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Ballistic and diffusive corrections to front propagation in the presence of multiplicative noise
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We study the dynamics of reaction-diffusion fronts under the influence of multiplicative noise. An approxi-
mate theoretical scheme is introduced to compute the velocity of the front and its diffusive wandering due to
the presence of noise. The theoretical approach is based on a multiple scale analysis rather than on a small
noise expansion and is confirmed with numerical simulations for a wide range of the noise intensity. We report
on the possibility of noise sustained solutions with a continuum of possible velocities, in situations where only
a single velocity is allowed without noise.@S1063-651X~98!03611-3#
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I. INTRODUCTION

The role of fluctuations in spatially extended systems i
subject of current interest in a great variety of out of eq
librium systems@1#. In particular, a class of problems whic
has received considerable attention is that of fronts propa
ing between states of different stability. This generic pro
lem is relevant to a large variety of systems in nonline
physics, chemistry, and biology. The effects of noise on fr
propagation have been studied from different points of vi
@2–6#. In this paper we address the problem of fronts pro
gating in media where fluctuations have been externally
posed through randomness of some external control pa
eter. We make use of a Langevin formalism, i.e., the mo
is formulated in terms of nonlinear partial differential equ
tions which contain noise-source terms which in general
multiplicative @2,3,7#.

It is commonly believed that the effects of external flu
tuations in front propagation, provided they enter multiplic
tively in the equations, are twofold: first, they induce a sh
in the mean front velocity, and second, they produce a r
dom wandering of the front position with respect to its me
position. Concerning the mean front velocity, the proble
reduces to an analogous deterministic problem with ren
malized coefficients@6#. This is a very useful result becaus
the mean front velocity can then be analyzed within the us
scenario of deterministic front propagation@8#. This implies
that the boundaries in parameter space separating the d
ent qualitative behaviors are preserved but shifted by no
As a consequence, noise not only produces a quantita
change in the front velocity but can change the qualitat
behavior of the front inducing a transition to a different r
gion of the parameter space.

Here we extend the formalism of Ref.@6# to permit the
study of the wandering of the front position. This wanderi
is assumed to be diffusive. Our approach provides exp
predictions of the associated diffusion coefficient which
beyond previous results that were first-order expansion
the noise intensity@7,2,3#. Our approach is not perturbativ
PRE 581063-651X/98/58~5!/5494~7!/$15.00
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in the noise intensity, but is closer to a~stochastic! multiple
scale analysis. We formally assume a separation of sc
which introduces a small parameter, and propose a cer
scaling of the different contributions to the front dynamic
The procedure implicitly assumes a partial summation of
expansion on the noise intensity, and is therefore not tr
systematic. However, we show with numerical simulatio
that the obtained results are remarkably good even for r
tively large noise intensities, and that the physical pictu
behind the analysis is correct within a broad range of para
eters. A remarkable example of this is that noise can sus
solutions with a continuum of possible front velocities~lin-
ear scenario of front selection! in cases which have a singl
possible velocity in the absence of noise~nonlinear sce-
nario!. The theoretical framework is also suitable to ass
the validity of the diffusive assumption of the front wande
ing and predicts self-consistently its failure in some para
eter regimes.

We are interested in the situation in which a front is d
scribed by a fieldf(x,t) with a globally stable state~e.g.,
f5fst) invading another~unstable or metastable! state~e.g.,
f50). When external fluctuations are imposed, simulatio
show @6# that the kinklike structure of the front is not de
stroyed even for moderately large noise intensities. Con
quently, these noisy fronts have a rather well defined po
tion and average shape. The location of a front invadin
f50 region can be defined by the integral

z~ t !5
1

fst
E

x0

`

dxf~x,t !5^z~ t !&2D~ t !, ~1!

wherefst is the steady state left behind the front and^z(t)&
is the ensemble average of the front position.D(t) is the
instantaneous departure from the average position, an
thus the quantity which models the stochastic wandering
the front. The physical picture behind the present analysi
that for time and length scales in which the front structure
not resolved, the quantityz(t) can be modeled in a very goo
approximation by a simple stochastic process of the form
5494 © 1998 The American Physical Society
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PRE 58 5495BALLISTIC AND DIFFUSIVE CORRECTIONS TO . . .
ż~ t !5 v̄~«!1D1/2~«!z~ t !, ~2!

where z(t) is a Gaussian white noise with zero mean a
correlation^z(t)z(t8)&52d(t2t8), and where« is a mea-
sure of the noise intensity in the original equation for t
front variablef. The velocityv̄(«) for a given« is a con-
stant. With these definitions the quantityD(t) is assimilated
to a Wiener process with

^D2~ t !&52D~«!t. ~3!

The mean velocityv̄(«) was the object of study of Ref
@6#. Here we are concerned with the computation of the d
fusion of coefficientD(«). The present approach will als
allow for a self-consistent test of the validity of the abo
simple physical picture. We will also test the theoretical p
dictions through numerical simulations. These will be carr
out on an ensemble of front realizations where the insta
neous front position is measured as a function of time
cording to Eq.~1!. The coefficientD(«) is then evaluated
through a linear fit of̂ D2(t)& vs time, after a short transien

The outline of this paper is as follows. In Sec. II w
develop the theorerical approach. In Sec. III we present
model and the explicit results. Section IV deals with a p
ticular front solution sustained by the noise, and finally
Sec. V some conclusions and comments are made.

II. THEORETICAL APPROACH

Let us consider a nonlinear reaction-diffusion equation
the fieldf(x), and suppose that the reactive termf (f) de-
pends on an external control parametera. We assume tha
this parameter fluctuates locally around its mean value
cording toa→a(x,t)5a1«1/2h(x,t), where« is a measure
of the strengh of the noiseh(x,t). Considering small fluc-
tuations, we can expand the reaction term up to first orde
the noise. In this way the noise appears multiplying a fu
tion of the field, and the resulting equation has the gen
form

]f

]t
5

]2f

]x2 1 f ~f!1«1/2g~f!h~x,t !. ~4!

We also assume that the noiseh(x,t) is Gaussian of zero
mean and correlation given by

^h~x,t !h~x8,t8!&52CS ux2x8u
l D d~ t2t8!. ~5!

The parameterl is the characteristic length of the spati
correlation of the noise. The functionC(uxu/l) is normalized
in such a way that ifl is taken as finite but much smalle
than any other spatial scale of the system, in particular m
smaller than the front width, then Eq.~5! can be approxi-
mated by the noise correlation of the Gaussian white sp
trum

^h~x,t !h~x8,t8!&52d~x2x8!d~ t2t8!. ~6!

Our aim is to construct an approximate scheme wh
formally separates the two main effects of noise, namely
on the ballistic displacement of the front and that on its d
d
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fusive wandering. The subtlety of the problem lies in the fa
that noise modifies simultaneously two aspects which
different in nature~ballistic and diffusive propagation!, and
which cannot be naively associated to the usual separa
between deterministic and stochastic forces. The key ide
our approach is that the separation of these effects is rel
to an actual separation of time scales on the shape fluc
tions of the front. On the one hand there are fast fluctuati
which generate an average front shape at relatively sm
time scales. A temporal coarse graining would thus elimin
these fast fluctuations providing an averaged front sh
which is distinct from the deterministic one, and therefo
having a different velocity. On the other hand, the resid
slow fluctuations of the front shape will then be responsi
for the diffusive wandering.

A crucial feature of multiplicative noise is that the mea
value of the noise term in the Langevin equation is nonze
even though the noise itself has zero mean. This produce
so-called spurious drift. The mean value of the noise te
can be worked out using Novikov’s theorem for Gauss
noises@9#, and gives

«1/2^g~f!h~x,t !&5«C~0!^g8~f!g~f!&. ~7!

According to this result Eq.~4! can be rewritten in a more
useful form,

]f

]t
5

]2f

]x2
1h~f!1«1/2R~f,x,t !, ~8!

where

h~f!5 f ~f!1«C~0!g8~f!g~f! ~9!

and

R~f,x,t !5g~f!h~x,t !2«1/2C~0!g8~f!g~f!. ~10!

Taking into account these definitions,R is a stochastic term
with zero mean value and correlation

^R~f,x,t !R~f,x8,t8!&

5^f~x,t !h~x,t !f~x8,t8!h~x8,t8!&1O~«1/2!.

~11!

With this rearrangement we already separate a system
contribution from the noise term and a residual stocha
one. This separation is useful because of the white chara
of the noise which gives a very simple form of the average
the noise term, with no explicit time dependence. This allo
for the definition~9! where the average of the extra term h
been eliminated. The resulting equation is thus of the sa
type as the original one with a noise term which is still mu
tiplicative but with zero mean.

We now assume that the diffusive wandering of the fro
is much slower than the intrinsic diffusion of the fieldf as
defined by the reaction-diffusion equation~8!. This means
that the formal parameter of the expansion will be the ra
of D, that is, the actual quantity we want to determine, to
diffusion coefficient of Eq.~8!, which in our case is taken to
be 1. The slow time scale will thus beDt.
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We assume thatf(x,t) has a frontlike structure with a
well-defined shape centered in the instantaneous pos
z(t). It is then convenient to employ the reference fram
which moves with the frontj5x2z(t), in which the front
fluctuates around its mean shape. In the framework of
hypothesis of multiple scales we can distinguish the ra
shape fluctuations associated to the temporal scalet, which
are responsible for the systematic change of both the m
front shape and the mean front velocity, and the slow fl
tuations off(j,t) that are coupled to the wandering of th
front position and that depend on the slow scaleDt. The way
in which we explicitly separate both effects of the noise is
introducing the mean front shapef0(j)5^f(j,t)& and ex-
pandf(j,t) as

f~j,t !5f0~j!1f1~j,Dt !, ~12!

wheref1 is assumed to be of orderD1/2 and has zero mean
Therefore, we retain only the mean contribution of the ra
fluctuations, and the leading order inD of the slow fluctua-
tions. It is worth remarking that this scheme is not equival
to a standard small-noise expansion since, for instance
zeroth order, the front shapef0(j) contains effects of noise
from all orders in the noise intensity.

By writing Eq. ~8! in the reference frame which move
with the front and by taking the average, we obtain to le
ing order inD

d2f0

dj2
1 v̄

df0

dj
1h~f0!50, ~13!

which is the equation for a deterministic frontf0(j) propa-
gating at a constant velocityv̄5^ż(t)&. Then, the mean pro
file and front speed depend on both the external coup
g(f) and the effective intensity of the noise«C(0) through
the effective reaction term,h(f0).

In some cases, Eq.~13! yields an equation similar to th
deterministic version of the original model Eq.~4! in the
reference frame moving with the front but with renormaliz
or effective parameters. In other cases, depending on the
ture of the external couplingg(f), Eq. ~13! introduces new
nonlinearities. In any case, at this point one can in princi
use the standard recipes to calculate the selected mean p
and velocity of the front by using the known results for d
terministic equations of this type@8,6#.

To proceed to next order, we compare Eq.~13! to Eq. ~8!
and we conclude that the lowest order of the stochastic t
«1/2R(f,j,t) is D1/2. Therefore, the orderD1/2 of Eq. ~8! is
given by

L~f1!5«1/2R~f0 ,j,t !2Ḋ~ t !
df0

dj
, ~14!

where the linear operatorL is defined as

L5F d2

dj2
1 v̄

d

dj
1h8~f0!G . ~15!

Differentiating Eq. ~13! with respect toj, we have that
L(df0 /dj)50, showing that due to the translational inva
ance of Eq.~13!, df0 /dj is a ~right! eigenfunction with a
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zero~right! eigenvalue of the~non-self-adjoint! linear opera-
torL. BecauseL has vanishing eigenvalues, we must impo
a solvability condition requiring than the right-hand side
Eq. ~14! should not drive any eigenfunction with zero eige
value. Thus, the solvability condition for the existence o
nontrivial solution to Eq.~14! is that the inhomogenous pa
should be orthogonal to the null space of the adjoint opera
L†,

L†5
d2

dj2
2 v̄

d

dj
1h8~f0!. ~16!

It can be shown by direct substitution that

S df0

dj D †

5ev̄j
df0

dj
~17!

is an eigenfunction ofL† of zero eigenvalue. So, the solv
ability condition for Eq.~14! takes the form

E
2`

`

djev̄j
df0

dj S Ḋ~ t !
df0

dj
2«1/2R~f0 ,j,t ! D50.

~18!

Thus,Ḋ(t) verifies the stochastic differential equation

Ḋ~ t !5
*2`

` djev̄j~df0/dj!«1/2R~f0 ,j,t !

*2`
` djev̄j~df0/dj!2

~19!

and the diffusion coefficientD(«),

^D2~ t !&52D~«!t5E
0

t

dt8E
0

t

dt9^Ḋ~ t8!Ḋ~ t9!&, ~20!

is obtained from Eqs.~6!, ~10!, ~11!, and~19!,

D~«!5«
*2`

` dje2v̄j~df0 /dj!2g2~f0!

@*2`
` djev̄j~df0 /dj!2#2

, ~21!

where higher-order contributions in« coming from the cor-
relation~11! have been discarded. The higher-order terms
« which are kept inD(«) are only those contained in th
lowest order inD(«), that is, those contained inv̄ andf0 .

Equation~21! is the main result of this section and of th
paper. It is worth remarking that, in general, the diffusi
coefficientD(«) is not a simple linear function of the nois
intensity « due to the nontrivial dependence of the me
propagation speedv̄ and of the mean front profilef0 on the
effective noise intensity«C(0). In fact, D(«) can exhibit a
nonmonotonic, bounded, behavior as we shall see in the
section.

III. EXPLICIT RESULTS FOR A PROTOTYPE MODEL

The preceding results apply to situations in which fluctu
tions affect a front propagating between a globally sta
state and an unstable or metastable state. We want to ha
control parameter to change the relative stability of these
states and in this way to study the role of fluctuations in
different regimes of the deterministic front propagation s
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nario studied in the literature@10#. Without loss of generality
we takefst51 as the stable state andf50 as the unstable
or metastable one. A simple expression for the reaction t
fulfilling these requirements is a cubic polynomial with tw
roots at 0 and 1 and a third root,a, acting as a contro
parameter. Explicitly the reaction term reads

f ~f!5f~12f!~f1a!. ~22!

In this case@we restricta to the interval (2 1
2 ,1)] a deter-

mines the stability of the invadedf50 state with respect to
the globally stable statefst51 and, consequently, it als
fixes the selection criteria for the asymptotic front speed~lin-
ear or nonlinear marginal stability criterion! @8#.

Fluctuations both additive and multiplicative can be co
sidered in this problem. It is known that additive noise ge
erates bulk domains of the stable phase ahead of the
and, consequently, a competition process arises betw
front propagation~short times! and domain growth~long
times! @11#. According to Ref.@11#, the additive noise doe
not modify the deterministic scenario of dynamical front s
lection. As long as the front exists as a transient state
mean propagation velocity will be determined by the det
ministic part of the model equation. Therefore, we will n
study here this particular case.

If we assume fluctuations ofa as considered in the pre
ceding section, we have, without approximation, exter
fluctuations of multiplicative type:

]f

]t
5

]2f

]x2
1f~12f!~f1a!1«1/2f~12f!h~x,t !.

~23!

It is worth remarking here that the way in which contr
parameter fluctuations appear is such that it preserves
stationary statesf50 andf51. In this way, the noise term
is most important at regions close to the front, but vanis
at the asymptotic states. This permits us to inhibit a
domain-growth dynamics that could compete with the fro
propagation process, in which we are interested here,
therefore the study will not be limited to short times. T
new front profilef and mean front speedv̄ correspond then
to the solution of Eq.~13!, which for this model reads

d2f0

dj2
1 v̄

df0

dj
1f0~12f0!~a81c8f0!50 ~24!

with the effective parameters

a85a1«C~0!, c85122«C~0!. ~25!

Equations~23! and~24! are supplemented with the bounda
conditions

lim
j→2`

f~j!51, lim
j→`

f~j!50 ~26!

because the multiplicative noise does not modify
asymptotic steady states of the front.

In this model, the external fluctuations increase the eff
tive value of the control parametera and simultaneously
reduce the coefficient of the highest~cubic! nonlinearityc.
m
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That is, the multiplicative noise increases the relative wei
of the nonlinearities of the deterministic model. So one e
pects that the linear-marginal-stability criterion enlarges
range of applicability as the noise intensity increases. A
consequence, we also expect an increase of the propag
velocity.

We apply theansatz of reduction of orderof van Saar-
loos, from which the mean nonlinear front velocity is give
by @8#

v̄nl5
2a81c8

A2c8
5

2a11

A2@122«C~0!#
. ~27!

The asymptotic spatial behavior of the corresponding non
ear solution is given by the single exponential decaye2knlj,
with

knl5Ac8

2
5A1

2
2«C~0!. ~28!

However, for the control parameter rangea8.0, the ap-
plication of the linear-marginal-stability criterion for system
evolving from initial step profiles~or with a sufficiently fast
decay! shows that the mean linear propagation velocity is

v̄ l52Aa852Aa1«C~0! ~29!

with a steady front solution characterized by the asympto
spatial decay

kl5Aa85Aa1«C~0!. ~30!

The transition between the linear and nonlinear regime
given by those values ofa satisfying

a5
1

2
22«C~0!. ~31!

Moreover, initial slow-decaying profiles withki,kl in the
linear regime and withki,kl

2/knl in the nonlinear regime
propagate maintaining the initial decay and with
asymptotic velocity

v̄~ki !5
ki

21a1«C~0!

ki
. ~32!

Numerical simulations of the stochastic model of Eq.~23!
were done with a standard algorithm for multiplicative noi
@12# in a regular one-dimensional lattice with spatial me
size Dx50.5 and time stepDt51022. The effective noise
intensity is characterized by its value on the one-dimensio
grid,

«C~0!5
«

Dx
. ~33!

This dependence of the effective noise intensity on the m
sizeDx used in the numerical simulations is usual in mul
plicative noise problems. The fact that noise values are ta
as independent for different discretization cells in the n
merical algorithm is equivalent to a finite correlation leng
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of the noise of orderDx. As long as this microscopic cutof
is much smaller than the front width, the noise can be
sumed to be white. We will see that, while results for t
front velocity depend only on the effective noise intensity
defined by the ratio Eq.~33!, the prediction of the front dif-
fusion coefficientD(«) depends separately on« and«C(0),
implying that the diffusive dynamics of the front is remini
cent of the existence of such a spatial cutoff.

In Fig. 1 we plot the mean propagation velocity obtain
for different values of the control parametera and the effec-
tive noise intensity«C(0). Thefronts start propagating from
initial steplike profiles. The instantaneous front speed is
termined by averaging over a time window of sizet5200.
Continuous solid lines in this figure display the analytic
predictions of Eqs.~27! and~29! showing an extremely good
agreement with the numerical results.

In Fig. 2 we compare the analytical prediction of Eq.~21!
obtained numerically with simulation results. The agreem
between numerical results and the analytical prediction
remarkably good even for large noise intensities. The m
surprising feature of our result Eq.~21! is that the depen-
dence ofD(«) on the effective noise intensity is nonmon
tonic, with a maximum value at a finite noise intensity. Th
is shown explicitly in Fig. 2 for the particular model Eq.~23!
with a50.1. The maximum ofD(«) occurs near«C(0)
50.125. For a larger value,«C(0)50.20, the front spread
ing is slightly greater during a short initial transient who
duration is associated with the choice of the initial conditio
a steplike profile in our case. However, at late time,
spreading is unexpectedly lower than the preceding case
is seen in Fig. 3.

The nonmonotonic dependence ofD(«) is the result of
the interplay between the two effects of noise, namely mo
fication of the ballistic component and generation of the d
fusive component. At very small noise intensities, one
pects that the diffusion coefficientD(«) is increasing with

FIG. 1. Mean front velocities as a function of the noise intens
«C(0) for several values of the control parametera of the stochas-
tic model ~20!. Continuous lines display our analytical predictio
~25! and~26!. Dashed lines divide the different front regimes: me
stable (M ), nonlinear~NL!, and linear (L). Points and their error
bars correspond to numerical simulation.
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noise intensity. According to Eq.~21!, however, it is clear
that the mechanism by which the slow fluctuations of t
field f generate velocity fluctuations, which in turn produ
the front diffusion, is sensitive to the actual mean front v
locity. For larger front velocities, such fluctuations are mo
easily smoothed out. Since the front velocity itself is an
creasing function of noise intensity, the combined resul
thatD(«) may decrease at sufficiently large noise intensiti

A brief comparison with a previous method is in ord
here. The small-noise-expansion approach@7,2,3# yields, at
leading order in the noise intensity, a simple linear behav
which corresponds to the same Eq.~21! but with the deter-
ministic front profile and velocity inside the integral. Th
result is thus recovered if the small noise expansion is p
formed directly on our result Eq.~21!. The novelty of our
result relies on the fact that contributions from all orders
included in the mean front profile and velocity, and a no
trivial interplay between the two effects of noise is thus o
tained.

Note that the analytical result~21! yields D(«)50 in the
linear regime@1/222«(0)<a#. This result points out tha
the assumption of diffusive spreading does not hold in
linear case, although it does not invalidate our previous
sults on the propagation velocity shift. Preliminary numeric
simulations show that the stochastic spreading in this lin
regime appears to be subdiffusive, i.e.,^Dz2&;ta with a
,1. The characterization of this regime remains open.

IV. NOISE-SUSTAINED FRONT SOLUTIONS

In this section we want to call attention to interestin
features of front dynamics in the presence of multiplicat

-

FIG. 2. Analytical and numerical results for the scaled diffusi
coefficient,D(Dx)21, for different values of the external contro
parametera ~see figure legend! and the effective noise intensity
Black symbols correspond to numerical simulations performed w
Dx50.5, and hollow symbols to those withDx50.2. In both cases
we usedDt51022. Results were obtained by averaging 103 fronts
evolving from the same initial steplike profile in the time windo
from t i5500 to t f51000.
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noise which are associated with noise-induced transitions
tween the different regions in parameter space correspon
to the distinct regimes of front propagation. As discussed
Ref. @6#, the location of the boundaries between the differ
regions is modified by noise, while the qualitative gene
picture is preserved. As a consequence, the introductio
noise in points of parameter space which are relatively cl
to such boundaries may change the qualitative behavio
the front dynamics.

The typical situation in all parameter space is that, if no
is introduced, the front velocity jumps to a larger value, a
as soon as noise is switched off, the original velocity is
covered@6#. On the other hand, in the linear marginal stab
ity region a continuum of possible velocities exists, whi
can be observed if the system is prepared with an in
condition with a ~sufficiently slow! arbitrary decay of the
leading edge. This latter situation occurs, for instance, if
system undergoes a sudden change of an external co
parameter. However, if that quench is into the metasta
region, the front solution will decay to the unique solution
that case.

The example we want to briefly discuss here is one
which noise can sustain solutions from the continuum
possible velocities in situations where the determinis
model has a unique solution. This will happen when the s
able control parameter has a value such that, in the abs
of noise, the system is in the metastable region, while
presence of noise places it into the linear region. Supp
for instance, that the front is driven to such a state in

FIG. 3. Time evolution of the ensemble average^D2(t)& for a
50.1 and two different values of the effective noise intensity. D
have been obtained by averaging 103 fronts evolving from the same
initial steplike profile withDx50.5 andDt50.1. Thin solid lines
correspond to linear regressions of data evaluated long after
initial transient. The figure illustrates the bounded behavior of
diffusion spreading. For«C(0)50.12 ~circles!, D present a larger
slope than for«C(0)50.20 ~diamonds!.
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presence of noise via a quench from the linear marginal
bility region with a slow-decaying initial condition. In tha
case we will be able to sustain fronts with velocities within
continuous interval. Remarkably enough, this will be occ
ring in a situation in which, without noise, a unique veloci
is allowed. Notice that the preparation procedure is cruc
By quenching the control parameter from the linear regi
we take advantage of the fact that the solutions with lar
velocities than the minimal one are also self-sustained.

This effect is shown in Fig. 4, where we plot profile
resulting from simulations of Eq.~23! with a520.2 for
noise intensities«C(0)50.3 and«C(0)50. In both cases
the initial condition is a slow-decaying profile withki50.1.
Whereas the deterministic case converges to the single
linear solution with a fast decayknl51/&, Eq. ~28!, and
velocity vnl50.42, Eq.~27!, in the noisy case fluctuation
sustain the initial slow decayki and the velocity isv̄51.10
as given by Eq.~32!.

V. SUMMARY AND CONCLUSIONS

We have constructed a nonperturbative scheme whic
based on a multiple scale procedure to study front dynam
under external multiplicative fluctuations. The method
lows us to formally separate the effects of noise on the b
listic and the diffusive components of the front propagatio
On the ballistic component it predicts a change in the fr
velocity but it preserves the scenario of front selection
deterministic propagation, with shifts in the bondaries b
tween different regions. The extension of the method to ch
acterize the wandering of the front position relies on t
assumption that this is diffusive. The self-consistency of
method predicts that the diffusive assumption is not alw
valid, but the method gives an explicit prediction for th
diffusion coefficient when it exists.

The analytical predictions of our approach are not syste
atic but improve significantly the previous results based up
small noise expansions. Our results include a partial res

a

he
e

FIG. 4. Two stages in time,t550 andt5100, of a deterministic
front ~dashed lines! and a noisy front~solid lines! from the same
initial profile with ki50.1. Simulations were performed witha
520.2, «C(0)50.3,Dx50.1, andDt51023.
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mation of higher orders in the noise intensity, which turn o
to capture the dominant physical behavior for a wide ran
of noise intensities, much beyond the validity of previo
results. This has been tested numerically for a particu
model, with very good agreement between theory and si
lation.

The effect of multiplicative noise on the front velocit
was already discussed in Ref.@6#, of which the present pape
is an extension. Our main specific result here is the exp
prediction of the diffusion coefficient of the front wanderin
Its most salient feature is that it is not a monotonic increas
function of noise intensity. The mechanism by which slo
fluctuations produce this wandering turns out to be affec
by the actual mean front velocity, which in turn is affect
by noise. Such a mechanism appears to be less effectiv
larger velocities. Since for moderately large noise intensi
the front velocity increases significantly, the combined eff
may result in an actual decrease of the front diffusion co
ficient with increasing noise intensity.

It is also remarkable that the diffusion coefficient is rem
niscent of the existence of a microscopic cutoff which reg
larizes the white noise. In the effective equation that is
tained for the ballistic component, the coefficients a
renormalized with corrections which depend on the com
nation «/Dx which we identify with the effective noise in
te
pa
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it
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for
s
t
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tensity. On the contrary, the diffusion coefficient depen
separately on«/Dx and«. This reflects the fact that the mod
els under consideration do not have a well defined continu
limit with white noise, and therefore results depend in ge
eral on the existence of a microscopic scale of noise. Suc
additional length scale must in fact be an additional para
eter of the problem. Furthermore, this clearly indicates t
the correlation length of noise is an important parameter
may change drastically the scenario discussed here wh
becomes comparable to or larger than the front width.

Finally, we have discussed the existence of noi
sustained front solutions, in which the presence of no
makes accessible a continuum of solutions in situations
which this is not possible in the absence of noise.
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