.

3) The implementation of a complete open-source library
containing all techniques described in the paper.

II. BACKGROUND
In this section, we will define Structural Causal Models, the
main structure on which we base our framework, the concepts
of intervention and counterfactuals, and the problem of iden-
tifiability in Causal Queries, which is essential to the validity
of our estimations.

A. STRUCTURAL CAUSAL MODELS
We define a Structural Causal Model (SCM) as the tuple
M = (V, E ,U ,P,F) with:

1) V = {Vk}k=1..K measured variables, from which we
have observed samples in our dataset.

2) E := {Ek}k=1..K exogenous noise signals, one for
each Vk, which provide stochasticity to the otherwise
deterministic functions fk ∈ F .

3) U ⊆ {U{k,l}}k,l=1..K, k ̸=l latent confounder variables,
for which we do not have any samples, but correlate
pairs3 of measured variables Vk, Vl.

4) P(E ,U) prior distribution for both sets of latent vari-
ables. E and U are mutually and internally independent:
P(E ,U) =

∏
E∈E P(E) ·

∏
U∈U P(U).

5) F := {fk | Vk := fk(Pak, U{k,.}, Ek)}k=1..K func-
tions describing the relationship between each variable
Vk ∈ V and its corresponding Ek, its confounders
U{k,.} and its parent set Pak ⊂ V \ {Vk}.

Let us denote Pa′k := Pak ∪ U{k,.}, the set of all
parent values (including confounders U{k,.}) of node Vk. The
relationships between the inputs in each fk and the resulting
variable Vk define a directed graph structure GM = (N,E)
with nodes N := V ∪ E ∪ U and edges E connecting every
input-output in F , E := {X → Vk | ∀X ∈ Pa′k ∪ {Ek}}k.
In this work, we focus on SCMs M with graphs GM, which

2Although this technique coincides with Pawlowski’s [22], we proposed
it simultaneously [20] on a non-archived paper that precedes this work.

3 This definition of SCMs limits its structure to latent confounders that
are root nodes with exactly two children. Tian et al. [34] show that for
arbitrary latent confounders (e.g., non-root latent confounders in between
measured variables, or root confounders with more than two descendants) we
can project them onto a new set of confounders that follows our restriction.
This projection preserves the set of independences between the measured
variables; therefore, it does not preclude the set of queries we can compute
from the model, nor their validity.
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TABLE 1: Desiderata for an estimand-agnostic Causal Query Estimation framework.

METHOD EXPLICIT LIKELIHOOD LATENT CONFOUNDERS COUNTERFACTUALS EXPRESSIVENESS SCALABILITY GENERALITY

CAUSALGAN [10] ✗ ✗ ✗ ✓ ✗ ✗
CEVAE [15] ✗ ✓ ✗ ✗ ✗ ✗
VACA [28] ✗ ✗ ✓ ✓ ✓ ✓
DSCM [22] ✓ ✗ ✓ ✓ ✗ ✓
NCM [39] ✗ ✓ ✗ ✗ ✗ ✓

DCN [21] ✓ ✗ ✗ ✗ ✗ ✓
DCG ✓ ✓ ✓ ✓ ✓ ✓

(a) (b)

FIGURE 2: Example of an SCM. We normally omit variables
in E (they are considered implicit) and latent confounders U
are represented by dashed bi-directional edges between both
affected variables. The explicit, unfolded representation (a)
is usually summarized by means of the implicit graph (b).

are Directed Acyclic Graphs (DAGs). Henceforth, we as-
sume that our DAGs list their measured variables V following
a topological order of the graph (Vi ∈ An(Vj) → i ≤ j, with
An(X) the set of ancestors of X including X).

By way of example, let us define an SCM M with vari-
ables Rain (Z, "Has it rained in the last 24 hours?"), Sprinkler
(X , "Did the user activate the sprinkler yesterday?") and
Wet (Y , "Is the grass wet?"). There is a confounder between
Rain and Sprinkler that has not been measured (and hence is
latent), called Weather (U{Z,X}), which affects both rain and
the probability of activating the sprinkler. The resulting graph
G is the one in Fig. 2a. We normally omit exogenous noise
signals E from the graph, since every observable variable
implicitly has its own, and latent confounders are represented
by a bi-directed dashed arrow between both affected nodes.
Fig. 2b shows the corresponding implicit graph.

An SCM describes a sampling procedure through its
latent priors P and its functional relationships F . We take
a sample (ε, u) ∼ P(E ,U), and then progressively apply
each function fi ∈ F to generate a new value for Vi. Since
V follows a topological order of the graph, each function
fi already has its inputs (pai, u{i,.}, εi), and can therefore
deterministically generate a new value vi for Vi. In other
words, F is a functional from random variables (E ,U) to
V; the result of this is called the observational distribution
P(V).

Due to the SCM’s structure, the observational distribution
P(V) fulfills the Parental Markov Condition [23] w.r.t.
graph GM, which means that every variable Vk is indepen-
dent of all its nondescendants conditional on its parents Pa′k.
Consequently, given the variables in V in topological order,

P (V,U) =
∏

k=1..K

P (Vk | V<k,U) P (U) =∏
k=1..K

P (Vk | Pa′k)
∏
U∈U

P (U),
(1)

with V<k := {V1, . . . , Vk−1}.

B. INTERVENTIONS
The concept of interventions entails editing the model M
by changing some of its functions F . The most basic kind
of intervention is the atomic intervention, which replaces the
functions of a set of variables X ⊂ V by some constant value
x, denoted by do(X = x). As a result, for each X ∈ X, the
function fX becomes fX := x. This creates a new SCM, the
intervened model Mx, with an altered set of functions Fx;
note that the corresponding intervened graph GMx cuts any
edges pointing towards nodes in X.

Other kinds of interventions define new functions fX ,
which do take inputs from other variables. For example, a
movie recommender could be modelled as an intervention
on the exposure of a movie to a user by defining a new
function with information about each movie as its inputs.
In this case, the intervened graph replaces the edges leading
to exposure by new edges connecting to the inputs of the
new function. In the following sections, we will operate with
atomic interventions only; any of our procedures should be
reevaluated for other kinds of interventions, which we will
leave for future work.

C. COUNTERFACTUAL PARALLEL WORLDS
A counterfactual is the hypothetical result that an interven-
tion may have on an individual for whom we have already
observed a different factual outcome. For example, we mea-
sured a certain blood sugar level on a patient who was not
treated and we want to know what the blood sugar would
have been had they taken the treatment. This parallel world
where certain variables are intervened upon and consequently
result in a different outcome is what we call the counterfac-
tual world.

Returning to the previous example in Fig. 2, let us describe
a certain sample v = (z, x, y), where we observe that the
grass is not wet (y), even though it did rain (z) yesterday,
but the sprinkler (x) had not been turned on. Knowing this
factual observation gives us insight about the latent variables
(maybe it was a particularly hot day after the rain and the
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water had evaporated since); we extract that information by
computing P (E ,U | v), a process called abduction. We then
study what effect a new intervention, turning the Sprinkler
on, would have had on the eventual outcome variable, Wet,
knowing the posterior state of the latent variables thanks
to the factual observations. This results in a prediction of
that counterfactual outcome, which lets us answer the query
"Would the grass be wet had we turned the sprinkler on,
knowing that it is dry now, and that it did rain yesterday
but we did not turn the sprinkler on?". The three-step pro-
cess described above, abduction-intervention-prediction, is
the counterfactual process defined by Pearl [23], which lets
us consider this kind of hypothetical causal query.

Counterfactuals are essential for explainability applica-
tions [36]: knowing the effects that certain interventions
would have had in contrast with the factual outcome we
observe allows us to study the effect of these variables not for
the general case, but for particular individuals. "How would
my salary change had I been a man?" is an example of a
counterfactual query, where the interest is not on actually
applying the intervention, but in finding the reasons behind
a certain outcome, or even the fairness of a decision [11].

Note that in the previous example, given the original
SCM M, the counterfactual query consists of estimating an
intervention on a slightly modified SCM Mv,do(X=x′) :=
(V, E ,U ,P(E ,U | v),Fx′) with the latent priors conditioned
on the observed variables v and the functions F affected by
do(X = x′). However, this notation is ambiguous, as the
variables in V are duplicated between the factual and coun-
terfactual model, and it is essential to distinguish between the
two in order to derive the proper expressions.

An alternative notation is the so-called Parallel Worlds
Graph [32]; we extend the original SCM M with a second
one, with every variable in V replicated (normally denoted
by a subscript with the intervention value, e.g., Yx′ ) but with
every variable in E and U shared between the two. As an
example, consider Fig. 3; in this graph, EY points towards Y
and Yx′ . Normally, any intervened variable (X) does not ap-
pear in the counterfactual world (they are constant variables,
given atomic interventions); also, any duplicated variables
with the exact same parents should be fused together as one
(Z = Zx′ , since both share U{Z,X} as the only parent and
fZ as their functional assignment, therefore having the exact
same distribution). For clarity, even though this is not shown
in the example graph, we should proceed with it in mind.

When we talk about counterfactuals, we normally condi-
tion on some factual outcome v = (z, x, y) and query the
variables in the counterfactual world subject to intervention
do(X = x′). Therefore, to bridge the gap between both
worlds, we must compute the posterior for every latent vari-
able in E and U ; specifically, EY ’s prior changes, which
affects the counterfactual variable Yx′ . Note that Zx′ is not
affected by the intervention, since it is an ancestor of X ,
which is why we would normally fuse it with Z.

FIGURE 3: Parallel World Graph example. Based on the
graph from Fig. 2, we construct two subgraphs, the factual
(up) and the counterfactual (down), linked by all latent vari-
ables. To better convey the "parallel world" concept, here we
do not remove Xx′ or fuse Z and Zx′ .

D. IDENTIFIABILITY
Given a finite i.i.d. dataset D = (v(i))i=1..N for measured
variables V , we can safely assume that an underlying SCM
M generated our dataset. We may not know the functional
relationships F nor the latent priors P that define this SCM,
but finding the graph GM is feasible, either by experimental
testing or by using causal discovery algorithms [33]. This
paper does not focus on finding this graph structure, instead
assuming it is already known. In the following sections, we
assume that our datasets D come from an underlying SCM
M from which we only know the causal graph GM, and that
its observational distribution P(V) > 0 in all its domain.

Consider a query Q(.), which depends on an SCM M
(e.g., Q(M) := E [Y | do(X = x)]). Based on an i.i.d.
dataset D generated with an underlying M, we want to find
an estimator of Q(M). Our approach consists in defining a
proxy SCM M′ with equivalent graph GM′ = GM and
observational distribution PM′(V) = PM(V); then, we
will answer the query with M′ as if it were the underlying
M. Can we use Q(M′) as an estimator of Q(M) if the
functions in FM′ or the priors PM′(E ,U) are not the same
as the ones in M? Yes, but only if the query is identifiable.

Let us define the class of models M(M) consisting of
all SCMs M′ such that GM′ = GM and PM′(V) =
PM(V). We say that a query Q is identifiable in M(M) if
∀M′ ∈ M(M), Q(M′) = Q(M). This can be proven by
finding an estimand for Q [23], a formula consisting of only
observational terms (involving only the measured variables
V without interventions). If it exists, then both M and M′

would output the same result for that estimand, since they
share the same causal structure (hence the estimand applies
for both models) and observational distribution P(V) (hence
each term in the formula returns the same results).

Queries can be proven to be identifiable (or not) by
automatic algorithms: interventional queries (with or with-
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out a conditional) are covered by [31] and [30], and coun-
terfactual queries by [32]. These algorithms either provide
an estimand, proving identifiability, or prove it cannot exist,
proving non-identifiability. Note that we only need to prove
the existence of an estimand; if it exists, the query is iden-
tifiable and we can discard the estimand and estimate the
query with our proxy SCM directly. See [35] or [25] for
implementations of the first two algorithms in R and Python,
respectively.

In conclusion, given a proxy SCM M′ with the same
causal structure as GM and the same distribution PM(V)4,
if a certain query (interventional or counterfactual) is iden-
tifiable, we can estimate it with M′ as if we were using the
original underlying M. Note that our model need not have
the same functions F nor latent priors P(E),P(U), only that
PM′(V) = PM(V). More importantly, we do not need the
estimand that proved the query’s identifiability, as the SCM
itself can estimate the query.

III. DEEP CAUSAL GRAPHS
In this section, we describe our framework: Deep Causal
Graphs (DCGs). Our aim here is two-fold: 1) to define the
architecture of our DCG models M, by means of which
we can flexibly model complex real-world data distributions
P(V) while also complying with the required graph structure
G; and 2) to define the procedures with which we can estimate
these queries. We begin by defining the smallest building
block, Deep Causal Units, and continue by discussing the
training of DCGs and their corresponding estimation proce-
dures. We finish the section with the Graphical Conditioner,
which allows us to train every node with a single network
at once, thereby preventing overfitting the model when the
number of nodes increases.

A. DEEP CAUSAL UNIT
A DCG is an SCM where every variable/node Vk in V is
modelled by a submodule, called the Deep Causal Unit
(DCU). Each DCU can be understood as a subnetwork with
trainable parameters that models the distribution of its own
node conditioned on its parents, P(Vk | Pa′k), while provid-
ing functionality for three distinct operations:

1) Sample, generating samples from P(Vk | Pa′k) by
taking a value ϵk ∼ P(Ek) and passing it through the
function fk modelled by the node.

2) Loglk, computing the log-likelihood log p(vk | pa′k)
corresponding to the random variable Vk that results
from using fk as the sampling operation. This oper-
ation must be differentiable w.r.t. the distribution’s
parameters Θ, as it will employed to compute the
training loss for the overall DCG.

3) Abduct, sampling from the posterior P(Ek | Vk, Pa′k).
This is required for counterfactual estimation.

4Note that we can never expect to achieve a perfect match between
our SCM’s PM′ (V) and the real underlying distribution PM(V). This
miscalibration has an effect on the eventual estimations we perform with
the model; an analysis on this topic is left for future work.

Note that this definition of the DCU requires that every
node in the graph defines its own subnetwork (the Condi-
tioner), which would not scale when the number of variables
is too high. Alternatively, we can employ the Graphical Con-
ditioner, discussed in section III-C, which encompasses every
node’s network into a single network, thereby bypassing the
problem. For clarity of explanation, we will proceed as if we
defined a specific network for each node; when we explain
the Graphical Conditioner, we will see how this is simply an
abstraction for a single all-encompassing network.

In the following subsections III.A-D, we will cover four
possible implementations of this specification, each with its
use cases. As long as they can execute these three operations,
they are DCUs and can be integrated within the overall DCG
framework.

1) Distributional Causal Nodes
The most basic implementation for DCUs is the Distribu-
tional Causal Node (DCN), first proposed in [21]. Here, we
assume that each random variable (Vk | Pa′k) behaves like
a known parametric distribution family (e.g., the Exponential
distribution) with parameters Θ. These parameters come as
a function of its parents Pa′k (Θ := Θ(Pa′k)), which we
model with a feed-forward network and pertinent activation
functions for each parameter depending on its domain (e.g.,
a softplus function for σ > 0, or a softmax for (pk)k=1..K so
that

∑K
k=1 pk = 1); this network is the DCN’s Conditioner.

Since we know the distribution family, we can use the
corresponding log-likelihood (op. 2) formula; the only re-
quirement is that it is differentiable w.r.t. Θ. For sampling
(op. 1), differentiability is desirable5 but not necessary; we
just need to define a certain prior for EX independent
to Θ and a deterministic function that transforms samples
εX ∼ EX into samples x ∼ P (X | Pa′X). This can be
done by using the reparametrization trick [9] or with inverse
transform sampling (εX ∼ U(0, 1), x := F−1

Θ (εX), with FΘ

the CDF of X(Θ) = (X | Pa′X)). Finally, abduction (op.
3) needs to sample values from P (EX | X,Pa′X). If the
sampling operation is invertible, this distribution is constant
and we just invert the formula; otherwise, we need a different
strategy, discussed in the following two paragraphs. Table 2
contains the specifications for several continuous and discrete
distributions.

As an example of a more involved abduction process, con-
sider the Bernoulli/Categorical distribution. For sampling, we
need K i.i.d. Gumbel values to use the Gumbel-argmax trick,
which allows samples to be generated differentiably w.r.t.
parameters p; this, however, results in a non-injective sample
function. Nonetheless, abduction is still possible: given the
observed category k′ (x = k′) and pa′X , which gives us
Θ = (pk)k, we sample gk′ ∼ G(0, 1) and based on this value,
we sample the remaining K − 1 values from G(log pk, 1)

5We could define alternative training methods, such as Adversarial Train-
ing, if all sampling operations in each DCU were differentiable w.r.t.
Θ; however, given a differentiable loglk operation, Maximum Likelihood
Estimation (our main training method) will always be applicable.
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TABLE 2: DCN specification for several continuous and discrete distributions: Normal N , Exponential Exp, Asymmetric
Laplace ALD, Beta B, Truncated Distribution X(Θ) to interval (a, b), Categorical Cat and Poisson. These distributions are
already implemented in our library; this table is merely to illustrate how they are defined as DCNs.

Distr(Θ) EX PRIOR SAMPLE: x ∼ P (X | Θ(pa′X)) LOGLK: log p(x | Θ(pa′X)) ABDUCT: ε ∼ P (EX | x,Θ(pa′X))

N (µ, σ) N (0, 1) x← σ · ε+ µ − 1
2
(log 2πσ2 +

(x−µ)2

σ2 ) ε← x−µ
σ

Exp(λ) U(0, 1) x← − log ε
λ

log λ− λx ε← exp{−λx}

ALD(µ, λ, κ) U(0, 1)
ε← ε(κ+ κ−1)− κ

s← sign(ε)

x← µ− 1
λsκs log(1− εsκs)

s← sign(x− µ);

log λ
κ+κ−1 − (x− µ)λsκs

s← sign(x− µ)

ε← (1− e−(x−µ)λsκs
)sκ−s

ε← ε+κ
κ+κ−1

B(α, β) U(0, 1) x← PPF (ε, α, β) logPDF (x, α, β) ε← CDF (x, α, β)

X(Θ | X ∈ (a, b))

εa := CDF (a,Θ)

εb := CDF (b,Θ)

U(0, 1)
ε← ε(εb − εa) + εa

x← PPF (ε,Θ)
log

PDF (x,Θ)
εb−εa

ε← CDF (x,Θ)

ε← ε−εa
εb−εa

Cat(p1, · · · , pK) G(0, 1)K x← argmaxk(log pk + ϵk)
∑

k xk · log pk

k′ ← argmaxk xk

εk′ ∼ G(0, 1);
∀k ̸= k′, εk ∼ G(log pk, 1)

∀k ̸= k′, εk ← − log(e−εk + e−εk′ )

∀k, εk ← εk − log pk

Poisson(λ) U(0, 1) x← min{n |
∑n+1

k=0
λk

k!
> eλε} x log λ− λ−

∑x
k=1 log k ε ∼ U(e−λ

∑x
k=0

λk

k!
, e−λ

∑x+1
k=0

λk

k!
)

truncated by the previous gk′ . Finally, we transform these
g values back to a G(0, 1) so as to decouple them from the
parameters log p. See [16] and [17] for more details.

In the case of the Beta distribution, we cannot find a
reparametrization formula that allows for abduction. How-
ever, inverse transform sampling will always cover these
two operations and allow the distribution to be applied to a
DCN, as long as we can compute its log-likelihood differ-
entiably w.r.t. Θ and we have algorithms for its Percentile
Point Function (PPF) and Cumulative Distribution Function
(CDF), one inverse of the other. With these, we can transform
from our X to U(0, 1) and back. This general strategy is
applicable to a number of other distributions, and even allows
for distributions X truncated to intervals (a, b) (possibly
infinite) as long as its CDF is differentiable w.r.t. Θ: we
compute the CDF of its extremes εa, εb and use them on all
three steps of the DCU, as shown in the table.

In summary, DCNs are general, expressive DCU imple-
mentations that encompass a wide array of distributions.
None of the following DCUs work for discrete distributions,
so DCNs are the de facto DCU in these cases. However,
for the continuous case, the requirement to specify a certain
distribution family for each variable does not scale in graphs
with many nodes; it can also be too restrictive, as a known
family might not fit real world data. To avoid these problems
of scalability and expressiveness, we propose an alternative
DCU implementation in the following subsection. However,
when dealing with simpler distributions or a small number of
training samples, DCNs are still a good option.

As a final note, if we wanted to use a linear SCM
embedded in the DCG framework, this would be possible

with DCNs, by forcing every node’s Conditioner network to
be a simple Linear layer with appropriate activations. This
means that every procedure described in section III-B is also
applicable to the linear case. However, we must be sure that
such a restrictive architecture is capable of modelling P(V);
otherwise, its estimations would not be reliable.

2) Normalizing Causal Flows

A different strategy for continuous distributions is the use
of Conditional Normalizing Flows, which are density es-
timation methods based on defining an invertible function
between two random variables X and E, given conditioning
Z, E = f(X | Z). For our purposes, X := Vk, E := Ek

and Z := Pa′k. Then, we can define Normalizing Causal
Flows (NCF), a flow-based DCU implementation: 1) sample
consists of obtaining a value ϵk ∼ P(Ek) (with P(Ek)
predetermined by the flow) and then vk := f−1

k (εk | pa′k);
2) loglk comes from the flow’s log-likelihood procedure; 3)
abduct outputs values by applying f directly: ϵk = fk(vk |
pa′k).

The function fk is normally defined as the conjunction
of a Transformer (the actual function fk, which depends
on some parameters Θ) and a Conditioner (a network that
takes the conditioning values as input and outputs Θ, used
by the Transformer to transform X into E). See [18] for an
extensive survey on the subject. Note that this description of
the DCU does not impose any restrictions on the Transformer
operation, and for unidimensional variables (as is the case for
most nodes in a causal graph) the Conditioner need not have a
particular architecture. As such, we can use any Transformer
architecture from the literature and it will work like any
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other DCU in the overall DCG framework; this allows us to
leverage any advances in the field for our models, which is
essential in properly modelling the desired P(V).

For multi-dimensional variables, the Conditioner might
require special restrictions (e.g., an autoregressive structure,
coupling layers, etc.). If that is the case, we can isolate the
Conditioner for this variable as a separate network, leaving
the overall Graphical Conditioner for the rest of V; as a result,
we can use highly specialized networks for complex nodes,
while leaving the general Conditioner, which is less prone to
overfitting, for simpler nodes.

3) Mixture DCU
An interesting finding is that mixtures of any DCU imple-
mentation are themselves valid DCUs. Let us consider a
node X , with parents Pa′X , and assume we have K DCU
implementations (X(k))k=1..K for X (not necessarily homo-
geneous), each with its own E(k) and likelihood function
f (k). Let us define an additional noise signal (A | Pa′X)
modelled with a Categorical distribution with probabilities
p := (p(k))k=1..K dependent on Pa′X . We can now define
their K-mixture:

• Sample. Generate a ∈ {1, . . . ,K} ∼ P(A | Pa′X).
This can be done with Gumbel sampling, as in the
Categorical-DCN implementation. Then, given the cor-
responding k resulting from that Categorical, we sample
from the kth DCU component (X(k) | Pa′X) as usual.

• Loglk. We only need the likelihood of a mixture:

log f(x | Pa′X) = log
∑

k=1..K

p(k)f (k)(x | Pa′X) =

log
∑

k=1..K

exp (log p(k) + log f (k)(x | Pa′X)).

The log-sum-exp trick is used for numerical stability.
• Abduct. With a Mixture Node, our exogenous variables

are A and (E(k))k=1..K , so we need to sample from
P (A, (E(k))k | X,Pa′X), but we do not know which
component X(k) generated X . However,

P (A, (E(k))k | X,Pa′X) =

P (A | X,Pa′X)P (E(A) | X,Pa′X , A)
∏
k ̸=A

P (E(k)).

Given a value for A, we can independently sample from
every other E(k), k ̸= A and only abduct with the A-
th component P (E(A) | X,Pa′X , A). The remaining
P (A | X,Pa′X) is solved by conditional sampling:
generate N i.i.d. samples from (A | Pa′X) and then
use weights s(logP (X | Pa′X , a)), s being the softmax
operation. Refer to section III-B3 for more details.

Mixture Nodes can be used to empower more restrictive
DCUs (DCNs, in particular, benefit from this). By way
of example, we can define Gaussian Mixtures with this
technique using the simple Gaussian-DCN implementation.
Additionally, it is possible to create mixtures from models
trained with different splits in a Cross Validation setup; this

helps in datasets with a limited number of training samples,
as the validation set in one split can also be employed when
training the rest. We will elaborate on this point in section
IV-B.

4) Compound DCUs
A natural extension to Mixture DCUs is the Compound
DCU. A Compound distribution is a parametrical distribution
X dependent on parameters Θ that are themselves random
variables with prior P(Θ). As a result, X is an uncountable
mixture, P(X) =

∫
P(X | Θ)P(Θ) dΘ, with every

possible value for Θ describing a different component with
a certain likelihood of being selected. This DCU generalizes
the work in [1], which proposed a similar implementation for
uncountable mixtures of Asymmetric Laplace Distributions.

We will assume the components of this mixture to be
homogeneous. Each subcomponent is defined by the same set
of parameters Θ, which in turn are computed with a network
that takes its parents’ values as input, Θ := Θ(Pa′X).
However, to model the uncountable mixture with a single
network, what we do instead is extend the corresponding
exogenous signal EX with a second source of stochasticity:
EX := (E′

X , E′′
X), where E′

X follows the usual role in the
DCU implementation and E′′

X is not used for the sampling
operation, but rather employed in computing the parameters
Θ := Θ(Pa′X , E′′

X). Given any arbitrary prior for E′′
X (e.g.,

E′′
X ∼ N (0, 1)), using it in the Conditioner network as

an additional input adds a source of stochasticity to the
parameters’ computation, which results in an uncountable
mixture of DCUs.

The simplest way to implement this technique is to create
an additional latent variable E′′

X for every node X that we
want to model as a Compound DCU; this latent variable
only affects its corresponding X (it is not a confounder). The
result is a DCU, since:

• Sample. We take a value ε′′X ∼ P(E′′
X), compute the

parameters ΘX := ΘX(Pa′X , E′′
X) and then apply the

DCU’s sample operation for X as usual.
• Loglk. We compute log-likelihoods with X’s loglk op-

eration, but marginalized over E′′
X :

log f(x | Pa′X) =

logEE′′
X |Pa′

X
[f(x | Pa′X , E′′

X)] =

logEE′′
X
[exp log f(x | ΘX(Pa′X , E′′

X))].

Note that E′′
X ⊥⊥ Pa′X (since X acts as a collider). We

also use the log-sum-exp trick for numerical stability.
• Abduct. As with the Mixture DCU, the downside to this

method is that we cannot invert the ε′′X that generated
ΘX and the corresponding x. However:

P (E′
X , E′′

X | X,Pa′X) =

P (E′′
X | X,Pa′X)P (E′

X | X,Pa′X , E′′
X).

The first term is covered by conditional sampling again,
generating N i.i.d. samples from P(E′′

X) (note that
E′′

X ⊥⊥ Pa′X ) using weights s(logP (X | Pa′X , ε′′X))
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as before. The second term comes directly from the
internal DCU abduction, as ΘX = ΘX(Pa′X , ε′′X).

This technique allows us to reach the most general form of
the parametric approach (DCNs). With just one component,
we can implement unmeasurable mixtures of components by
moving the stochasticity of the mixture to this additional
noise signal, introduced as a new input to the parameter’s net-
work. In the example in section V, we will see the potential
of Compound DCNs, especially for small datasets. However,
note that this technique can be applied to any other kind of
DCU, as it makes no assumptions about its internal structure.

B. DCG PROCEDURES
In this subsection, we will detail all DCG procedures needed
for model training and query estimation. In the following
equations, when referring to a subset of variables V ⊂ V
or E ⊆ E , let Vc := V \ V, Ec := E \ E. Let us also
denote EV := {EV ∈ E | V ∈ V} (then Ec

V := E \ EV).
We will operate with the Parallel Worlds Graph model [32]
described in section II-C, where we replicate all variables in
V to the new counterfactual world Vx subject to intervention
do(X = x), with only E and U being shared. This allows
us to distinguish between expressions like P (Yx | Z) and
P (Yx | Zx) (pre- and post-intervention conditionals).

1) Observational and Purely-Interventional Queries
First and foremost, we define the training objective.
DCGs can be trained through Maximum Likelihood Esti-
mation: if there are no latent confounders (U = ∅), then
logP (V) =

∑
V ∈V logP (V | Pa′V ); otherwise, we can

marginalize over U : logP (V) = logEU [P (V | U)] =
logEU

[
exp

∑
V ∈V logP (V | Pa′V )

]
. This expectation can

be approximated by sampling N i.i.d. values from our SCM’s
prior P(U). The use of logarithms helps with numerical
stability, and we also use the log-sum-exp trick for the latter
case. Each of the terms logP (V | Pa′V ) can be estimated
with each DCU’s loglk operation, which is required to be
differentiable w.r.t. the network’s parameters. This allows us
to optimize the model M, with a view to maximizing the
average log-likelihood of an i.i.d. dataset D taken from the
underlying distribution P(V) that we wish to model.

Secondly, we develop the sampling routine to generate
samples v ∼ P(V). To this end, we sample values ε ∼ P(E),
u ∼ P(U) from their respective priors, and, for each node
V ∈ V , following a topological order of the graph, we
use its sample operation, passing its parents’ values (which
may include subsets from u) and its exogenous noise signal
εV . This generates values v, which follow the DCG’s P(V).
Additionally, to sample from P(Vx) (V in Mx, subject to
do(X = x)), we employ the previous procedure on the
intervened model Mx, replacing each fX by X := x for
all X ∈ X.

Next, we study how to estimate log-likelihoods of subsets
V ⊂ V . Note that logP (V) = logEEc

V,U [P (V | Ec
V,U)] =

logEEc
V,U

[
exp

∑
V ∈V logP (V | Pa′V )

]
. Each term comes

from the DCU’s loglk operation and its parent values result

from applying the previous sampling procedure to fill any
variables in Vc. We can also compute conditional queries,
simply by realizing that P (V | Z) = P (V,Z)

P (Z) , both of these
terms are computable with the previous procedure. Then, in
the presence of interventions do(X = x), we can simply con-
sider the intervened model Mx to answer the aforementioned
kinds of queries, either P (Vx) or P (Vx | Zx).

Finally, let us consider expectation queries EV [f(V)]
for arbitrary functions f . These can be estimated using
Monte Carlo by taking N i.i.d. samples from V with
the methods detailed above and then averaging the result-
ing samples (f(v(i)))i=1..N to estimate the expectation.
For conditional queries, in the form EV|Z [f(V)], we can
use importance sampling to solve this, as in the previous
case. Note that EV|Z [f(V)] = EV

[
f(V) · P (V|Z)

P (V)

]
=

EV

[
f(V) · P (Z|V)

P (Z)

]
, so we can sample N i.i.d. (v(i))i=1..N

values as before and perform a weighted average6 of
terms (f(v(i)))i=1..N with corresponding weights w(i) :=
s(logP (Z | v))(i), with s being the softmax operation.
This last step will henceforth be referred to as the softmax
trick. Lastly, any of these queries subject to an intervention
do(X = x) (if conditional, the conditioning Z is post-
interventional, Zx) are treated as previously, considering the
intervened model Mx.

2) Counterfactual Queries

In this section, we will cover counterfactual expectations.
Although we employ the 3-step process (abduction, interven-
tion, prediction) described by Pearl in [23], we derive the
formula to describe where abduction should take place and
how DCU operations help perform the desired estimation.

Let us consider the query EVx|Z [f(Vx)]. Note that set
Z ⊂ V might not contain some variables in V (Zc ̸= ∅),
and the abduction operation for each node requires a value
for every parent of the node and the node itself. Hence,
we need to marginalize over Ec

Z and U conditioned on Z
(with these two variables and Z we can obtain values for the
remaining Zc deterministically); we use the softmax trick to
sample unconditionally. On the other hand, to compute the
expectation over Vx, we only need values for the remaining
E , so we will sample from EZ\X conditioned on all the
previous information (abduction); this generates values for
Vx \ Xx (every remaining value in Mx) to finally answer
our query:

6Note that we approximate this expectation using Monte Carlo by taking
N i.i.d. samples (v(i))i=1..N from V so that EV

[
f(V) · P (Z|V)

P (Z)

]
≈

1
N

∑
i=1..N f(v(i)) · P (Z|v(i))

P (Z)
. Now, since P (Z) = EV [P (Z | V)] ≈

1
N

∑
i=1..N P (Z | v(i)), we can use those same samples (v(i))i=1..N

for the numerator and denominator, which results, by adding log exp before
each term, in N times the softmax s of the set (logP (Z | v(i)))i=1..N and
the N term is cancelled by the first expectation approximation, resulting in
the weighted average described above. We can apply this technique in every
instance of importance sampling described throughout this work.
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EVx|Z [f(Vx)] = EEc
Z,U|Z

[
EVx|Z,Ec

Z,U [f(Vx)]
]
=

EEc
Z,U

[
EVx|Z,Ec

Z,U [f(Vx)]
P (Z | Ec

Z,U)
P (Z)

]
≈

N∑
i=1

EEZ\X|Z,ε
c (i)
Z ,u(i)

[
f(Vx(ε

c (i)
Z ,u(i), E(i)

Z\X))
]
s(logP (Z | εcZ,u))(i).

(2)

We use importance sampling and the softmax trick to
simplify the first marginalization over Ec

Z,U | Z. The second
expectation can be approximated by abducting M i.i.d. sam-
ples from every node in Z\X; then we can use these samples
to generate values for Vx \ Xx. Note that this procedure
is simplified when Z = V and U = ∅, meaning there
are no "missing" variables. In those cases, we only perform
abduction and a simple average without weights.

Further queries could be answered by means of the three
DCU operations, using similar derivation. Evidently, each
estimation procedure results in different estimators with more
or less variance, but the fact that we can train a single
model for an arbitrary graph and employ it for any of these
(identifiable) queries using a general estimator is, in our
view, more powerful for the end-user than the variety of ad-
hoc models currently present in the literature. Moreover, our
library already provides utilities for these procedures, so that
practitioners can apply them to their problems.

3) Conditional Sampling
The remaining operations concern the procedure by which
we can sample from observational, interventional and coun-
terfactual distributions when there are some conditioning
values. Let us consider an observational distribution P (V |
z), from which we want to generate N i.i.d. samples
(v(i))i=1..N . Since P (V | z) = P (V)P (V|z)

P (V) , we can:

1) Generate M samples (v(i,j))j=1..M ∼ P (V) from
unconditioned V.

2) Choose one of these M samples by weighted sampling,
with unnormalized weights w̃(i,j) := P (v(i,j)|z)

P (v(i,j))
.

3) Repeat N times, to generate each v(i).
The corresponding normalized weights w(i,j) result from

the softmax operation: w(i,j) := s(log w̃(i,.))(i,j) =
exp log w̃(i,j)∑

j=1..M exp log w̃(i,j) = w̃(i,j)∑
j=1..M w̃(i,j) . Note that log w̃(i,j) =

logP (v(i,j) | z) − logP (v(i,j)), and both terms can be
obtained through the above procedures.

One downside of this technique is that it requires M
unconditional samples to generate each conditional sample.
In order to mitigate this problem, we can generate M samples
once, and then take N subsamples with replacement. Both
alternatives are valid procedures, provided M is big enough.
Another potential point of failure is if the conditioning term
Z = z only happens in highly unlikely regions of V, which
would make it harder to find a v that agrees with P (V | z).
In these cases, a bigger value is required for M .

This solves the observational case P (V | z). Interven-
tional conditioned distributions P (Vx | zx) (subject to
intervention do(X = x)) are handled in the same way, but

in the intervened SCM. Finally, for counterfactual distribu-
tions P (Vx | z), note that we can focus on sampling from
every latent variable (conditioned on z), and then follow the
deterministic functions in F . Let us split E = EZ∪Ec

Z. Then:

P (U , EZ, Ec
Z | z) =

P (U , Ec
Z | z)P (EZ | z,U , Ec

Z) =

P (U , Ec
Z)

P (U , Ec
Z | z)

P (U , Ec
Z)

∏
k:Vk∈Z

P (Ek | vk, Pa′k(U , E<k)).

(3)
As before, the first term in the second line is split in

two to bypass the conditional with weighted sampling. The
second term can be decomposed following the topological
order of the graph, focusing on each Ek individually, con-
ditional on its vk value (given by z) and its parents’ Pa′k,
which can be computed deterministically by U and every
prior E<k := {E1, . . . , Ek−1}. Each of these terms can be
computed through the DCU’s abduct operation.

In summary, for each i = 1..N , we sample M uncondi-
tional terms ((u(i,j), ε

c (i)
Z ))j=1..M , abduct each Ek sequen-

tially and compute weights w(i,j) := s(log w̃(i,.))(i,j) as
before. We then perform weighted sampling with weights
w to generate sample i, and repeat N times to obtain N
samples (u(i), ε(i))i=1..N . With this, all that remains is to
use the deterministic functions in Fx (subject to intervention
do(X = x)) and obtain the final samples (v(i)x )i=1..N .

C. GRAPHICAL CONDITIONER
We finish this section with the technique that allows a single
network to be trained for the whole DCG graph, encom-
passing all DCU nodes. This is based on [37], which proposes
a Conditioner for Normalizing Flows, which respects any
independencies described by a DAG. Our Conditioner has an
additional requirement, as it models every node’s parameters
Θ, which are heterogeneous between nodes.

Let us consider a DCG M with variables V; let us denote
V ′ := V ∪ U , D := |V|, D′ := |V ′| = |V| + |U|, with V =
(V1, . . . , VD) in a topological order and U = {UD+1, UD′}
in an arbitrary order. Each node V ∈ V depends on param-
eters ΘV ; let us define Θ := (ΘV1

, . . . ,ΘVD
), the concate-

nation of all ΘV and K := |Θ|. Since P (V1, . . . , VD) =
EU

[∏
V ∈V P (V | Pa′V )

]
and each term depends on ΘV =

ΘV (Pa′V ), we define a masking matrix A with shape D′×K,
where each term ad,k is an indicator for whether the d-th
variable (either from V or U) is an input for Θk. Fig. 4
shows the masking matrix for the graph in Fig. 2. Since every
variable is binary, we model them with Bernoulli-DCNs, each
with a single p, hence, Θ = (pZ , pX , pY ).

We can define an arbitrary neural network f with D′ inputs
and K outputs that, given values for V and U , returns values
for parameters Θ. If we used it directly, Θ = f(v,u), we
would not be respecting the independencies defined by our
graph GM. However, when computing parameter Θk, we can
multiply the concatenated vector (v,u) by A.,k, so that any
variable not a parent of Vk will be masked.
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FIGURE 4: Masking matrix for the graph in Fig. 2.

Note that all procedures described in the previous section
can be performed using this masking operation: likelihoods
(and the training objective) can be computed directly, by
estimating all parameters Θ and applying each DCU’s loglk
operation; sampling requires using each node’s sample oper-
ation sequentially in topological order, passing the required
parents’ values that are computed as we proceed.

In practice, we can define any network f with arbitrary
architecture to compute our parameters Θ. Not only that, but
the use of a single network, instead of individual networks
for each node, reduces model complexity, overfitting risk,
memory requirements and training times significantly.

IV. EXPERIMENTS
We now showcase our DCG’s capabilities for modelling
real-world distributions and test it against a well-established
potential outcomes benchmark to evaluate its estimations
on interventional and counterfactual queries. Code for all
experiments can be found along with the DCG library.

A. MODELLING EXAMPLE
Let us consider the Power dataset from the UCI Machine
Learning Repository [2]. We follow the data preprocessing
from [3], resulting in six continuous variables. We train a
DCG as a complete graph (Vi → Vj , ∀i < j), which
is sufficient to model the observational distribution P(V),
and estimate the average log-likelihood of the test split to
compare its modelling capabilities against other density esti-
mation methods.

We follow the same experimental setup, flow-transformer
architecture and training routine as [3], except that our flows
are individually defined for each variable (thus preventing
any permutation). Every node in the graph is an NCF, defined
as a uni-dimensional Transformer with a shared Graphical
Conditioner (see section III-C). The Transformer consists of
an initial Batch Normalization Layer followed by a condi-
tional Affine Layer (dependent on the node’s parents). Then,
ten Rational-Quadratic Spline Flows [3], each divided into
eight blocks in the interval (−3, 3), coupled with another
Batch Normalization and a conditional Affine Layer. The
flow’s prior (its exogenous signal prior) is a univariate Nor-
mal Distribution. Regarding the (single) Conditioner network
architecture, we employ a Residual Network consisting of the

following five blocks: a Dropout layer, a Linear Layer and
a Rectified Linear Unit, with residual connections between
each block. For training, we employ the AdamW algorithm
[14], with 10−3 learning rate annealed with a cosine schedule
dropping down to 0 every 50 epochs. Training continues
until 100 epochs have passed without improvements on the
validation metric.

We compare our average test log-likelihood ±1.96 stan-
dard deviations (0.54 ± 0.01) against some other methods:
the Masked Autoregressive Flow [19] (0.45 ± 0.01) with
ResMADEs and invertible linear layers instead of permuta-
tions; the Graphical Normalizing Flow [37] (0.62 ± 0.04),
the method from which our Graphical Conditioner is de-
rived; and the Rational Quadratic Neural Spline Flow [3]
(0.66 ± 0.01), which proposed the flow-transformer in our
DCGs. Our model is essentially the same as the two latter
ones, except for the fact that we cannot use permutation
layers, given that we are restricted by the graph structure we
have imposed. Since we do not know the underlying graph,
we can only employ a complete graph, with an arbitrary
ordering that might not be the most appropriate for the data.
We attribute the discrepancy between our and their results to
these facts.

Nonetheless, the resulting metric is competitive with the
state of the art. Moreover, the high modularity of our DCU
implementations and the DCG shared Conditioner allows for
alternative models that could result in even better perfor-
mance. Fig. 5 shows the marginal densities of each variable
estimated with our DCGs, compared with the histograms
from the real data. Note that, despite each variable being
fundamentally different, the same architecture can model
all of them indistinctly.

B. ESTIMATION BENCHMARK

We study here a Causal Query Estimation task, for Q :=
P (Yt | Zt) on a graph (X → T, Y ; T → Y ). We
employ two semi-synthetic datasets: IHDP [6], with a con-
tinuous outcome, and Jobs [12], with a discrete outcome.
We follow the experimental setup and results from [29], and
focus on four metrics: eATE , absolute error in the Average
Treatment Effect (ATE); ePEHE , RSME in the Individual
Treatment Effect (ITE); eATT , absolute error in the ATE
for the Treated; and Rpol, policy risk (also related to ITE).
We perform our estimations on 1,000 and ten replications
of the experiment respectively, which allows for confidence
intervals to be obtained for each metric (±1.96 standard
deviations). We compare against simple and bi-headed Lin-
ear Regression (LR1, LR2), Causal Effect Variational Au-
toencoder (CEVAE, the only method in the Desiderata that
offered results for this benchmark) [15], Balancing Neural
Networks (BNN) [8], Treatment-Agnostic Representation
Network (TAR) [29], Counterfactual Regression (CFR) [29],
Adaptively similarity-preserved representation learning for
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FIGURE 5: Power dataset [2] variable histograms (blue) with DCG-estimated marginal densities (orange).

Causal Effect estimation (ACE)7 [40], Subspace Learning
Based Counterfactual Inference (SCI) [41] and Causal Opti-
mal Transport (CausalOT)8 [13]. Except for CEVAE and our
own technique, all methods are estimand-based and therefore
more specialized to estimation of these particular queries.

1) Experiment Setup

For this particular benchmark, we compare against methods
that learn E [Yt | Xt], with T binary and X confounder
covariates (25 dimensions for IHDP, 17 for Jobs). Normally,
we would model the whole graph node by node, but here we
are only interested in the distribution (Y | X,T ) (learning
node Y ), as the estimation procedure for each metric does
not require modelling either T or X (the edge is X → T ,
therefore the intervening T cannot affect X). What we can do
instead is define what we call an Input DCU, a placeholder
node in our DCG that accepts i.i.d. values from the dataset.
We can employ the training values for these variables as
"samples" when performing the usual estimations, so that we
avoid modelling those nodes, as we do not need to perform
either loglk or abduct with them.

We employ this simplification for two reasons. Firstly,
the IHDP experiment consists of 1,000 replications, and a
model must be trained for each of them. Not only that, but
we employ a 5-Fold Cross-Validation (CV) strategy (detailed
below), requiring 5,000 models. Were we to train the whole
27-variable graph, training times for the whole benchmark
would be prohibitively long. Additionally, modelling errors
in the variables of X would propagate to the outcomes in
Y . This would be unfair on our model, which is designed to
be graph- and query-agnostic when comparing with highly
specialized models designed for one singular graph and
query. We therefore decided on this simplified strategy for the
benchmark. This means that we cannot evaluate the effect of

7ACE provide results for ePEHE on IHDP, but not for
√
ePEHE , which

makes it impossible to compute when averaging the errors for all samples.
8CausalOT provides results for both metrics on IHDP, but they do not

specify if these metrics come from the train or test split.

error propagation on our estimations, and such an experiment
remains for future work.

Regarding the CV strategy, since the number of samples in
the IHDP dataset is quite limited (672 training samples), and
our flows are highly flexible models, we train five different
models instead - one for each CV split of the original training
and validation subsets - and join them all together in a single
model with a Mixture Node, discussed in section III-A3.
We fix their weights as a constant (independent of Pa′Y ),
the softmax of their average validation log-likelihood. This
mixture allows us to use the available data more effectively,
as the data normally employed for validation can also be used
for training in every other submodel. In the following section,
we refer to this mixture as Mixture-DCG, whereas Single-
DCG represents the single best model in validation from five
splits.

With respect to the DCG architecture, each dataset requires
a different type of DCU model, as the IHDP outcome is
continuous and the Jobs outcome is binary. For the former,
we employ an NCF with Rational Quadratic Flows as before,
whereas for the latter, we only require a Bernoulli DCN. Both
methods use the same Conditioner architecture, consisting of
a bi-headed Network, following the example of [29]. Finally,
we use the same training procedure as before, with slight
hyperparameter adjustments depending on the dataset.

Note that no method in the benchmark uses the factual
outcome of Y (Yf ) in their estimation, only the covariates
X and the treatment T . However, our DCGs can employ
this information (with counterfactual estimation) if available.
We compute the resulting metrics without (DCG) and with
(DCG*) Yf to evaluate how our method responds when we
have post-facto information about the treatment outcome
(e.g., "What would the recovery rate have been if we had
administered the treatment?"). Table 3 presents all of the
results; we highlight every method that improves on the rest
(except DCG*), and DCG* if it is the best among them.

2) Discussion
DCGs achieve the best performance on eATE for the IHDP
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TABLE 3: Metrics on the IHDP-Jobs potential outcomes benchmark. Lower is better.

IHDP JOBS
eATE

√
ePEHE eATT Rpol

TRAIN TEST TRAIN TEST TRAIN TEST TRAIN TEST

LR1 .73 ± .04 .94 ± .06 5.8 ± .3 5.8 ± .3 .01 ± .00 .08 ± .04 .22 ± .00 .23 ± .02
LR2 .14 ± .01 .31 ± .02 2.4 ± .1 2.5 ± .1 .01 ± .01 .08 ± .03 .21 ± .00 .24 ± .01
CEVAE [15] .34 ± .01 .46 ± .02 2.7 ± .1 2.6 ± .1 .02 ± .01 .03 ± .01 .15 ± .00 .26 ± .00
BNN [8] .37 ± .03 .42 ± .03 2.2 ± .1 2.1 ± .1 .04 ± .01 .09 ± .04 .20 ± .01 .24 ± .02
TAR [29] .26 ± .01 .28 ± .01 .88 ± .02 .95 ± .02 .05 ± .02 .11 ± .04 .17 ± .01 .21 ± .01
CFR [29] .25 ± .01 .27 ± .01 .71 ± .02 .76 ± .02 .04 ± .01 .09 ± .03 .17 ± .01 .21 ± .01
ACE [40] - - -* -* - - .22 ± .01 .22 ± .01
SCI [41] - - - - - - .21 ± .01 .23 ± .01
CAUSALOT [13] -* -* -* -* - - .20 ± .01 .21 ± .03

SINGLE-DCG .19 ± .02 .22 ± .02 1.0 ± .08 1.0 ± .08 .08 ± .02 .08 ± .02 .24 ± .01 .24 ± .03
MIXTURE-DCG .12 ± .01 .17 ± .01 .93 ± .07 .96 ± .08 .07 ± .01 .07 ± .02 .23 ± .01 .25 ± .05

SINGLE-DCG* .16 ± .01 .19 ± .01 .94 ± .07 .96 ± .09 .09 ± .02 .07 ± .02 .19 ± .01 .19 ± .04
MIXTURE-DCG* .12 ± .01 .15 ± .01 .85 ± .06 .87 ± .08 .08 ± .02 .07 ± .02 .10 ± .02 .10 ± .03

dataset, and second place on eATT test for the Jobs dataset,
improved on only by CEVAE, which is the best model for this
query. Note, however, that the train split is better modelled by
far simpler methods (LR1), which suggests that overfitting
might be damaging the performance of the other models. On
the other hand, CFR [29] is a clear improvement on ITE
metrics (ePEHE and Rpol) except for Rpol on the training
set, whereas DCGs achieve third place for the IHDP dataset,
close to TAR. Note that the DCGs we implement for this
experiment are essentially equivalent to TAR [29] in all
regards (the exact same Conditioner architecture) except that
instead of estimating the expected treatment outcome,
they model the actual distribution through Normalizing
Flows, from which we later estimate the expectation. We be-
lieve that the added complexity in modelling the distribution
(an additional functionality missing from the other methods)
might account for this slight drop in performance. CFR,
on the other hand, uses balancing regularization between
both treatment distributions to improve its results, something
that we omitted for this experiment in benefit of simple,
general models for arbitrary query estimation. Regarding
Single-DCG and Mixture-DCG, the mixture accomplishes
better results overall, demonstrating the applicability of this
technique on small datasets.

In conclusion, DCGs achieve competitive results against
state-of-the-art models in potential outcome estimation,
even though they do not use ad-hoc estimands of the query
at hand. Rather, they employ general training procedures
valid for arbitrary graphs that result in models capable of
answering any identifiable query, again with general proce-
dures valid for any other graph. Also note that our model
architecture can be interchanged for any other, providing high
modularity that could even obtain better results than those
achieved here. We expect future work to provide extensions
of our technique with more powerful model architectures.

C. MODELLING ERROR VS. ESTIMATION ERROR
Section II-D explains why a correct estimation of an iden-
tifiable Causal Query is viable using our techniques if the

model follows the same Causal Structure GM and the same
observational distribution P(V). Although Neural Networks
are universal approximators, in practice we cannot realisti-
cally achieve the exact same distribution, only approximate
it. Further work on this subject should study the effect of
this discrepancy, and the variance of our estimations resulting
from error propagation across every node in the graph.

Regarding the former problem, here we perform a minor
experiment as a sanity check: will the estimation metrics in
the previous benchmark improve throughout training, while
getting closer to the underlying distribution P(V)? We study
this by means of the scatterplot in Fig. 6, which relates
the negative log-likelihood of the test dataset (training loss)
with every metric in the former experiment (including the
estimations with Yf , denoted with a star (*)). Although this
does not prove that diminishing modelling errors entail better
estimations, it does corroborate the hypothesis, at least for
this experiment.

V. BIKE SHARING DATASET EXAMPLE
For this last section, we showcase our techniques with the
Bike Sharing Dataset [4], which contains the number of bikes
used on a Bike Rental service in Washington, D.C., USA on
a daily basis between 2011 and 2012 (731 samples), along
with weather data for each day. Our aim here is to study the
effect of temperature (T ) on bike rental (Y ), assuming that
the underlying DGP follows the causal graph shown in Fig.
7. Here, season and weather are Categorical variables (4 and
3 levels respectively); working day is a Bernoulli variable;
temperature, humidity, windspeed and feeling temperature
are continuous variables normalized to the (0, 1) interval,
and bikes is the target variable, a count of rented bikes on
a given day (which we assume to be continuous for ease of
modelling). We define a latent confounder between humidity
and wind speed to reflect weather factors that affect both but
are not captured by the Categorical variable weather. Note
that this is just an example; we do not wish to make any
claims regarding the real underlying graph. Henceforth, we
assume this graph to be valid only for illustrative purposes.
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FIGURE 6: Average negative test log-likelihood vs. estimation errors throughout training (lower is better), for the IHDP
benchmark, first replication, first CV split. As expected, lower modelling error leads to lower estimation error, and especially
in PEHE-related metrics.
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FIGURE 7: Bike Sharing Dataset, proposed Causal Graph.

1) DCG Definition and Training
First we need to decide which DCU implementation will
be employed for each node. To illustrate the potential of
the different DCUs mentioned in this work, we train two
different models, one consisting of Compound-DCNs and
one with NCFs (but DCNs for discrete variables). For the
former case, since temperature, humidity, wind speed and
feeling temperature are all bounded to the (0, 1) interval,
we employ the Beta Distribution for their variables. As for
bikes, the counting variable, we use the Normal Distribution
(ND). Note that despite modelling the node with an ND, it
is only an ND when conditioned by all its parent values;
when we marginalize those conditioning terms, the result is
a mixture of Normals, which is far more expressive than first
assumed. Regarding the NCF implementation, we use two
different flows to account for the change in domain, but this
adjustment requires no special structure in their flows (in fact,
both use the same Transformer architecture).

To showcase the ease of use of the library, we include a
code snippet in Listing 1 (summarized and without imports
for brevity) showing how the graph is created and trained
in the NCF case. For the full code (including the C-DCN

graph), please refer to the supplementary material found
together with the library. In the definition string we specify
each variable name, an alias for its DCU implementation, its
dimensionality and, if any, all of its parent nodes. We also
create a latent confounder between humidity and windspeed,
u, with its own DCU. After that, we assign each DCU
implementation to its alias, pass a network creation function
for the Graphical Conditioner, call a warm start process on
the graph, and finally train the module with early stopping
(100 epochs of patience).

Fig. 8 shows the dataset histogram for all continuous
variables and the marginalized likelihood curves evaluated
by each DCG (P (x) = EEc

X ,U [P (x | Ec
X ,U)]). Although

both alternatives are quite similar, C-DCNs struggle with cnt
(count of rented bikes) due to its multi-modality, whereas
NCFs can be as flexible as required given a powerful flow
architecture. The choice of DCU depends on the complexity
of the data and the number of samples (the smaller the
dataset, the more overfitting introduced by NCFs; in this
case, DCNs or C-DCNs are preferable). In the following
section, we will evaluate three identifiable queries with the
NCF DCG.

2) Causal Query Estimation
We start with an interventional query: the average number
of rented bikes when intervening temperature by a certain
value t. Fig. 9a plots the effect (y-axis) of each interven-
tion do(T = t) (x-axis). We compute this effect in two
ways: back-door, using the back-door formula9 EYt

[Y ] =
ES

[
EY |T=t,S [Y ]

]
; and dcg, computing the causal effect

through the DCG itself. For the first case, we use Random
Forests to model each term needed to compute the query.
As can be seen from the figure, there are no significant dif-
ferences between the two curves, which shows that, despite

9The back-door formula can be used under certain graph structures to
define an estimand for the estimation of interventional effects.
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FIGURE 8: Bike Sharing Dataset, variable histograms (blue) with DCG densities: Compound-DCN and NCF.
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FIGURE 9: Bike Sharing Dataset, query visualizations; (a) shows the interventional effect of temperature t on rentals Yt,
estimated with DCGs and the back-door formula for comparison; (b) shows the counterfactual effects of intervened temperature
t′ on rentals when we have observed an average number of rentals and different values of temperature t; (c) shows KDE curves
resulting from counterfactual sampling, where we observe temperature t and an average number of rentals, but we intervene
on temperature 1− t.

following a completely different strategy to the back-door
approach, DCGs still manage to answer the query reliably.

Next, we study a counterfactual query: the expected
number of rented bikes intervened by temperature with value
do(T = t′), when we have already observed a different
temperature T = t and the rented bikes being the average
number (Y = Y ). Fig. 9b shows a heatmap of this coun-
terfactual quantity (colour is the counterfactual value) when
we have observed a certain t value (x-axis) and intervened
on temperature with a different t′ (y-axis). From the previous
query, we know that Y and interventions on T are directly
correlated, which tells us that days with higher temperatures
should expect above-average counts of bikes, whereas days
with lower temperatures expect below-average counts. How-
ever, an average number was observed in both cases. This

means that higher values of t start from an average Y , and
can only go down as the intervention reduces temperature.
Conversely, lower values of t start from an average count and
go to the highest values as t′ increases. In layman’s terms, if
today was a cold day but we still had an average number of
rentals, this must mean that it was a busier day than usual, and
increasing the temperature can only result in higher rentals.

Finally, Fig. 9c showcases an example of counterfactual
sampling. Having again observed an average count of rentals
(Y = Ỹ ) and a certain temperature t, we intervene by
inverting the temperature do(T = 1 − t) (remember that T
is normalized to (0, 1)) and obtain samples from the coun-
terfactual variable Y1−t. We use Kernel Density Estimation
to plot the density curves from these samples, so we can
see the effect of each value t and the corresponding 1 − t
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graph = Causa lGraph . f r o m _ d e f i n i t i o n (
Causa lGraph . p a r s e _ d e f i n i t i o n ( ’ ’ ’

s e as on c a t 4
work bern 1
wthr c a t 3 s ea so n
tmp con t0 1 1 sea so n
hum co n t 01 1 wthr u
wspd co n t0 1 1 wthr u
atmp con t0 1 1 tmp hum wspd
y c o n t 1 work wthr wspd atmp

u l a t 1
’ ’ ’ ,
c a t = C a t e g o r i c a l , be rn = B e r n o u l l i ,
co n t 01 =NCF01 , c o n t =NCFreal ,
l a t = La ten tNorma l
) ,
n e t _ f = n e t _ f

) . w a r m _ s t a r t ( X t r a i n ) . t o ( d e v i c e )

t r a i n (
graph ,
d a t a _ l o a d e r ( T e n s o r D a t a s e t ( X t r a i n ) ) ,
d a t a _ l o a d e r ( T e n s o r D a t a s e t ( Xval ) ) ,
l o s s _ f = l o s s _ f ( ex_n =100) ,
p a t i e n c e =100

)

Listing 1: Code example for creating and training a DCG.

all at once. t is coded by colour, with lower temperatures
in blue and higher temperatures in red. As we can see,
observing low temperatures t (blue) means intervening with
high temperatures, which increases the number of rentals,
resulting in above-average values (past the dashed vertical
line). Higher temperatures (red), on the other hand, are inter-
vened on with lower temperatures, which can only result in
lower counts. The fact that we can obtain these counterfactual
samples allows for extra flexibility in our causal studies. We
are not only restricted to expectation studies, but can, for
example, look for multi-modalities or asymmetries in their
distributions.

VI. ASSUMPTIONS AND LIMITATIONS
This section is devoted to summarizing all assumptions and
limitations of the technique described throughout this work.

Given an i.i.d. dataset D resulting from an underlying
SCM M with graph GM, we assume that:

• The graph structure GM of the underlying SCM of
interest M is known, and it is a Directed Acyclic Graph.

• Any latent confounders U in M are root nodes with
exactly two children. Otherwise, we use a projection of
the graph (see footnote 3).

• The observational distribution P(V) resulting from M
is positive for all its values.

• Any queries to be estimated are identifiable w.r.t. graph
GM; we can determine identifiability with the algo-
rithms mentioned in section II-D.

• Any non-atomic interventions (other than do(X = x))
call for a reevaluation of the required estimation proce-
dures.

Regarding limitations of the current state of the technique,
we present the following challenges:

• We can never achieve a perfect match between
our model’s distribution PM′(V) and the underlying
PM(V); it is, after all, an approximation of that dis-
tribution. This mismatch creates a miscalibration effect
on the eventual estimations. A study of the relationship
between modelling error and estimation error remains
for future work.

• In graphs with high depth (the length of the longest
path from roots to leafs), errors on node sampling add
up level by level, and estimations might be affected by
this compounding error. Although this is related to the
previous point, as these errors come as a result of mis-
calibration with the original observational distribution,
graph depth also amplifies the problem. A quantification
of these effects is left as an open question.

• Our main assumption in this work is that the underlying
graph GM is a Directed Acyclic Graph. However, most
real-world problems deal with cyclic graphs. In their
current state, DCGs do not work with these kinds of
graphs, and an extension of the technique to this setting
is a promising research avenue to explore.

VII. CONCLUSION
Most causal query estimation methods operate from an
estimand-based perspective, making them extremely ad-hoc.
Here, we propose Deep Causal Graphs (DCG), a flexible,
general, modular framework capable of answering causal
queries without an estimand, as long as they are identifiable.

These techniques operate on complex real-world distri-
butions, thanks to our implementations with Distributional
Causal Nodes and Normalizing Flows. We also provide
Mixture implementations (finite or uncountable) to further
extend their modelling capabilities or even operate with small
datasets, thanks to Cross Validation combined with mixtures.

Furthermore, we detail DCG procedures to estimate the
aforementioned causal queries: these cover observational,
interventional and counterfactual queries for estimating like-
lihoods, expectations and even sample from these distribu-
tions, with or without conditionals. These procedures are
graph-agnostic, i.e. they can be applied to arbitrary graphs
as long as the target query is identifiable.

We demonstrate the modelling capabilities and estimation
performance of our framework in two experiments, and pro-
vide a complete study to exemplify a potential application of
our technique. We also provide a software library ready for
practitioners and researchers alike, thanks to its ease of use
and high modularity.
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We expect this work to help spread the use of estimand-
agnostic methods, especially among non-expert practitioners
thanks to our library, so that we can eventually build a
landscape of Causal Query Estimation frameworks similar to
the one found in the Machine Learning field.

Further work could provide alternative implementations
for the Deep Causal Unit specification, study the sensitivity
of query estimations to miscalibrations on modelling the
observational distribution, or study how to incorporate cyclic
Causal Graphs to extend the applicability of our techniques.
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