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Abstract

In this work we study the competition between two retailers that have to choose which
of the available products to sell and at which price, knowing that each customer relates a
product and its price with a value and will only acquire the product with highest value.

In the first part of this project we present our framework by defining some of the basic
concepts of Game Theory and introducing new terminology. Moreover, we also review two
of the pioneering models in duopolistic competition: the Cournot and Bertrand model.

The second part of the project formally defines and models the competitive situation.
We formally establish the actions available for both retailers and determine how each
customer ranks all products for sale. Moreover, in this chapter we also study the effects
that this competition has, the possible equilibria of this competitive market and under
which circumstances both retailers can reach such equilibria.

The third part of the project further studies the relationship between the price a retailer
sets for his products and whether the product is common or exclusive. We attempt to
model this relationship with a linear regression model and we study the results with data
from clothing retailers Gucci and Farfetch.

Resum

En aquest treball estudiem la competència entre dos minoristes que han d’escollir quins
dels productes disponibles posar a la venda i a quin preu, sabent que cada client relaciona
un producte i el seu preu amb un valor i només adquirirà el product de major valor.

En la primera part del projecte presentem el marc de treball definint alguns conceptes
bàsics de la Teoria de Jocs i introdüım terminologia nova. A més, revisem dos dels models
pioners en la competència duopoĺıstica: els models de Cournot i Bertrand.

La segona part del projecte defineix i modela formalment la situació competitiva.
Establim les accions disponibles per cada minorista i determinem com cada client classifica
els productes a la venda. A més, també estudiem els efectes que té aquesta competència
aix́ı com els possibles equilibris d’aquest mercat competitiu i en quines circumstàncies es
poden assolir.

La tercera part del projecte aprofundeix en la relació entre els preus fixats per cada
minorista i si el producte és exclusiu o comú. Intentem modelar aquesta relació amb un
model de regressió lineal i estudiem els resultats amb les dades dels minoristes Gucci i
Farfetch.
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Introduction

How many times have we heard that a company has decided to stop selling or lower
the price of a product that we like or we regularly buy? Sometimes companies withdraw
a product from the market because of sanitary reasons. We have heard many times that
a product does not meet minimum sanitary requirements and authorities remove it from
shops.

However, in other occasions products are removed from the market because they are
no longer interesting to the seller or their price is lowered as a last resource in order to
stimulate customers to buy them. For example, a very recent commotion in retailers’
coexistence caused by the descend of 2000 Aldi products [8]. This can happen due to
various reasons such as a change in customers’ preferences, an increase in the cost of
producing the products or the appearance of better products offered by the competitors,
among others.

Therefore, it is clear that retailers face difficult planning problems when selecting which
of the available products to offer and at which prices. They have to take into consideration
different factors such as how customers select products or how they distinguish two similar
products offered by different retailers in order to capture as many customers as possible.
Consequently, retailers have to be very informed and up to date on recent tendencies such
as products and prices offered by their competitors, new interesting products on trend or,
in general, any new socioeconomic trend.

In this project, we focus on the competition between two retailers that have to decide,
simultaneously, which of the available products to offer to the public and at which price,
taking into account that some of the available products are only available to one of the
retailers, while other products are available to both retailers. We deeply study the case
where there are no display limitations, in which retailers can offer all of the available
products at once and we also briefly comment what difficulties arise when retailers face
display limitations.

As we commented above, a key concept for this kind of competition, that retailers
have to take into consideration and try to predict trends, is the behaviour of customers.
For this study, we consider that customers’ behaviour follows a multinomial Logit model:
customers relate each product with a value, rank the values of all offered products and
only buy the product with the highest ranking. This model is widely used in Operation
Research when modelling discrete choice situations because of its simplicity.
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2 INTRODUCTION

Project structure

The first chapter of this study is dedicated to recalling some of the basic concepts
of Game Theory and introducing new terminology. We formally define the concept of a
game in strategic form and best responses, as well as two important strategic situations for
the competitors, the Nash equilibrium and the Pareto optimal. Moreover, we review two
of the pioneering models in duopolistic competition: the Cournot and Bertrand models.
Finally, we briefly introduce lattice theory and comment the importance of Fixed Point
theorems when applied to Game Theory.

In the second chapter of this study we focus on defining and modelling the competition.
On the one hand, we describe the available actions of each retailer, while on the other hand
we introduce the multinomial Logit model applied to the behaviour of the consumers.
Moreover, we study what consequences the model has when applied to competition in
products only available to one of the retailers, obtaining interesting results such as the
existence of Nash equilibria or the existence of an equilibrium that both retailers prefer.

The third chapter of this work is dedicated to studying the consequences of the model
when applied to competition in both exclusive and common products. Similarly to the
case of competition only in exclusive products, we obtain interesting results such as the
existence of Nash equilibria when retailers compete and face no capacity limitations.
However, in this case, we see that we cannot guarantee that there is an equilibrium that
both retailers prefer nor the existence of Nash equilibria when retailers face capacity
limitations.

In the fourth chapter of this study we focus on studying the relationship between the
price a retailer sets for a product and whether a product is exclusive or common. We
study the particular case of competition between clothing retailers Farfetch and Gucci
during the winter season of 2020, and attempt to model the relation between the price
and the exclusiveness with a linear regression model.

Related literature

Although the multinomial Logit model is relatively recent, in the past years it has been
widely used in Operations or Marketing research when modelling customers’ choice. As
we comment later, one of the pioneers of developing the multinomial Logit model theory
was Daniel McFadden in 1974 [16].

Furthermore, the theory of this model was further developed by Guadagni and Little
in 1983 [11] where they applied the multinomial Logit model for coffee brand choice and
studied the fidelity of clients; and Ben-Akiva and Lerman in 1985 [2] where they applied
this model to the choice of travel companies.

More theory particularly related to competition between retailers under the multino-
mial Logit model of choice has been developed by Misra in 2008 [17] where he studies
retailers’ best responses when competing in both assortment selection with exclusive prod-
ucts and prices selection. This topic was further studied by Besbes and Sauré in 2016
[4] where they study the more general case of competition in assortment selection with
common and exclusive products and prices selection and find equilibrium existence and
uniqueness. This project follows the model presented by Besbes and Sauré.

Furthermore, the oligopolistic competition in assortment selection and prices selection
has also been studied from an empirical point of view with interesting papers such as
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Draganska and Jain in 2006 [6] or Draganska et al. in 2009. [7]

Finally but not less important, the theory of monopolistic optimization has also been
thoroughly studied. For example, Mahajan and van Ryzin [14] in 2001 study this topic
when the retailer also faces inventory decisions and customers’ choice is modelled by a
multinomial Logit model. Furthermore, Maddah and Bish [13] in 2007 continue this work
and also study the case where the retailer also selects prices.



4 INTRODUCTION



Chapter 1

Preliminaries

In this chapter we recall some of the basic concepts of Game Theory, which are needed
for the work in the next pages. The first section of this chapter introduces basic terminol-
ogy, following the notation used by Pérez, Jimeno and Cerdá in Teoŕıa de Juegos (2004)
[21]. The second part of this chapter studies the best individual decisions of each player
and introduces the notion of equilibrium of a game and the Pareto efficiency. The third
part of this chapter is dedicated to the Cournot and Bertrand models, two of the first
models of duopolistic competition. Another interesting reading that served as inspiration
for this chapter is Game theory for applied economists (1992) [10] by Robert S. Gibbons.

1.1 The game

Informally speaking, we say that a game is every situation controlled by some rules
and with a well-defined result characterized by strategic interdependence, that is, the
outcome depends on the actions taken by the players. Those rules dictate the possible
actions each player has at disposition, the order in which every action takes place and how
every action affects the outcome of the situation. Furthermore, every player is assumed to
be rational, or in other words, players select actions that bring the best possible outcome,
knowing that the result is affected by the actions of all players.

The grounds of Game Theory were set by John von Neumann and Oskar Morgenstern
in Theory of Games and Economic Behavior (1944) [19], where they studied the zero-sum
games and applied their results to war strategy. In that work, they introduced the axioms
of the expected utility theory and the notion of game was first formalized.

With that said, we can now formally define a game.

Definition 1.1. A game in strategic form is a triplet Γ = (N, (Si)i∈N , (ui)i∈N ) where
N is a finite set (the players), Si is a countable or uncountable set (the strategy space of
player i) and ui : S1 × · · · × Sn → R is a function (the utility function of player i).

The combination of strategies s = (s1, s2, . . . , sn) ∈ S1×S2×· · ·×Sn, where component
i designates a strategy for player i, is also called a strategy profile. In order to simplify
the notation, we say that S−i is the strategy space of all players but player i, hence
S−i = S1 × · · · × Si−1 × Si+1 × · · · × Sn. The elements of S−i are the strategy profiles
s−i = (s1, . . . , si−1, si+1, . . . , sn) ∈ S1 × · · · × Si−1 × Si+1 × · · · × Sn.
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6 CHAPTER 1. PRELIMINARIES

However, we notice that not all strategies are equal. Rational players select strategies
to maximize their utility, and therefore we may think that there are strategies that are
better than others.

Let Γ be a game. Consider si, s
′
i ∈ Si two strategies of player i. We say that si strictly

dominates s′i if ∀i ∈ N and ∀s−i ∈ S−i

ui(si, s−i) > ui(s
′
i, s−i).

We say that si weakly dominates s′i if ∀i ∈ N and ∀s−i ∈ S−i

ui(si, s−i) ≥ ui(s′i, s−i).

Definition 1.2. Let Γ be a game. Let i ∈ N , then the strategy s∗i ∈ Si is a best response
to a strategy profile s−i ∈ S−i if

ui(s
∗
i , s−i) ≥ ui(si, s−i) for all si ∈ Si.

It is worth mentioning that best responses are not necessarily unique.

1.2 The Nash equilibrium

Years later John Forbes Nash1 obtained his doctorate in Mathematics with the article
Non-cooperative games (1950) [18], where he defined the equilibrium: a particular solution
of a game, a more general solution than the one previously given by Von Neumann and
Morgenstern for zero-sum games. This concept revolutionized the theory developed until
the date and would become one of the fundamental notions of Game Theory. Throughout
the history, many crucial decisions related to economics or politics were taken having
in consideration the Nash equilibrium, and that shows the importance of John Nash’s
work. In 1994 John Forbes Nash, Reinhard Selten and John Harsanyi were awarded the
Economics Nobel Prize ”for their analysis of equilibria in non-cooperative games theory”.

Definition 1.3. Let Γ be a game. A Nash equilibrium is a strategy profile
s∗ = (s∗1, . . . , s

∗
n) ∈ S1 × . . .× Sn such that ∀i ∈ N and ∀si ∈ Si

ui(s
∗) ≥ ui(si, s∗−i).

We observe that a Nash equilibrium is a combination of strategies where every strategy
is a best response to the others’ strategies.

In order to better illustrate and exemplify the terminology we introduced in these past
sections, we study the well-known Prisoner’s dilemma.

Example 1.1. The police investigate a robbery and caught two suspects. The suspects are
in prison and the police want them to confess their crime because they have not enough
proofs. In order to do so, each suspect is individually interrogated and is given two options:
to confess or to remain silent.

1John Forbes Nash (1928-2015) was an American mathematician, specialized in Game Theory, Differ-
ential Geometry and Partial Derivative Equations. He won the Economics Nobel Prize in 1994 and the
Abel Prize in 2015.
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If a suspects confesses and the other remains silent, the confessor is freed and the other
suspect is imprisoned for 4 years. If both suspects confess, they will both be imprisoned for
3 years. Finally, if both suspects remain silent, they will both be imprisoned for 1 year.

Therefore, we have a 2-player game, N = {1, 2}, where the strategy space of each
player is S1 = {C, S} and S2 = {C, S}, where C denotes the strategy of confessing and S
denotes the strategy of remaining silent.

We can now the payoff matrix of this game.

C S

C (-3, -3) (0, -4)

S (-4, 0) (-1, -1)

Table 1.1: Payoff matrix of the game

In this table, the best responses are underlined. For example, we can see that for player
2 to confess is a best response to player 1’s confession because u2(C, S) = −4 < −3 =
u2(C,C).

Moreover, we have that for both players to confess dominates remaining silent because
u1(C,C) = −3 > −4 = u1(S,C) and u1(C, S) = 0 > −1 = u1(S, S), and similarly for
player 2.

Finally, we notice that there exists one Nash equilibrium that is (C,C) because in this
situation both players play a best response. Therefore, in equilibrium, both players confess
and are imprisoned during 3 years. It is clear that this outcome is not ”efficient”, since
both players would have a better outcome if they both remained silent. We see a formal
definition of efficiency in the next section.

1.3 Pareto efficiency

Many times we are interested in studying if an economic situation’s outcome is ”op-
timal”. An interesting measure of this optimality was introduced by Italian economist
Vilfredo Pareto in Manual of Political Economy (1906) [20]. In this section we introduce
the terminology used by Pareto following modern-day notation.

Informally speaking, we say that an economic situation can be Pareto improved when
it is possible to improve someone’s outcome. If an economic situation cannot be Pareto
improved, we say that it is Pareto efficient.

Definition 1.4. Let Γ be a game. We say that a strategic profile s ∈ S1 × . . . × Sn can
be Pareto improved if there exists another strategic profile s′ ∈ S1 × . . .× Sn such that

ui(s
′) ≥ ui(s) for all i ∈ N and ui(s

′) > ui(s) for some i ∈ N.

Moreover, we say that a strategic profile s ∈ S1 × . . .× Sn is Pareto efficient if there are
no possible Pareto improvements.

An interesting way to visually represent strategic profiles that are Pareto efficient is
through a particular curve called Pareto frontier. This representation is used in economics
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and engineering. If we consider Γ to be a game, we formally define the Pareto frontier as
the set

P (Γ) = {s ∈ S1 × . . .× Sn : s cannot be Pareto improved}

0 s1

s2

(s∗1, s
∗
2)

Figure 1.1: Example of a Pareto frontier with two players

1.4 The Cournot competition

One of the main applications of Game Theory is the study of competition between
various companies that dominate a certain market (oligopolies). As commented by Mas-
Colell et al. (1995) [15] or Jehle et al. (2011) [12], it is natural to study this type of
competition as a game because decisions and strategic interactions are crucial. This topic
has been widely studied until this date, particularly the distinction between competition
in prices and competition in quantities.

Antoine Augustin Cournot is considered to be the pioneer of quantity competition, as
he first defined and studied this model in Recherches sur les principes mathématiques de
la théorie des richesses (1838) [5]. In order to define the model, we use the approach
and notation of modern-day microeconomics. Moreover, we study this model as a non-
cooperative game where strategic variables are the quantities a company is willing to
produce.

The simplified Cournot model considers two companies A and B that compete in
quantities of a homogeneous product, that is, both companies have the same product and
they choose how many units they produce. We assume that companies simultaneously
choose to produce quantities qA and qB, respectively. We also assume that the inverse
demand function (the price as a function of quantity) is decreasing and linear, that is,

P (Q) =

{
a− bQ if bQ < a,

0 if bQ ≥ a,

where a > b > 0 are constant values and Q = qA + qB.
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Furthermore, we consider marginal costs for both companies to be constant, equal and
less than a, and therefore the cost functions are CA(qA) = cqA and CB(qB) = cqB, for
some constant c < a, and that all products will be sold.

Therefore, the profit functions for qA, qB ∈ [0, ab ] that each company will try to maxi-
mize, given their competitor quantity selection, are

uA(qA, qB) = qA (a− bqA − bqB)− cqA,
uB(qA, qB) = qB (a− bqA − bqB)− cqB.

Using partial differentiation, we can find the best response functions: a function that
assigns the company’s best response for a given quantity of the other company. Finally,
intersecting both best response functions we find the equilibrium

(q∗A, q
∗
B) =

(
a− c

3b
,
a− c

3b

)
,

which is known as the Cournot equilibrium. These quantities are the Nash equilibrium of
this game.

1.5 The Bertrand competition

In 1883, Joseph Bertrand published a book review [3] where he criticized Cournot’s
book and proposed his own model, where companies compete in prices. As in the previous
case, we define this model using the modern-day notation of microeconomics. Further-
more, we study this model as a non-cooperative game where strategic variables is the
price at which a company is willing to sell a product.

The simplified Bertrand model considers two companies A and B that compete in
prices of a homogeneous product, that is, both companies have the same product and
they choose at which price they sell the product. Once the price is fixed, the demand
function determines the quantity that is sold. For this simplified model, we consider that
the demand function is q(p) = a− p for some constant a > 0.

We assume that companies simultaneously choose a price pA and pB, respectively, and
buyers only buy from the company with the lowest price or in equal quantities if the price
is equal. Therefore, the demand function (the quantity as a function of price) of company
A is

qA(pA, pB) =


0 if pA > pB,
q(pA)

2 if pA = pB,

q(pA) if pA < pB,

and similarly for company B.

Moreover, we consider marginal costs for both companies to be constant and equal,
therefore the cost functions are CA(qA) = cqA and CB(qB) = cqB, for some constant
c > 0.

Therefore, company A’s profit function for pA, pB ∈ [0,∞] is

uA(pA, pB) =


0 if pA > pB,
(pA−c)(a−pA)

2 if pA = pB,

(pA − c)(a− pA) if pA < pB,
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and similarly for company B.

In this situation, both companies tend to lower prices and therefore leading to the
equilibrium

(p∗A, p
∗
B) = (c, c),

which is known as the Bertrand equilibrium. This equilibrium is a Nash equilibrium of
this game. We observe that, in this case, the profit of both companies is 0, and therefore
the model considered by Bertrand is ruinous for the competitors and more favourable to
the buyers than the model considered by Cournot.

1.6 Fixed point theorems

In this section we are particularly interested in presenting a fixed point theorem proven
by Topkis (1998) [23]. We recall that fixed point theory focuses on finding under which
circumstances a given function f : X → X, where X is a set, has a fixed point, that is,
an x0 ∈ X such that f(x0) = x0.

Fixed point theory is originated by Henri Poincaré in 1895 with the paper Analysis
situs where he studies manifolds and introduces the homology theory while studying dif-
ferential equations. However, it was during the 1900s when this theory greatly developed.
Mathematicians such as Brouwer or Kakutani proved very important theorems that years
later would lead to results that revolutionized mathematics, such as Nash’s equilibrium
existence.

For example, Brouwer’s fixed point theorem states that every continuous function
defined on a nonempty convex compact of an Euclidean space and with values in this
compact has a fixed point, while Kakutani’s fixed point theorem is a generalization of
Brouwer’s fixed point theorem and states that every set-valued function defined on a
nonempty convex compact of an Euclidean space and whose graph is closed has a fixed
point.

As we see in the next pages, the problem of finding a best response for a particular
strategy of the competitor is not always an easy problem to solve. However, we can find
a more manageable transformation of the problem where we can apply this fixed point
theorem.

In order to do so, we first introduce some terminology, following the notation used by
Topkis (1998) [23] or Vives (1999) [24].

Let (X,≥) be a pair, where X is a nonempty set and ≥ is a binary relation on X. We
say (X,≥) is a partially ordered set if ≥ is reflexive, transitive and antisymmetric. For
example, the plane R2 with the ordering (x, y) ≥ (x′, y′) if x ≥ x′ and y ≥ y′ is a partially
ordered set.

We say that a partially ordered set (X,≥) is a lattice if for every two elements x ∈ X
and y ∈ X we have a supremum, that is, supX(x, y) = inf{z ∈ X : z ≥ x, z ≥ y}; and an
infimum, that is, infX(x, y) = sup{z ∈ X : x ≥ z, y ≥ z}, in X. Again, for example, the
plane R2 with the ordering ≥ we defined above is a lattice.

We say that a lattice (X,≥) is complete if for every nonempty subset A ⊂ X we have
that supX(A) ∈ X and infX(A) ∈ X.

We say that a nonempty subset A ⊂ X is a sublattice of X if for every x ∈ A and y ∈ A
we have that supX(x, y) ∈ A and infX(x, y) ∈ A. Moreover, we say that a sublattice Y of



1.6. FIXED POINT THEOREMS 11

lattice X is subcomplete if for every nonempty subset A ⊆ Y we have that supX(A) ∈ Y
and infX(A) ∈ Y . We denote by L(X) the collection of all sublattices of a lattice X.

Given a lattice (X,≥), the induced set order w defined on all nonempty elements of
the power set P(X) \ {∅} is defined as: for Y ∈ P(X) \ {∅} and Z ∈ P(X) \ {∅}, we say
that Y w Z if for every y ∈ Y and z ∈ Z we have that supX(y, z) ∈ Y and infX(y, z) ∈ Z.

Finally, a correspondence on X is a function defined on X whose range is included in
P(X). We now assume that X is a lattice and therefore we consider the correspondence
f : X → L(X), where we consider the induced set order w in L(X). We say that this
correspondence f is increasing in X if for every x ∈ X and y ∈ X we have that if x ≥ y
then f(x) w f(y).

We now present the fixed point theorem for lattices of R proven by Topkis [23] in 1998.

Theorem 1.1. Let X ⊆ R be a nonempty complete lattice, and consider an increasing
correspondence Y : X → L(X), where we consider the induced set order w in L(X). We
assume that for every x ∈ X, Y (x) is subcomplete. Then,

1. There exists at least one fixed point of Y(x). Moreover,

supX ({x ∈ X : Y (x) ∩ [x,∞] is nonempty})

is the greatest fixed point and

infX({x ∈ X : Y (x) ∩ [−∞, x] is nonempty})

is the smallest fixed point.

2. The set of fixed points of Y(x) is a complete lattice.
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Chapter 2

Competition: the model I

In this chapter we present the competitive model analyzed by Besbes and Sauré [4]
and study its consequences. We have in mind the competition of retailers such as Farfetch
or Gucci, and the applied case will be studied in the last chapter. In the first section we
describe how the retailers compete, that is, what are the possible decisions of every player.
In the second section we characterize the model that describes clients’ choice process. In
the third section we study the best responses of the players and the existence of Nash
equilibria when retailers compete only with exclusive products. The case of competition
with common products is studied in the third chapter.

2.1 Competition between two retailers

We consider a duopolistic market where retailers A and B compete in product assort-
ment and in products’ price. We note by PA and PB the finite set of products that retailer
A and B, respectively, can offer. In order to compete, each retailer will select a subset
of this set and a price for every product. Due to limited space in shops, we introduce
constant values CA and CB that designate the maximum number of products retailers A
and B can offer at once.

We denote by {1, 2, . . . , |P |} the elements of P = PA∪PB and for every product i ∈ P
and we denote by cA,i ≥ 0 the constant marginal cost that retailer A has to pay to produce
or to buy from a manufacturer the product i, and similarly for retailer B. Moreover, the
price that retailer A charges for product i ∈ PA is denoted by pA,i, and similarly for
retailer B.

We assume that pA,i > cA,i for all i ∈ SA, and similarly for retailer B. We observe
that this assumption is consistent to the fact that competitors are seeking for utility
maximization and therefore they will choose higher prices than the cost of producing
or buying the product from a manufacturer. This is somewhat different to the model
described by Bertrand, where competitors reached equilibrium when the prices were set
equal to the marginal cost of the product. However, in practice, it is more logical to think
that retailers would prefer not to sell a product instead of selling it at production cost,
due to other factors such as display expenses (which we neglect in our model).

Moreover, we say that product i ∈ P is exclusive to retailer A if i ∈ PA \ PB, that
is, product i can only be offered by retailer A; and similarly for retailer B. We say that
product i ∈ P is common if i ∈ PA ∩ PB, that is, product i can be offered by both

13
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retailers. For example, Hacendado and Carrefour products are exclusive to Mercadona or
Carrefour, respectively, while Campofrio products are common.

Finally, we designate by AA ⊂ P(PA) and AB ⊂ P(PB) the set of all possible assort-
ment selection, where P(C) is the power set of C. In other words,

AA = {C ⊆ PA; card(C) ≤ CA}

and

AB = {C ⊆ PB; card(C) ≤ CB}.

With that being said, we can now characterize the possible strategies for the retailers.
A strategy of retailer A is a pair (SA, pA) where SA ∈ AA is the assortment selection of
retailer A and pA = (pA,1, pA,2, . . . , pA,|SA|) is the vector of prices, where for all i ∈ SA we
have pA,i > cA,i. And similarly for retailer B.

2.2 Behaviour of consumers

Discrete choice models explain the behavior of decision-making individuals, like people
or firms, that choose between various alternatives. In our case, decision makers are clients
that search a certain product of their interest. Furthermore, the alternatives’ set, also
called the choice set, has to fulfill three conditions:

• The choice set is finite.

• Alternatives are mutually exclusive, that is, clients select one and only one product,
discarding all other alternatives.

• The choice set is exhaustive. All alternatives are available to the client.

The most used discrete choice model is the logit model. This model was popularized,
due to its simplicity and the fact that the choice probability can be expressed as a closed
formula, by the American economist Daniel McFadden in his work Conditional Logit
Analysis of Qualitative Choice Behavior (1974) [16] where he developed the theory of this
choice model and applied his results to empirical problems. In 2000, Daniel McFadden was
awarded, together with James Heckman, the Economics Nobel Prize ”for his development
of theory and methods for analyzing discrete choice”.

In that paper, McFadden studies the case where decision makers have to select between
two options: option 1 and option 2. The most important idea of the paper is that it
assumes each decision maker to have an utility function that assigns a real value to the
two options, U1 and U2. The paper considers that this utility function has two parts,
one that models the observable information that is available to the researcher, V1 and V2,
and the other part that models the information unknown by the researcher, ε1 and ε2,
which we suppose independent and identically distributed random variables following a
standard Gumbel distribution.

The Gumbel distribution is useful for representing the maximum or the minimum of a
number of samples from various distributions, and it can be obtained from the well-known
exponential distribution. If the random variable X follows an exponential distribution
with mean 1, the random variable −log(X) follows a standard Gumbel distribution. In
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other words, for i ∈ {1, 2} the random variable of errors εi has cumulative distribution
function

F (εi) = e−e
−εi ,

and probability density function

f(εi) = e−εie−e
−εi .

We follow the notation used by McFadden (1974) and Anderson et al. in Discrete
Choice Theory of Product Differentiation (1992) [1] and adapt it to our model.

We consider that every client x assigns a real value UA,i(x) to acquiring product i ∈ PA
from retailer A, and a real value U0(x) to not acquiring any product, where the utility
function is defined as

UA,i(x) = µA,i − αA,ipA,i + εxi ,

U0(x) = εx0 ,

and similarly for retailer B.

In the above expressions, we consider that µA,i is a constant value related to acquiring
product i from retailer A, and similarly for B. Moreover, we consider αA,i > 0 to be
the importance that clients give to the price of product i from retailer A, and similarly
for B. And finally, we consider that εxi for i ∈ P ∪ {0} are independent and identically
distributed random variables following the standard Gumbel distribution that represent
the errors. These errors are independent of the retailer the client acquires product i from.

2.3 Competition in exclusive products

In this section we are particularly interested in studying if a Nash equilibrium can be
achieved by the competitors and under which circumstances. We study this model as
a game between two players (retailers A and B) whose strategies are pairs (SA, pA) ∈
AA × R|SA|

+ , and similarly for retailer B. However, we are still missing to express the
utility function of each retailer, which we will assume is its expected profit.

As stated before, one of the main reasons to use this model is that the choice probability
can be expressed as a closed form. We recall that clients will choose a product that
maximizes their utility. From now on, we suppose that retailers compete in exclusive
products, that is SA ∩ SB = ∅. The general case will be studied in the next chapter.

In the next lemma we compute the probability that a client chooses product i from a
retailer. The first step of the proof is to find an expression of the probability of a customer
acquiring a certain product i conditioned to the values of εxi , where we strongly use that
the random variables εxi for i ∈ SA∪SB∪{0} are independent and identically distributed.
The second step of the proof is to integrate over all possible values of εxi in order to find
this probability.

However, we need some notation in order to simplify the expressions. The attraction
factor of product i offered by retailer A is defined as

vA,i = eµA,i−αA,ipA,i ,

and similarly for retailer B. The attraction factor of not acquiring any product is v0 = 1.
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Lemma 2.1. Let (SA, pA) and (SB, pB) be two strategies of retailer A and B, respectively.
The probability that a client acquires product i ∈ SA from retailer A can be expressed as

qA,i =
vA,i

1 +
∑

j∈SA
vA,j +

∑
j∈SB

vB,j
,

and similarly for retailer B. On the other hand, the probability of not acquiring any
product is

q0 =
1

1 +
∑

j∈SA
vA,j +

∑
j∈SB

vB,j
.

Proof. We first study a particular case. We observe that the probability of a client x
choosing product i ∈ SA over product j ∈ SA, j 6= i, is

P (UA,i(x) > UA,j(x)) = P (µA,i − αA,ipA,i + εxi > µA,j − αA,jpA,j + εxj )

= P (εxj < µA,i − µA,j − αA,ipA,i + αA,jpA,j + εxi )

= F (µA,i − µA,j − αA,ipA,i + αA,jpA,j + εxi )

= e
−

vA,j
vA,i

e−εxi

,

where in the third step we assume εxi to be known, and F is the cumulative distribution

function of εxj , that is, F (s) = e−e
−s

.

Therefore, the probability of a client x choosing product i ∈ SA over all other offered
products is the probability that the utility of product i ∈ SA is greater than the utility
of all other offered products, that is,

qA,i = P (UA,i(x) > U0(x), UA,i(x) > UA,j(x) ∀j ∈ SA j 6= i, UA,i(x) > UB,j(x) ∀j ∈ SB).

Moreover, since εxj for j ∈ SA ∪ SB ∪ {0} are independent and identically distributed,
we have that the probability of client x to choose product i ∈ SA over all other products
conditioned to εxi is

P (choose i over all products|εxi ) = e
− 1

vA,i
e−εxi ∏

j∈SA\{i}

e
−

vA,j
vA,i

e−εxi ∏
j∈SB

e
−

vB,j
vA,i

e−εxi

.

Therefore, qA,i is the integral of P (choose i over all products|εxi ) over R weighted by the
density of εxi :

qA,i =

∫ ∞
−∞

e− 1
vA,i

e−s ∏
j∈SA\{i}

e
−

vA,j
vA,i

e−s ∏
j∈SB

e
−

vB,j
vA,i

e−εxi

 e−se−e
−s
ds

=

∫ ∞
−∞

exp

− 1

vA,i
e−s −

∑
j∈SA

vA,j
vA,i

e−s −
∑
j∈SB

vB,j
vA,i

e−s

 e−sds

=

∫ ∞
−∞

exp

−e−s
 1

vA,i
+
∑
j∈SA

vA,j
vA,i

+
∑
j∈SB

vB,j
vA,i

 e−sds.
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Doing the change of variables t = e−s we obtain that

qA,i =

∫ ∞
0

exp

−t
 1

vA,i
+
∑
j∈SA

vA,j
vA,i

+
∑
j∈SB

vB,j
vA,i

 dt

=
exp

(
−t
(

1
vA,i

+
∑

j∈SA

vA,j

vA,i
+
∑

j∈SB

vB,j

vA,i

))
− 1
vA,i
−
∑

j∈SA

vA,j

vA,i
−
∑

j∈SB

vB,j

vA,i

∣∣∣∣∣
∞

0

=
vA,i

1 +
∑

j∈SA
vA,j +

∑
j∈SB

vB,j
.

The proof for q0 is analogous.

Similarly with the case of Cournot and Bertrand model, we can now find the expression
of the utility function of both competitors. The utility function in this case will be the
expected profit of each retailer, that is,

uA(SA, pA, SB, pB) =
∑
i∈SA

(pA,i − cA,i)qA,i,

for retailer A, and similarly for retailer B.

These are the functions that each retailer will try to maximize, given their competitor
assortment and price selection, that is, given a strategy (SB, pB) of retailer B, retailer A
will try to find a strategy (S∗A, p

∗
A) such that

uA(S∗A, p
∗
A, SB, pB) = max

(SA,pA)
uA(SA, pA, SB, pB),

or in other words, A will try to find a best response to the strategy (SB, pB), and similarly
for retailer B.

However, this may seem as a problem that is not easy to solve, because it is a combi-
natorial optimization problem. In order to solve this problem, firstly we restrict ourselves
to the case with fixed prices, where retailers compete only in assortment selection. In
that case, we find a problem transformation that transforms the problem of finding a best
response to a more manageable optimization problem.

Competition with fixed prices

We now suppose that vectors pA and pB are fixed. We observe that strategic variables
are only assortment selections SA ∈ AA and SB ∈ AB.

As stated before, given a strategy SB ∈ AB of retailer B, retailer A will try to find a
strategy S∗A such that

uA(S∗A, SB) = max
SA∈AA

uA(SA, SB),

and similarly for retailer B.

We notice that, since SA and SB are finite, AA and AB are also finite. Therefore, given
a strategy of a retailer, there always exists at least one best response for the competitor.

We now present a lemma that transforms the problem of finding a best response of a
retailer, given a strategy of the competitor, into a different optimization problem. Similar
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problem transformations can be found in Gallego et al. (2004) [9] or in Besbes and Sauré
(2016) [4].

Lemma 2.2. An assortment selection S∗A ∈ AA for retailer A maximizes uA(SA, SB) for
SA ∈ AA and for a given strategy SB ∈ AB of retailer B if and only if S∗A maximizes

y(SA, λ) =
∑
i∈SA

(pA,i − cA,i − λ)vA,i − λ
∑
i∈SB

vB,i,

for SA ∈ AA where λ is the solution to the problem maxλ ∈ (0,∞) such that

max
SA∈AA

y(SA, λ) ≥ λ,

and similarly for retailer B.

Proof. We observe that, for a given strategy SB, retailer A will maximize the function

uA(SA, SB) =
∑
i∈SA

(pA,i − cA,i)qA,i =

∑
i∈SA

(pA,i − cA,i)vA,i
1 +

∑
j∈SA

vA,j +
∑

j∈SB
vB,j

,

for SA ∈ AA, or in other words, will try to find the maximum λ ∈ (0,∞) such that

max
SA∈AA

( ∑
i∈SA

(pA,i − cA,i)vA,i
1 +

∑
j∈SA

vA,j +
∑

j∈SB
vB,j

)
≥ λ.

We can now cross multiply and group similar terms, and get that the problem of maxi-
mizing uA(SA, SB) for a given SB is equivalent to maximizing λ ∈ (0,∞) such that

max
SA∈AA

y(SA, λ) ≥ λ.

In order to further simplify the notation, we can express the problem of retailer A
finding a best response for the strategy SB ∈ AB as the optimization problem,

maxλ ∈ (0,∞) such that max
SA∈AA

∑
i∈SA

θA,i(λ)

 ≥ λ
1 +

∑
i∈SB

vB,i

 , (2.1)

where we denote θA,i(λ) = (pA,i − cA,i − λ)vA,i.

Notice that the term
∑

i∈SB
vB,i is independent of the assortment selection of retailerA,

and we can think of this term as the total attraction of competitor’s assortment selection.
In order to solve

max
SA∈AA

∑
i∈SA

θA,i(λ)

 ≥ λ(1 +
∑
i∈SB

vB,i),

retailer A can rank all his available products computing θA,i(λ) for i ∈ PA and then
selecting the products with highest, and positive, value θA,i(λ) until the limit of display
CA is reached. This process is called θA,i(λ) product ranking.
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We now study two crucial characteristics of retailer A’s best response for a strategy
SB ∈ AB for retailer B with total attraction e. We denote by

λA : (0,∞)→ (0,∞)

the solution to (2.1), that is, λA(e) is the expected profit per customer of retailer A
when facing an assortment selection of total attraction e from retailer B. Moreover,
following the notation used by Sundaram [22] for correspondences, we denote by aA(e)
the correspondence

aA : (0,∞)→ AA

that associates a total attraction e with a retailer A’s best response, that is, aA(e) is an
assortment selection that maximizes

∑
i∈SA

θA,i(λA(e)). We notice that, in general, the
image of aA is not unique.

Proposition 2.1. With the notation defined above, we have that

1. λA(·) is a strictly decreasing function.

2. Let us consider two strategies SB, S
′
B ∈ AB for retailer B with total attractions e

and e′, respectively. If e > e′, for all a ∈ aA(e) and for all a′ ∈ aA(e′), the total
attraction of a is greater or equal than the total attraction of a′.

Proof. We first observe that for any strategy SB ∈ AB with total attraction e > 0, and
for all a ∈ aA(e), we have that∑

i∈a
θA,i(λA(e)) = λA(e)(1 + e)

1. We assume that e > e′ > 0, and we want to prove that λA(e′) > λA(e).

We have that

max
SA∈AA

∑
i∈SA

θA,i(λA(e))

 = λA(e)(1 + e) > λA(e)(1 + e′).

We now consider functions f : (0,∞)→ (0,∞) defined by

f(λ) = max
SA∈AA

∑
i∈SA

θA,i(λ)


and g : (0,∞)→ (0,∞) defined by

g(λ) = λ(1 + e′).

We have that both functions f and g are continuous. Therefore, there exists an ε > 0
such that for all λ ∈ (λA(e)− ε, λA(e) + ε) we have that

max
SA∈AA

∑
i∈SA

θA,i(λ)

 = f(λ) > g(λ) = λ(1 + e′).
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Since f(λ) is decreasing in λ and g(λ) is increasing in λ, we have that λA(e′) > λA(e′).

2. We assume that e > e′ > 0. We consider a retailer A’s best response to an
assortment selection with total attraction e′, a′ ∈ aA(e′). As we commented before this
preposition, retailer A solves

max
SA∈AA

∑
i∈SA

θA,i(λ)

 ≥ λ(1 +
∑
i∈SB

vB,i)

by ranking the θA,i(λ) value for every product available to them and then selecting the
products with highest and positive θA,i(λ). Therefore, if a product is selected, it has a
higher or equal (because the display limit could be reached) value than any other not
selected product, that is, for any i ∈ a′ and j ∈ PA \ a′ we have that θA,i(λA(e′)) ≥
θA,j(λA(e′)).

Moreover, we consider a retailer A’s best response to an assortment selection with
total attraction e, a ∈ aA(e), and for any i ∈ a and j ∈ PA \ a we have that

θA,i(λA(e′)) + vA,i(λA(e′)− λA(e)) = vA,i(pA,i − cA,i − λA(e′)) + vA,i(λA(e′)− λA(e))

= θA,i(λA(e)) ≥ θA,j(λA(e))

= vA,j(pA,j − cA,j − λA(e′)) + vA,j(λA(e′)− λA(e))

= θA,j(λA(e′)) + vA,j(λA(e′)− λA(e)).

Therefore, for any a ∈ aA(e) and a′ ∈ aA(e′), if we consider products i ∈ a \ a′
and j ∈ a′ \ a, we have that θA,j(λA(e′)) ≥ θA,i(λA(e′)) because, in particular, j ∈ a′.
Moreover, from the inequality above we deduce that

vA,i(λA(e′)− λA(e)) = θA,i(λA(e′))− θA,i(λA(e′)) + vA,i(λA(e′)− λA(e))

≥ θA,j(λA(e′))− θA,i(λA(e′)) + vA,j(λA(e′)− λA(e))

= vA,j(λA(e′)− λA(e)).

We know from the first part of this proposition that λA(e′)− λA(e) > 0, therefore we
obtain that vA,i ≥ vA,j for all i ∈ a \ a′ and for all j ∈ a′ \ a.

We now observe that θA,i(λ) is a decreasing function in λ. Therefore, as λ increases,
there will be less products with positive θA,i(λ) value and therefore there will be less
selected products. As λA(e′) > λA(e), for all a ∈ aA(e) and a′ ∈ aA(e′) we have that
|a′| ≤ |a|. Therefore,

|a′ \ a| = |a′| − |a′ ∩ a| ≤ |a| − |a ∩ a′| = |a \ a′|.

We recall that retailer A is selling product i ∈ SA at positive profit for any strategy
SA, that is, pA,i > cA,i for all i ∈ SA, and thus vA,i > 0 for any i ∈ SA. Therefore,∑

i∈a\a′
vA,i ≥ |a \ a′| min

i∈a\a′
(vA,i) ≥ |a′ \ a| max

i∈a′\a
(vA,i) ≥

∑
i∈a′\a

vA,i.

To conclude, for any a ∈ aA(e) and a′ ∈ aA(e′),∑
i∈a

vA,i =
∑
i∈a∩a′

vA,i +
∑
i∈a\a′

vA,i ≥
∑
i∈a∩a′

vA,i +
∑
i∈a′\a

vA,i =
∑
i∈a′

vA,i.
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This proposition gives us some better view on the behaviour of retailers’ assortment
selection. The first part of the proposition expresses that, as the competitor’s assortment
selection total attraction increases, the expected profit of the retailer will decrease. This
characteristic is what we expect from the competition between two retailers: consumers
will tend to buy from the retailer that offers a more attractive assortment, either because
the products’ quality is higher or because more products are offered.

The second part of the proposition states that if the competitor increases the total
attraction of his assortment selection, the retailer will also increase the total attraction
of his assortment selection. Again, this is what we expect from this competition: if the
competitor’s quality or quantity of products increases, the retailer will tend to keep up
with his competitor by adding new products or better ones.

In the next theorem we prove that there exists at least one Nash equilibrium of the
game. Also, in the case of multiple equilibria, there exists an equilibrium that is preferred
by both retailers.

Theorem 2.1. Let us suppose that retailers A and B compete in assortment selection
only with only exclusive products. Then there always exists at least one equilibrium.

Moreover, in the case of multiple equilibria, there exists an equilibrium that Pareto-
dominates all other equilibria.

Proof. For retailer A and B we consider the sets of all total attraction values

ZA = {eA1 , eA2 , . . . , eAkA}

and
ZB = {eB1 , eB2 , . . . , eBkB},

where for j ∈ {1, 2, . . . , kA} each eAj =
∑

i∈SA
vA,i for some SA ∈ AA, and similarly for

retailer B. Moreover, we suppose that the total attraction values are ordered, that is,
eA1 < eA2 < . . . < eAkA and eB1 < eB2 < . . . < eBkB .

We also consider functions YA : ZB → P(ZA) defined by

YA(eB) =

{∑
i∈a

vA,i : a ∈ aA(eB)

}

and similarly YB : ZA → P(ZB) defined by

YB(eA) =

{∑
i∈a

vA,i : a ∈ aB(eA)

}
.

Finally we consider the correspondence Y : ZA × ZB → P(ZA) × P(ZB) defined by
Y (eA, eB) = (YA(eB), YB(eA)).

We first observe that ZA × ZB is a nonempty complete lattice.

Indeed, ZA × ZB with the ordering relation ≥ where (eA, eB) ≥ (fA, fB) if eA ≥ fA

and eB ≥ fB is a partially ordered set.

Moreover, we have that ZA × ZB is a lattice with

sup
ZA×ZB

((eA, eB), (fA, fB)) = (max(eA, fA),max(eB, fB))
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and
inf

ZA×ZB

((eA, eB), (fA, fB)) = (min(eA, fA),min(eB, fB)).

With this characterization of supremum and infimum, ZA × ZB is a complete lattice.

In Proposition 2.1 we have seen that if e > e′, we have that for all a ∈ aA(e) and
a′ ∈ aA(e′), the total attraction of a is greater or equal than the total attraction of a’.
Therefore, if (eA, eB) ≥ (fA, fB) we have that on one hand,

max
a∈aB(eA)∪aB(fA)

∑
i∈a

vA,i ∈ YA(eB)

and
max

a∈aA(eB)∪aA(fB)

∑
i∈a

vB,i ∈ YB(eA).

While in the other hand,

min
a∈aB(eA)∪aB(fA)

∑
i∈a

vA,i ∈ YA(fB)

and
min

a∈aA(eB)∪aA(fB)

∑
i∈a

vB,i ∈ YB(fA).

Therefore, Y is an increasing correspondence.

By the fixed point theorem on lattices, Theorem 1.1, we have that Y has at least one
fixed point.

We observe that if retailers select assortments with total attraction equal to the total
attraction in the fixed point, they would reach an equilibrium.

In order to find an equilibrium that Pareto-dominates the others, we observe that
one additional consequence of the fixed point Theorem 1.1 is that the set of fixed points
of Y is a complete lattice. Therefore, there exists a fixed point (eA∗ , e

B
∗ ) that satisfies

(fA, fB) ≥ (eA∗ , e
B
∗ ) for every other fixed point (fA, fB) of Y.

We recall, from Proposition 2.1, that the expected profit of retailer A is strictly de-
creasing in retailer B’s assortment selection total attraction. Therefore, retailer A prefers
an equilibrium that minimizes the total attraction of retailer B’s assortment selection,
and similarly for retailer B.

In conclusion, both retailers prefer the equilibrium associated with total attraction eA∗
and eB∗ , respectively.

Competition in prices and assortment

We now study the case where retailers compete in both assortment selection and
products’ prices. In order to study this case, we follow a similar structure as in the case
of competition in assortment selection: we first obtain monotonicity results of the best
responses and then we utilize those results to prove the existence of Nash equilibria of the
game.

As we stated in the previous section where we defined the model, strategies are
now pairs (SA, pA) where SA ∈ AA is the assortment selection of retailer A and pA =
(pA,1, pA,2, . . . , pA,|SA|) is the vector of prices, where for all i ∈ SA we have that pA,i is the
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price set for product i and pA,i > cA,i. And similarly for retailer B. Moreover, we consider
that retailers select these strategies simultaneously, without knowing their competitor’s
strategy.

Similarly to the case of competition in assortment selection, given a strategy (SB, pB)
for retailer B, retailer A’s best response will be the solution to the problem of maximizing
λ such that

max
(SA,pA)

∑
i∈SA

(pA,i − cA,i − λ)vA,i(pA,i)

 ≥ λ
1 +

∑
i∈SB

vB,i(pB,i)

 .

We notice that we can calculate best responses by first fixing an assortment selection
and computing the best prices for those products and then fixing the prices and calculating
the best assortment selection, a problem that we have already solved.

For a given assortment and price selection of retailer B, and for a given λ ∈ (0,∞), if
the assortment selection of retailer A is fixed, retailer A faces the optimization problem

max
pA

∑
i∈SA

(pA,i − cA,i − λ)vA,i(pA,i)


whose solution, using partial differentiation analysis, is

p∗A,i(λ) =
1

αA,i
+ cA,i + λ,

for each product i in the assortment selection of retailer A.

Similarly to the case of competition in assortment selection only, we introduce

λA : (0,∞)→ (0,∞)

the solution to the maximization problem above, that is, λA(e) is the expected profit per
customer of retailer A when facing an assortment and price selection of total attraction e
from retailer B.

Moreover, following the notation used by Sundaram [22] for correspondences, we denote
by aA(e) the correspondence

aA : (0,∞)→ AA

that associates a total attraction e with a retailer A’s best assortment selection, that is,
aA(e) is an assortment selection that maximizes

∑
i∈SA

θA,i(λA(e)). We notice that, in
general, the image of aA is not unique.
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Proposition 2.2. With the notation defined above, we have that

1. λA(·) is a strictly decreasing function.

2. Given two strategies (SB, pB), (S′B, p
′
B) for retailer B with total attraction e and

e′, respectively. If e > e′ and for all a ∈ aA(e) and for all a′ ∈ aA(e′), the total
attraction of a is greater or equal than the total attraction of a′.

Proof. We first observe that for any strategy (SB, pB) with total attraction e > 0, and
for all a ∈ aA(e), we have that∑

i∈a
θA,i(λA(e)) = λA(e)(1 + e),

where now θA,i(λA(e)) = vA,i(p
∗
A,i(λA(e)))(p∗A,i(λA(e))− cA,i − λA(e)).

1. We assume that e > e′ > 0, and we want to prove that λA(e′) > λA(e).

We have that

max
SA∈AA

∑
i∈SA

θA,i(λA(e))

 = λA(e)(1 + e) > λA(e)(1 + e′).

We now consider functions f : (0,∞)→ (0,∞) defined by

f(λ) = max
SA∈AA

∑
i∈SA

θA,i(λ)


and g : (0,∞)→ (0,∞) defined by

g(λ) = λ(1 + e′).

We have that both functions f and g are continuous. Therefore, there exists an ε > 0
such that for all λ ∈ (λA(e)− ε, λA(e) + ε) we have that

max
SA∈AA

∑
i∈SA

θA,i(λ)

 = f(λ) > g(λ) = λ(1 + e′).

Since f(λ) is decreasing in λ and g(λ) is increasing in λ, we have that λA(e′) > λA(e′).

2. We assume that e > e′ > 0. We consider retailer A’s best responses a ∈ aA(e) and
a′ ∈ aA(e′). By the product ranking commented in the previous section, we have that for
all i ∈ a′ \ a and j ∈ a \ a′

θA,i(λA(e′)) ≥ θA,j(λA(e′)),

and for all i ∈ a \ a′ and j ∈ a′ \ a we have that

θA,i(λA(e)) ≥ θA,j(λA(e)).

Furthermore, we notice that if λ > 0, θA,i(λ) > 0 for every product i. We recall that
retailers will choose products with highest, and positive, θA,i(λ) value. As every product
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has a positive value, we conclude that best responses have as many products as possible,
that is, |a| = CA. Therefore, for all i ∈ a \ a′ and j ∈ a′ \ a we have that

θA,i(λA(e))− θA,i(λA(e′)) ≥ θA,j(λA(e))− θA,j(λA(e′)).

Moreover, we have that θA,i : (0,∞)→ (0,∞) is a continuous and differentiable function
that satisfies for all λ > 0

dθA,i
dλ

(λ) = −eµA,i−αA,i(cA,i+λ)−1 = −vA,i(p∗A,i(λ)) < 0.

Moreover, we observe that for every product i, vA,i(p
∗
A,i(·)) is a decreasing function.

Therefore, by the mean value theorem, we have that there is a λ̃ ∈ (λA(e), λA(e′)) such
that

θA,i(λA(e)− θA,i(λA(e′))

λA(e′)− λA(e)
= −

dθA,i
dλ

(λ̃) = vA,i(p
∗
A,i(λ̃)).

Utilizing that vA,i(p
∗
A,i(λ)) is a decreasing function and multiplying in cross, we obtain

that for every i ∈ a \ a′ and j ∈ a′ \ a,

vA,i(p
∗
A,i(λA(e)))(λA(e′)− λA(e)) ≥ θA,i(λA(e))− θA,i(λA(e′))

≥ θA,j(λA(e))− θA,j(λA(e′))

≥ vA,j(p∗A,j(λA(e′)))(λA(e′)− λA(e′)),

where in the last inequality we used the mean value theorem again. Therefore, as
λA(e′) − λA(e) > 0 we have that for all i ∈ a \ a′ and j ∈ a′ \ a, vA,i(p

∗
A,i(λA(e))) ≥

vA,j(p
∗
A,j(λA(e′))). Finally, we have that for all a ∈ aA(e) and a′ ∈ aA(e′),

∑
i∈a

vA,i(p
∗
A,i(λA(e))) =

∑
i∈a\a′

vA,i(p
∗
A,i(λA(e))) +

∑
i∈a∩a′

vA,i(p
∗
A,i(λA(e)))

≥
∑
i∈a′\a

vA,i(p
∗
A,i(λA(e′))) +

∑
i∈a∩a′

vA,i(p
∗
A,i(λA(e)))

≥
∑
i∈a′

vA,i(p
∗
A,i(λA(e′))),

With this proposition, we have obtained similar information about the competition
between the two retailers as in the case of competition in only assortment selection. The
first part of the proposition states that, as the competitor’s assortment selection total
attraction increases, the expected profit of the retailer will decrease. This is what we
expect from the competition between two retailers: consumers will tend to buy from the
retailer that offers a more attractive assortment, either because the products’ quality is
higher or are cheaper, or because more products are offered.

The second part of the proposition states that if the competitor increases the total
attraction of his assortment selection, the retailer will also increase the total attraction
of his assortment selection. Again, this is what we expect from this competition: if the
competitor’s quality increases, the products are cheaper or he offers a wider selection of
products, the retailer will tend to keep up with his competitor by adding new products,
better ones or cheaper ones.
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In the next theorem we prove that there exists at least one Nash equilibrium of the
game. Also, in the case of multiple equilibria, there exists an equilibrium that is preferred
by both retailers.

Theorem 2.2. If retailer A and B compete in assortment with exclusive products and
price selection, there always exists at least one equilibrium. Moreover, in the case of
multiple equilibria, there exists an equilibrium that Pareto-dominates all other equilibria.

Proof. The proof of this theorem is very similar to the analogous result of competition in
assortment selection only.

For retailer A and B we consider the sets of all total attraction values

ZA = {eA1 , eA2 , . . . , eAkA}

and

ZB = {eB1 , eB2 , . . . , eBkB},

where for j ∈ {1, 2, . . . , kA} each eAj =
∑

i∈SA
vA,i(p

∗
A,i(λ))) for some SA ∈ AA, and

similarly for retailer B. Moreover, we suppose that the total attraction values are ordered,
that is, eA1 < eA2 < . . . < eAkA and eB1 < eB2 < . . . < eBkB .

We also consider functions YA : ZB → P(ZA) defined by

YA(eB) =

{∑
i∈a

vA,i(p
∗
A,i(λA(eB))) : a ∈ aA(eB)

}

and similarly YB : ZA → P(ZB) defined by

YB(eA) =

{∑
i∈a

vA,i(p
∗
B,i(λB(eA))) : a ∈ aB(eA)

}
.

Finally we consider the correspondence Y : ZA × ZB → P(ZA) × P(ZA) defined by
Y (eA, eB) = (YA(eB), YB(eA)).

We first observe that ZA ×ZB is a nonempty complete lattice. Indeed, ZA ×ZB with
the ordering relation ≥ where (eA, eB) ≥ (fA, fB) if eA ≥ fA and eB ≥ fB is a partially
ordered set.

Moreover, we have that ZA × ZB is a lattice with

sup
ZA×ZB

((eA, eB), (fA, fB)) = (max(eA, fA),max(eB, fB))

and

inf
ZA×ZB

((eA, eB), (fA, fB)) = (min(eA, fA),min(eB, fB)).

With this characterization of supremum and infimum, ZA × ZB is a complete lattice.

In Proposition 2.2 we have seen that if e > e′, we have that for all a ∈ aA(e) and
a′ ∈ aA(e′), the total attraction of a is greater or equal than the total attraction of a’.
Therefore, if (eA, eB) ≥ (fA, fB) we have that on one hand,

max
a∈aB(eA)∪aB(fA)

∑
i∈a

vA,i(p
∗
A,i(λA(eB))) ∈ YA(eB)
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and
max

a∈aA(eB)∪aA(fB)

∑
i∈a

vB,i(p
∗
B,i(λB(eA))) ∈ YB(eA).

While in the other hand,

min
a∈aB(eA)∪aB(fA)

∑
i∈a

vA,i(p
∗
A,i(λA(eB))) ∈ YA(fB)

and
min

a∈aA(eB)∪aA(fB)

∑
i∈a

vB,i(p
∗
B,i(λB(eA))) ∈ YB(fA).

Therefore, Y is an increasing correspondence.

By the fixed point theorem on lattices, Theorem 1.1, we have that Y has at least one
fixed point.

We observe that if retailers select assortments with total attraction equal to the total
attraction in the fixed point, they would reach an equilibrium.

In order to find an equilibrium that Pareto-dominates the others, we observe that
one additional consequence of the fixed point Theorem 1.1 is that the set of fixed points
of Y is a complete lattice. Therefore, there exists a fixed point (eA∗ , e

B
∗ ) that satisfies

(fA, fB) ≥ (eA∗ , e
B
∗ ) for every other fixed point (fA, fB) of Y.

We recall, from Proposition 2.2, that the expected profit of retailer A is strictly de-
creasing in retailer B’s assortment and price selection total attraction. Therefore, retailer
A prefers an equilibrium that minimizes the total attraction of retailer B’s assortment
and price selection, and similarly for retailer B.

In conclusion, both retailers prefer the equilibrium associated with total attraction eA∗
and eB∗ , respectively.

With this result we proved a very interesting result that shows the existence of Nash
equilibria when retailers compete in assortment with only exclusive products and in price
selection. Moreover, we proved that in the case of multiple equilibria, there is a particular
equilibrium that Pareto-dominates all other and thus both retailers prefer. In the next
chapter we see what happens when retailers compete with common products and if similar
results can be found.
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Chapter 3

Competition: the model II

In this chapter we study the case of competition in both exclusive and common prod-
ucts, that is, given two assortment selections SA and SB for retailer A and B, respectively,
we have that in general SA ∩ SB 6= ∅.

Similarly to the case of competition in exclusive products, we study if competitors can
achieve a Nash equilibrium and under which circumstances. In order to do so, we follow
a similar structure to the previous case. We firstly restrict ourselves in the case where
retailers compete only in assortment selection, this time with both exclusive and common
products. Later, we study the case where retailers compete both in assortment selection
and prices selection.

3.1 Competition between two retailers

In the next lemma we compute the probability that a client chooses product i from a
retailer. However, we notice that in this case one common product imight have the highest
attraction factor but this value is equal for both retailers. In this case, the customer is
interested in acquiring this product but has to choose from which retailer to buy it. If this
is the case, we suppose that the customer chooses the retailer with the same probability.

Lemma 3.1. Let (SA, pA) and (SB, pB) be two strategies of retailer A and B, respectively.
The probability that a client acquires product i ∈ SA from retailer A can be expressed as

qA,i =
vA,i

(
1SA\SB

(i) + δA,i1SB
(i)
)

1 +
∑

j∈SA\SB
vA,j +

∑
j∈SA∩SB

max(vA,j , vB,j) +
∑

j∈SB\SA
vB,j

,

and similarly for retailer B. On the other hand, the probability of not acquiring any
product is

q0 =
1

1 +
∑

j∈SA\SB
vA,j +

∑
j∈SA∩SB

max(vA,j , vB,j) +
∑

j∈SB\SA
vB,j

,

where 1A is the indicator function of set A, 1 and we denoted by

δA,j =

{
1 if vA,j > vB,j
1
2 if vA,j = vB,j .

1Let X be a set. The indicator function of a subset A ⊂ X is a function 1A : X → {0, 1} defined as
1A(x) = 1 if x ∈ A and 1A(x) = 0 if x /∈ A.

29
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Proof. Similarly to the proof of Lemma 2.1, we have to find the probability of a client x
choosing product i ∈ SA, that is,

qA,i = P (UA,i(x) ≥ U0(x), UA,i(x) ≥ UA,j(x) ∀j ∈ SA j 6= i, UA,i(x) ≥ UB,j(x) ∀j ∈ SB).

Unlike the case of Lemma 2.1, we now have common products. In order to solve this
problem, we look at three groups of products: the products in SA \ SB, the products in
SA ∩ SB and the products in SB \ SA.

Similarly to Lemma 2.1, the probability of a customer choosing product i over all
j ∈ SA \ SB conditioned to εxi is

P (UA,i(x) ≥ UA,j(x) ∀j 6= i | εxi ) =
∏

j∈(SA\SB)\{i}

e
−

vA,j
vA,i

e−εxi

,

and similarly for products in SB \ SA.

In the case of the products in SA ∩ SB we have that the probability of a customer
choosing product i over all j ∈ SA ∩ SB conditioned to εxi is

P (UA,i(x) ≥ UA,j(x), UA,i(x) ≥ UB,j(x) ∀j 6= i | εxi ).

We notice that for every product j ∈ SA ∩ SB, j 6= i we have that

P (UA,i(x) ≥ UA,j(x), UA,i(x) ≥ UB,j(x) | εxi )

= P (µA,i − αA,ipA,i + εxi ≥ µA,j − αA,jpA,j + εxj , µA,i − αA,ipA,iεxi ≥ µB,j − αB,jpB,jεxj | εxi )

= P (εxj ≤ −µA,i + αA,ipA,i + max(µA,j − αA,jpA,j , µB,j − αB,jpB,j)− εxi | εxi )

= e
−

max(vA,j ,vB,j)

vA,i
e−εxi

.

Therefore, for the group of items in SA ∩ SB we have that

P (UA,i(x) ≥ UA,j(x), UA,i(x) ≥ UB,j(x) ∀j 6= i | εxi ) =
∏

j∈(SA∩SB)\{i}

e
−

max(vA,j ,vB,j)

vA,i
e−εxi

.

Finally, we have to distinguish whether i is a common or exclusive product.

If i is an exclusive product, then

P (choose i over all products|εxi )

= exp

−e−εxi
 1

vA,i
+

∑
j∈(SA\SB)\{i}

vA,j
vA,i

+
∑

j∈SB∩SA

max(vA,j , vB,j)

vA,i
+

∑
j∈SB\SA

vB,j
vA,i

 .

On the other hand, if i is a common product we have that

P (choose i over all products|εxi )

= P (choose i from retailer A, choose i over all products different of i|εxi )

= δA,iexp

−e−εxi
 1

vA,i
+

∑
j∈SA\SB

vA,j
vA,i

+
∑

j∈(SB∩SA)\{i}

max(vA,j , vB,j)

vA,i
+

∑
j∈SB\SA

vB,j
vA,i

 .

In both cases we obtain the result integrating P (choose i over all products|εxi ) over R
weighted by the density of εxi and applying similar algebraic manipulations to the ones
previously done in Lemma 2.1.
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Similarly to the previous case, we first study the case of competition with fixed prices.
In order to study this case, we find a more general problem transformation than the one
presented in Lemma 2.2.

Competition with fixed prices

We suppose that the price vectors for both retailers pA and pB are fixed. Given a
strategy SB ∈ AB of retailer B, retailer A will try to find a strategy S∗A such that

uA(S∗A, SB) = max
SA∈AA

uA(SA, SB),

and similarly for retailer B.

We now present a problem transformation, similar to the one presented in Lemma 2.2
that transforms our problem of finding a best response into another optimization problem.
The proof is the same as the proof of Lemma 2.2.

Lemma 3.2. An assortment selection S∗A ∈ AA for retailer A maximizes uA(SA, SB) for
SA ∈ AA and for a given strategy SB ∈ AB of retailer B if and only if S∗A maximizes

y(SA, λ) =
∑
i∈SA

(pA,i−cA,i−λ)vA,i+
∑

j∈SA∩SB

(δA,i(pA,i − cA,i)− λ) max(vA,i, vB,i)−λ
∑
i∈SB

vB,i,

for SA ∈ AA where λ is the solution to the problem maxλ ∈ (0,∞) such that

max
SA∈AA

y(SA, λ) ≥ λ,

and similarly for retailer B.

We can simplify the expression above by noticing that we can split the term max(vA,i, vB,i) =
δA,ivA,i + δB,ivB,i for every common product i and by introducing the following notation

θA,i(λ) =

{
(pA,i − cA,i − λ)vA,i if i is an exclusive product

δA,i((pA,i − cA,i − λ)vA,i + λvB,i) if i is a common product.

Therefore, for a given strategy SB ∈ AB for retailer B, retailer A has to solve the
optimization problem

maxλ ∈ (0,∞) such that max
SA∈AA

∑
i∈SA

θA,i(λ) ≥ λ(1 +
∑
i∈SB

vB,i)

 .

The problem of finding a Nash equilibrium in this case is more complex. In the next
result we show that if retailers face no capacity limitation, that is, if they can offer all
available products at once, a Nash equilibrium can be found. The proof of this result can
be found in Besbes and Sauré [4]. However, if they face capacity limitation, in general,
no Nash equilibrium can be found. We will see an example next.
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Theorem 3.1. We suppose that retailers A and B compete in assortment selection only
with both exclusive and common products and face no capacity limitations, that is, CA =
|PA| and CA = |PB|. Then there always exists at least one Nash equilibrium.

Proof. In order to prove this theorem, we consider a sequence of assortment selection
pairs. We assume that each retailer starts with a certain assortment selection and each
turn each retailer selects an assortment that is a best response to the competitor’s previous
assortment selection. This procedure is known in the literature as a tatônnement process,
where both competitors reach an equilibrium by trial and error (tatônnement in French).

We consider the sequence of assortment selection pairs {(SnA, SnB)}n≥1 defined by

S1
A = S1

B = {i ∈ PA ∩ PB : vA,i = vB,i}

and for n > 1, for a given pair of assortment selection (Sn−1A , Sn−1B ), we consider

λnA = max

λ ∈ (0,∞) : max
SA∈PA

∑
i∈SA

θA,i(λ, S
k−1
B ) ≥ λ(1 +

∑
i∈Sn−1

B

vB,i)

 ,

SnA ∈

a ∈ AA :
∑
i∈a

θA,i(λ
n
A, S

k−1
B ) = max

SA∈AA

∑
i∈SA

θA,i(λ
n
A, S

k−1
B ) and |a| is maximal

 ,

and similarly for retailer B.

Therefore, we have a sequence of assortment selection pairs (SnA, S
n
B) for n ≥ 1 where

retailer’s A assortment selection SnA is a best response to retailer’s B assortment selection
Sn−1B , and similarly for retailer B. Moreover, each assortment selection in the sequence
has the maximum number of products possible (among other best responses).

We now show that this sequence is increasing, that is, for all n > 1, Sn−1A ⊆ SnA and
Sn−1B ⊆ SnB. We prove this result by induction.

For n = 1, we consider the pair (S1
A, S

1
B). We have that for every product i ∈ S1

A

θA,i(λ) =
1

2
((pA,i − cA,i − λ)vA,i + λvB,i) =

1

2
(pA,i − cA,i)vA,i > 0,

where we used that if i ∈ S1
A then vA,i = vB,i. Therefore, the products in S1

A are added in
every assortment selection for retailer A. Since there are no capacity limitations we have
that S1

A ⊆ S2
A, and similarly for retailer B.

We assume that Sk−1A ⊆ SkA for every 2 ≤ k ≤ n, and similarly for retailer B. We want
to prove that SnA ⊆ S

n+1
A and SnB ⊆ S

n+1
B .

We first notice that for all k > 1 and for a fixed assortment selection SkB of retailer B,
we have that for all SA ∈ AA

∑
i∈SA

θA,i(λ
k
A, S

k
B) ≤ λkA

1 +
∑
i∈Sk

B

vB,i

 . (3.1)

Indeed, in order to prove this inequality we can group the common products in three
groups PA ∩PB = X ∪ Y ∪Z where X = {i ∈ PA ∩PB : vA,i > vB,i}, Y = {i ∈ PA ∩PB :
vA,i = vB,i} and Z = {i ∈ PA ∩ PB : vA,i < vB,i}.
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As we already stated before, the products in Y are added in every assortment selection
for each retailer. Therefore, for a fixed assortment selection SkB and for every λ ≥ 0 we
can write

∑
i∈Sk

A

θA,i(λ, S
k
B) =

∑
i∈Sk

A∩(PA\PB)

θA,i(λ, S
k
B) +

∑
i∈Sk

A∩Z\S
k
B

θA,i(λ, S
k
B) +

∑
i∈Sk

A∩X∩S
k
B

θA,i(λ, S
k
B)

+
∑

i∈Sk
A∩X\S

k
B

θA,i(λ, S
k
B) +

∑
i∈Y

θA,i(λ, S
k
B)

=
∑

i∈Sk
A∩(PA\PB)

vA,i(pA,i − cA,i − λ) +
∑

i∈Sk
A∩Z\S

k
B

vA,i(pA,i − cA,i − λ)

+
∑

i∈Sk
A∩X∩S

k
B

vA,i

(
pA,i − cA,i − λ

(
vA,i − vB,i

vA,i

))

+
∑

i∈Sk
A∩X\S

k
B

vA,i(pA,i − cA,i − λ) +
1

2

∑
i∈Y

vA,i(pA,i − cA,i − λ)

=
∑

i∈Sk
A∩(PA\PB)

vA,i(pA,i − cA,i − λ) +
∑

i∈Sk
A∩Z\S

k−1
B

vA,i(pA,i − cA,i − λ)

−
∑

i∈Sk
A∩Z∩S

k
B\S

k−1
B

vA,i(pA,i − cA,i − λ)

+
∑

i∈Sk
A∩X∩S

k−1
B

vA,i

(
pA,i − cA,i − λ

(
vA,i − vB,i

vA,i

))
+

∑
i∈Sk

A∩X\S
k−1
B

vA,i(pA,i − cA,i − λ) +
∑

i∈Sk
A∩X∩S

k
B\S

k−1
B

vB,iλ

+
1

2

∑
i∈Y

vA,i(pA,i − cA,i − λ).

In particular, since for a fixed strategy Sk−1B for retailer B and for every i ∈ SkA \S
k−1
B

we have that θA,i(λ
k
A, S

k−1
B ) = vA,i(pA,i−cA,i−λkA) ≥ 0 , we deduce the following inequality

for λ = λkA

∑
i∈Sk

A

θA,i(λ
k
A, S

k
B) = λkA

1 +
∑

i∈Sk−1
B

vB,i +
∑

i∈Sk
A∩X∩S

k
B\S

k−1
B

vB,i


−

∑
i∈Sk

A∩Z∩S
k
B\S

k−1
B

vA,i(pA,i − cA,i − λkA)

≤ λkA

1 +
∑

i∈Sk−1
B

vB,i +
∑

i∈Sk
A∩X∩S

k
B\S

k−1
B

vB,i


(3.2)

In conclusion, for every assortment selection SA ∈ AA and for a fixed assortment
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selection SkB of retailer B we have that∑
i∈SA

θA,i(λ
k
A, S

k
B) =

∑
i∈SA∩Sk

B

θA,i(λ
k
A, S

k
B) +

∑
i∈SA\Sk

B

θA,i(λ
k
A, S

k
B)

≤
∑
i∈Sk

A

θA,i(λ
k
A, S

k
B) +

∑
i∈(SA\Sk

A)∩(Sk
B\S

k−1
B )∩X

(θA,i(λ
k
A, S

k−1
B ) + λkAvB,i)

+
∑

i∈(SA\Sk
A)∩Sk−1

B

θA,i(λ
k
A) +

∑
i∈(SA\Sk

A)∩(X\Sk
B)

θA,i(λ
k
A)

≤ λkA

1 +
∑

i∈Sk−1
B

vB,i +
∑

i∈Sk
A∩X∩S

k
B\S

k−1
B

vB,i +
∑

i∈(SA∩Sk
A)∩(Sk

B\S
k−1
B )∩X

vB,i


≤ λkA

1 +
∑
i∈Sk

B

vB,i

 .

In the first inequality above we used that θA,i(λ
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deduce that θA,i(λ
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In the second inequality above we used the inequality previously found in (3.2) and
the fact that θA,i(λ

k
A, S

k−1
B ) < 0 if i ∈ PA \ SkA, because SkA is a best response to Sk−1B .

To conclude the induction, we have that the inequality in (3.1) is true for every assort-
ment selection SA ∈ AA. In particular it is also true when applied to a best response to
SkB. Therefore we have that λk+1

A ≤ λkA. Moreover, since θA,i(λ
k
A, S

k
B) ≥ 0 for every i ∈ SkA

and θA,i(·, SkB) is a decreasing function, we deduce that θA,i(λ
k+1
A , SkB) ≥ 0. Therefore, we

have that SkA ⊆ S
k+1
A .

To conclude the proof, we notice that we constructed a succession of assortment se-
lection pairs {(SnA, SnB)}n≥1 such that SkA ⊆ Sk+1

A and SkB ⊆ Sk+1
B for every k ≥ 1. Since

the sets of all available products PA and PB are finite, we have that there exists n1 ≥ 1
and n2 ≥ 1 such that SnA = Sn1

A for all n ≥ n1 and SnB = Sn2
B for all n ≥ n2. Therefore we

have that (Sn0
A , Sn0

B ) is a Nash equilibrium, where n0 = max(n1, n2).

In the next example we present a competition between two retailers where they have
limited space in shops, and we show that no Nash equilibrium can be found.

Example 3.1. Let A and B be to retailers that compete over a market. We consider
that they have access to common products PA = {1, 2, 3} and PB = {1, 2, 3}, respectively.
Moreover, we assume that they face capacity limitations in shops such that retailer A can
only display two products at once and retailer B can only display one product at once. In
other words, CA = 2 and CB = 1.

Therefore, their strategy space is

AA = {{1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}},
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and
AB = {{1}, {2}, {3}},

respectively.

Furthermore, we assume that all products have a marginal cost of production equal
to 1 and a selling price of 2, therefore the profit of each retailer per sale is 1. Also,
we assume that all products have similar attraction factors such that vA,1 = vB,1 = 4.9,
vA,2 = vB,2 = 5 and vA,3 = vB,3 = 5.1.

With that being said, we can compute the probabilities that a customer selects a product
i for two given strategies SA ∈ AA and SB ∈ AB following the formula given in Lemma
2.3.

In order to show an example of how these probabilities are computed, we suppose that
SA = {1, 2} and SB = {1}. Then, we have that the probability of a customer buying
product 1 from retailer A is

qA,1 =
1

2
·

vA,1
1 + vA,1 + vA,2

=
49

218
.

Finally, we can write the matrix of outcomes where every entry is computed as

uA(SA, SB) =
∑
i∈SA

(pA,i − cA,i)qA,i(SA, SB) =
∑
i∈SA

qA,i(SA, SB),

and similarly for retailer B.

Therefore, we have that the matrix of outcomes is:

{1} {2} {3}

{1} ( 49
118 , 49

118) ( 49
109 , 50

109) ( 49
110 , 51

110)

{2} ( 50
109 , 49

109) ( 5
12 , 5

12) ( 50
111 , 17

37)

{3} ( 51
110 , 49

110) (1737 , 50
111) ( 51

122 , 51
122)

{1, 2} (149218 , 49
218) ( 74

109 , 25
109) ( 99

160 , 51
160)

{1, 3} (151220 , 49
220) (58 , 5

16) (149220 , 51
220)

{2, 3} (101160 , 5
16) ( 76

111 , 25
111) (151222 , 17

74)

Table 3.1: Payoff matrix of the game of Example 3.1

In this table, the best responses are underlined. As we can see, there are no Nash
equilibria of the game.
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Competition in prices and assortment

We now study the case where retailer compete in both assortment selection and price
fixing. In other words, strategies are now pairs (SA, pA) with SA ∈ AA is the assortment
selection of retailer A and pA = (pA,1, pA,2, . . . , pA,|SA|) is the vector of prices, where for
all i ∈ SA we have that pA,i is the price at which retailer A is willing to sell product i
and pA,i > cA,i. And similarly for retailer B. Moreover, we consider that retailers select
these strategies simultaneously, without knowing their competitor’s strategy.

Similarly to the case of competition in assortment selection, given a strategy (SB, pB)
for retailer B, retailer A’s best response will be the solution to the problem of maximizing
λ ≥ 0 such that

max
(SA,pA)

∑
i∈SA

θA,i(λ, pA, SB, pB)

 ≥ λ
1 +

∑
i∈SB

vB,i(pB,i)

 ,

where we recall that

θA,i(λ, pA, SB, pB) =

{
(pA,i − cA,i − λ)vA,i if i /∈ SB
δA,i((pA,i − cA,i − λ)vA,i + λvB,i) if i ∈ SB.

Notice that we can calculate best responses by first fixing an assortment selection and
calculating the best prices for those products and then fixing the prices and calculating
the best assortment selection, a problem that we have already solved.

Let us suppose that retailer B offers assortment selection SB and price selection pB.
Moreover, we suppose that retailer A’s assortment selection SA is fixed. For a given λ ≥ 0
we have that the price at which retailer A will sell exclusive product i is

p∗A,i(λ) =
1

αA,i
+ cA,i + λ,

which we already computed before. However, the study of prices for common products is
more complex, as retailers will tend to lower the price of a product in order to capture the
whole market. In order to study this case, for every common product i we introduce pminA,i

the minimum price at which retailer A is willing to sell common product i, and therefore
will not further lower the price of product i past pminA,i . And similarly for retailer B.

We now consider the set of common products whose attraction level with the minimum
price is higher for retailer A, that is,

SA = {i ∈ SA ∩ SB : vA,i(p
min
A,i ) > vB,i(p

min
B,i )}.

For the products in this subset SA retailer A is willing to compete with retailer B and
lower product i’s price in order to overtake the whole market, and therefore retailer A
will fix prices

p∗A,i = min

(
µA,i − µB,i + αB,ip

min
B,i

αA,i
,

1

αA,i
+ cA,i + λ

)
while for the common products i not in this subset, retailer A is not able to overtake the
whole market, and therefore will fix prices p∗A,i = pminA,i .

With the next result we show that if retailers can offer all available products at once
(no capacity limitations are present), then a Nash equilibrium can be found.



3.1. COMPETITION BETWEEN TWO RETAILERS 37

Theorem 3.2. We suppose that retailers A and B compete in assortment selection and
price selection with both exclusive and common products and face no capacity limitations,
that is, CA = |PA| and CA = |PB|. Then there always exists at least one Nash equilibrium.

Proof. We suppose retailer B offers a fixed strategy (SB, pB). We define

θ∗A,i(λ, SB, pB) = max
pA

θA,i(λ, pA, SB, pB).

We observe that by the definition of θA,i we have that θ∗A,i(λ, SB, pB) ≥ 0, since for every
λ we can find a feasible price such that θA,i(λ, pA, SB, pB) ≥ 0. Therefore, all products in
PA will be added to the assortment selection of retailer A, since no capacity limitations
are present. Therefore, we can suppose that both retailers will offer all available products.
Furthermore, the maximization problem that retailer A has to solve can be re-expressed
as

max

λ ≥ 0 :
∑
i∈PA

θ∗A,i(λ, PB, pB) ≥ λ(1 +
∑
i∈PB

vB,i(pB,i)

 .

Consequently, any pair (λA, λB) leads to an equilibrium, where λA denotes the ex-
pected profit of retailer A in equilibrium and similarly for retailer B, if they are solution
to equations{∑

i∈PA
θ∗A,i(λA, PB, p

∗
B(λB)) = λA(1 +

∑
i∈PB

vB,i(p
∗
B,i(λB))∑

i∈PB
θ∗B,i(λB, PA, p

∗
A(λA)) = λB(1 +

∑
i∈PA

vA,i(p
∗
A,i(λA)).

In order to solve each equation we observe that by the definition of θ∗A,i(λA, PB, p
∗
B(λB)),

there exists a positive constant M > 0 such that θ∗A,i(λA, PB, p
∗
B(λB)) is positive and de-

creasing for λ ∈ [0,M ]. Moreover, in each equation we have that λA(1+
∑

i∈PB
vB,i(p

∗
B,i(λB))

is increasing in λ and for λ = 0, it equals 0. Therefore, there exists an unique solution to
the first equation which we denote YA(λB), and similarly for the second equation.

Furthermore, we notice that in each equation, the term θ∗A,i(λA, PB, p
∗
B(λB)) is in-

dependent of λB while the term λA(1 +
∑

i∈PB
vB,i(p

∗
B,i(λB)) is decreasing in λB; and

similarly for the second equation. Therefore, the solutions YA(·) and YB(·) is increasing.

Consequently, we have that

0 ≤ YA(YB(0)) ≤ YA(YB(M)) ≤M.

Since prices p∗A(·) and p∗B(·) are continuous by definition, we have that YA(·) and YB(·)
are also continuous. Therefore, by Bolzano’s Theorem applied to continuous function
YA(YB(λ)) − λ in [0,M ] and utilizing the inequalities above, we have there exists λ∗ ∈
[0,M ] such that YA(YB(λ∗)) = λ∗. Finally, we notice that the pair (λ∗, Y ∗B) solves the
first equation in the system above. Doing a similar reasoning for the second equation, we
find and equilibrium.

With this result we proved a very interesting result that shows the existence of Nash
equilibria when retailers compete in assortment with both common and exclusive products
and in price selection and face no capacity limitation. However, contrary to the case
of competition only in exclusive products, in the case of multiple equilibria we cannot
guarantee the existence of an equilibrium that Pareto-dominates all other equilibria.
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Chapter 4

Application: competition between
Gucci and Farfetch

In the previous chapter we studied the consequences of the competition between two
retailers in assortment selection and price selection, considering that customers select
products according to an utility ranking like we described before. We came to the conclu-
sion that retailers set optimal prices for exclusive products and tend to lower the prices
for common products in order to take over the whole market, similarly to what happens
in the Bertrand model.

In this chapter we further study the relationship between the price that a retailer sets
for a product and whether a product is exclusive or not. In order to do so, we consider
the competition between clothing retailers Farfetch and Gucci during the winter season
of 2020.

The data used for this chapter was collected by IESE professor Victor Mart́ınez de
Albéniz during December 2020 from the retailers’ website and was classified in two .RData
files, one for each retailer, following the schema.org 1 data structure. Due to limited space,
the data is available on demand. The crucial information for each product we can find in
those files is the name of the product or a brief description, the seller, the price at which
the product was put on sale and the time each product was added to the website.

There is a total of 52, 426 Gucci products that were collected during the whole month
of December, and a total of 968, 690 Farfetch products that correspond to the Farfetch
products added to their website in the date of 13/12/2020.

In order to clear the data, we firstly filter the Gucci products by the date they were
added to their website, and only select the products added to the website during the date
of 13/12/2020. Moreover, we remove the data for both retailers that does not have a
proper name or price by searching the rows of the data frame that have only a space, no
data (NA) or not a valid number (NaN ) under the name or price column and eliminating
them.

Furthermore, we remove the products that correspond to brands other than Gucci
from the data collected from Farfetch, since we are particularly interested in studying
which products are only offered by Gucci and which products are offered by both Gucci
and Farfetch.

1The schema.org data structure is a series of characteristics in which data is classified. It was created
in order to homogenize the structure of the data on the Internet.

39
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In order to select which products offered by Gucci are exclusive and which are both
offered by Gucci and Farfetch, we use the agrep() function in R, which is used to find
similar groups of characters or strings. This function is the implementation in R of the
Levenshtein2 distance.

The Levenshtein distance is a string metric that measures the minimum number of
insertions, elimination or substitution of characters required to transform one string into
another. For example, the Levenshtein distance between the two strings ”rice” and ”race”
is 1, since only one letter substitution is required to change one string into the other.

However, we can not do a proper product matching only using this distance. For
example, if we consider two of the products in the list such as ”Sudadera con estampado de
Mad Cookies” and ”sudadera bordado mad cookies”, we observe that these two products
are equal or very similar (one is printed and the other is embroidered), and we assume
they are common products. Nevertheless, the Levenshtein distance between the two string
is 15.

We notice that this comparison is not good enough, since we can find two very different
products such as ”camiseta mad cookies” and ”anillo de oro” whose Levenshtein distance
is also equal to 15. Therefore, we have to further refine our product matching.

In order to do so, we have to remove words that do not contain crucial information from
the strings such as ”para”, ”de”, ”con” or ”Gucci” among others. With these changes
done, we can finally search for products that match in both lists. As we commented
before, we use the agrep() function of R an consider that two products are the same
if the Levenshtein distance between the two strings is less or equal than 3. This is for
anticipating possible typos when introducing the name of the product.

Once we have cleared and the available data and searched for common products, we
can now study the relationship between the price retailer Gucci sets for its products and
whether the product is exclusive to Gucci or it is also sold by Farfetch.

In the first place, we attempt to model the relationship between the price and the
exclusiveness of a product by a linear relation and an error term, which is also known as
the simple linear regression model.

In other words, we assume that the available sample of n observations comes from a
simple linear regression model where the price pi of a product i is given by the expression

pi = β0 + β1X(i) + εi for all 1 ≤ i ≤ n,

where X is the explanatory variable that takes value 1 if the product is exclusive and 0
if the product is common, also known as a dummy variable that models the qualitative
feature of exclusiveness. Moreover, β0 and β1 are the regression coefficients, and εi is the
error term, where εi for 1 ≤ i ≤ n are independent and identically distributed random
variables that are centered (E(εi) = 0 for all 1 ≤ i ≤ n) and with finite and constant
variance V ar(εi) = σ2 for all 1 ≤ i ≤ n.

With that being said, we can interpret β0 as the average price of a common product
and β1 as the average difference in prices between exclusive and common products.

We have that the results for this linear regression model are:

2Vladimir Levenshtein (1935-2017) was a Russian mathematician specialized in information theory.



41

Figure 4.1: Summary of linear regression with exclusiveness as only explanatory variable.

As we can observe, we obtain a higher p-value than the significance level 0.05 and
therefore we fail to reject the null hypothesis. We recall that the null hypothesis is that
the coefficients of regression are zero, that is, there is no relationship between the price
Gucci sets for a product and whether the product is exclusive or not. Moreover, we notice
the presence of outliers situated at the higher end of the available prices, that is, some
products are way overpriced in comparison with the available data.

This, in particular, shows that the model we used to relate the price and the exclu-
siveness of each product is not good enough or that there is no relationship between the
two.

In order to further improve the study, we remove the outliers that we detected and we
introduce an additional explanatory variable that models the type of each product. We
consider three groups of products: the group A where we place products such as shirts,
T-shirts, sweatshirts or sweaters; the group B where we place jackets, coats or dresses;
and group C where we place trousers, skirts and others.

Therefore, we now consider that the available sample of n observations comes from a
simple linear regression model where the price pi of a product i is given by the expression

pi = β0 + β1X(i) + β2Y (i) + εi for all 1 ≤ i ≤ n,

where X, β0, β1 and εi are the same as in the previous model, β2 is a regression coefficient
and Y is the explanatory variable that takes value 1 if the product is in group A, 2 if the
product is in group B and 3 if the product is in group C.

We have that the results for this linear regression model are:
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Figure 4.2: Summary of linear regression with exclusiveness and product type as explana-
tory variables.

As we can observe, this time we obtain a lower p-value than the significance level
0.05 and therefore we reject the null hypothesis. Therefore, we can now conclude that
our model is statistically significant and thus we observe a relationship between the price
retailer Gucci sets for his products and whether the products are common or exclusive
and which is the type of each product.

However, we notice that the model is still not good enough: we notice that the residuals
are still very big and they are not randomly distributed around 0. Moreover, we observe
that the multiple and the adjusted R-squared are very insignificant, and therefore our
model does not explain well our data.

Therefore, we conclude that the linear regression model we used does not fit well
enough the available data and we cannot affirm that there is a linear relation between
the price retailer Gucci sets for his products and whether the product is exclusive or
common. Further improvements could be the introduction of new explanatory variables
or the application of another model such as the logistic regression.
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richesses. Paris: Hachette. Œuvres complètes de A.-A. Cournot, 8.
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Appendix A

Used code

In this Appendix we can see the code used for filtrating the data in Chapter 4.

PFar <− PFar [ ( PFar$brand . id == 25354 ) , ]
PFar <− PFar [ ! ( PFar$name == ” ” ) , ]
PFar <− PFar [ ! ( PFar$name == ” ” ) , ]
PFar <− PFar [ ! i s . na ( PFar$name ) , ]
PGuc <− PGuc [ ! ( PGuc$name == ” ” ) , ]
PGuc <− PGuc [ ! ( PGuc$name == ” ” ) , ]
PGuc <− PGuc [ ! i s . na (PGuc$name ) , ]
PFar [ [ 2 ] ] <− to lower ( PFar [ [ 2 ] ]
PGuc [ [ 6 ] ] <− to lower (PGuc [ [ 6 ] ] )

PFar [ [ 2 ] ] <− gsub ( pattern= ” a ” , replacement=” ” , PFar [ [ 2 ] ] )
PFar [ [ 2 ] ] <− gsub ( pattern= ” para ” , replacement=” ” , PFar [ [ 2 ] ] )
PFar [ [ 2 ] ] <− gsub ( pattern= ” hombre ” , replacement=” ” , PFar [ [ 2 ] ] )
PFar [ [ 2 ] ] <− gsub ( pattern= ” mujer ” , replacement=” ” , PFar [ [ 2 ] ] )
PGuc [ [ 6 ] ] <− gsub ( pattern= ” mujer ” , replacement=” ” , PGuc [ [ 6 ] ] )
PGuc [ [ 6 ] ] <− gsub ( pattern= ” hombre ” , replacement=” ” , PGuc [ [ 6 ] ] )
PGuc [ [ 6 ] ] <− gsub ( pattern= ” a ” , replacement=” ” , PGuc [ [ 6 ] ] )
PGuc [ [ 6 ] ] <− gsub ( pattern= ” para ” , replacement=” ” , PGuc [ [ 6 ] ] )
PFar [ [ 2 ] ] <− gsub ( pattern= ” de ” , replacement=” ” , PFar [ [ 2 ] ] )
PFar [ [ 2 ] ] <− gsub ( pattern= ” con ” , replacement=” ” , PFar [ [ 2 ] ] )
PFar [ [ 2 ] ] <− gsub ( pattern= ” y ” , replacement=” ” , PFar [ [ 2 ] ] )
PFar [ [ 2 ] ] <− gsub ( pattern= ” en ” , replacement=” ” , PFar [ [ 2 ] ] )
PGuc [ [ 6 ] ] <− gsub ( pattern= ” de ” , replacement=” ” , PGuc [ [ 6 ] ] )
PGuc [ [ 6 ] ] <− gsub ( pattern= ” con ” , replacement=” ” , PGuc [ [ 6 ] ] )
PGuc [ [ 6 ] ] <− gsub ( pattern= ” y ” , replacement=” ” , PGuc [ [ 6 ] ] )
PGuc [ [ 6 ] ] <− gsub ( pattern= ” en ” , replacement=” ” , PGuc [ [ 6 ] ] )
PGuc [ [ 6 ] ] <− gsub ( pattern= ” estampado ” , replacement=” ” , PGuc [ [ 6 ] ] )
PGuc [ [ 6 ] ] <− gsub ( pattern= ” Gucci ” , replacement=” ” , PGuc [ [ 6 ] ] )
PFar [ [ 2 ] ] <− gsub ( pattern= ” Gucci ” , replacement=” ” , PFar [ [ 2 ] ] )
PFar [ [ 2 ] ] <− gsub ( pattern= ” estampado ” , replacement=” ” , PFar [ [ 2 ] ] )
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46 APPENDIX A. USED CODE

f o r ( i in 1 :1144){
c <− agrep (PGuc [ [ 6 ] ] [ [ i ] ] , PFar [ [ 2 ] ] , max . d i s t anc e =3)
i f ( l ength ( c ) != 0){

PGuc [ [ 1 6 ] ] [ [ i ] ] <− 0
PFar <− PFar[−c , ]

}
}

f o r ( i in 1 :1144){
c <− agrep (PGuc [ [ 6 ] ] [ [ i ] ] , PGuc [ [ 6 ] ] , max . d i s t anc e =3)
i f ( l ength ( c ) != 0){

PGuc [ [ 1 6 ] ] [ [ i ] ] <− PGuc [ [ 1 6 ] ] [ [ c [ 1 ] ] ]
}

}


