
GRAU DE MATEMÀTIQUES

Treball final de grau

Modularization of reservoir
computing networks for the

recognition of brainstates

Xènia Domènech Gutiérrez

Director: Ignasi Cos

Tutor: Gorka Zamora

Realitzat a: Departament de Matemàtiques i Informàtica

Barcelona, 24 de gener del 2022

Contents

Abstract iv

Introduction v

Previous work vi

Hypothesis and objectives vii

1 Complex network 1
1.1 Artificial neural network . 1
1.2 Types of ANN . 3
1.3 Recurrent neural network with reservoir computing 5

2 Modularization of the network 7
2.1 Data . 7
2.2 Hyperparameters . 8
2.3 Classifiers . 9

2.3.1 Lineal regression . 9
2.3.2 Logistic regression . 10

2.4 Script explanation . 12
2.4.1 Data class . 12
2.4.2 Reservoir class . 12
2.4.3 Newtork class . 13
2.4.4 How the script works? . 13
2.4.5 The program . 15

2.5 Results . 16
2.5.1 Study of input_probability and reservoir_probability accord-

ing to the number of nodes . 16
2.5.2 Study of join_probability . 20
2.5.3 Comparison of network with and without join_probability . 24
2.5.4 Comparison of modularized and non-modularized network . 25

Conclusions 27

Bibliography 28

List of Figures

1.1 Fully connected feedforward neural network with two hidden layers
and only one node in the output layer 2

1.2 Modular Neural Networks example 3
1.3 Kohonen Self Organizing Neural Network example 4
1.4 Recurrent Neural Newtork example 4

2.1 Timeline of a single trial . 7
2.2 Linear Regression over a dataset of houses 10
2.3 Logistic Regression over a dataset of exams’ scores 11
2.4 Diagram of how the script works . 14
2.5 Accuracy of the network in terms of input_probability and reser-

voir_probability with linear classifier 17
2.6 Accuracy of the network in terms of input_probability and reser-

voir_probability with logistic classifier 18
2.7 Evolution of accuracy of the network depending on the number of

nodes with join_probability=0 and using lineal classifier 19
2.8 Evolution of accuracy of the network depending on the number of

nodes with join_probability=0 and using logistic classifier 20
2.9 Network’s accuracy in terms of join_probability and using linear

classifier . 21
2.10 Network’s accuracy in terms of join_probability and using logistic

classifier . 22
2.11 Evolution of accuracy of the network depending on the number of

nodes with join_probability!=0 and lineal classifier 23
2.12 Evolution of accuracy of the network depending on the number of

nodes with join_probability!=0 and logistic classifier 23

ii

List of Tables

2.1 Comparative table depending on the join_probability using linear
classifier . 24

2.2 Comparative table depending on the join_probability using logistic
classifier . 24

2.3 Comparative table about results of modularized network and non-
modularized using linear classifier . 25

2.4 Comparative table about results of modularized network and non-
modularized using logistic classifier 26

iii

Abstract

This project consisted of the research, study and modularization of a com-
plex neural network, consisting of one or several reservoir computing modules.
This is performed by means of Python scripts, aiming at learning in a way in-
spired on how the human brain does. The manucript starts with a theoretical
introduction describing basic concepts of complex networks, listing their types
and applications, so that the reader can understand how we have used the idea
for the development of the script. The second part describes the process and im-
pact of the modularization modules first described, and the comparison with the
non-modularized program.

2022 Mathematics Subject Classification. 68T07

Introduction

The human brain, the social media and the World Wide Web are examples
of highly complex network, which are systems composed of a large number of
units interconnected through non-trivial and complex pattens of interaction. With
this idea in mind, the project here presented aims at the study of modular com-
plex neural networks, specifically on Reservoir Recurrent neural networks, to ex-
trapolate the concepts and design a program, capable of producig a brain state
representation as described by the temporal series datasets we described.

My contribution is a characterization of a modular reservoir network to cap-
ture high-dimensional statistics from temporal series, by contrast to the original
single module reservoir [5]. To this end, I developed ad-hoc python scripts, as to
allow for a performance comparison between the different architectures. In brief,
I extended from a single reservoir to a two-module architecture, to be consistent
with the brain distribution of areas from which neural recordings were performed
[1].

The performance of this modular architecture was consistently compared with
respect to a baseline, single module architecture, and was tested with a dataset
consisting of temporal series recorded from the motor and pre-motor cortices of
non-human primates [1] during performance of a five-state motor reaching task.
In summary, the main goal was to assess the effect of brain-like modularity onto
the final neural representation, assessed through its clustering accuracy.

The main result of the work is that as one would expect, modularized network
yields better accuracy than the unmodularized one. This makes sense because the
dataset used to train and test the network comes from different parts of the cortex,
and therefore from different modules of the brain.

Previous work

This project extends on a preliminary study on reservoir computing for the
representation of brain temporal series [5]. He created a preliminary version of the
script, which we have modularized with the intention of creating a more faithful
neuro-inspired architecture and to study the influence of modularity.

Addicionaly, the dataset used to create and operate the network originates
from a dataset previously used by Michael A. Depass in his master thesis [1].
Moreover, most of the matematical operations responsible for the network’s train-
ing are originated in the work of Núria Sánchez’s MSc Thesis [7].

However, the first piece of relevant work was pursued by Arnau Naval in his
thesis [5]. In this work, the focus was on building a reserve computing model
capable of identifying different states related to movement from a set of neural
data recorded from a non-human primate. To this end, two types of analysis were
performed: on the one hand, he tried to make the program learn to classify five
states that the macaque brain went through and with which we trained the pro-
gram. On the other hand, he did a similar process to study whether the program
could distinguish when the data originated from the primate using the left or the
right arm.

Furthermore, it was also interesting to see that indeed reservoir computing
was not only able to capture the features of temporal series recorded from specific
brain regions and that the accuracy of the data after passing through the model
helped to classify the states better than without using the neural network.

In our work, we will build on the five-state classification part, and by modu-
larizing the network we aim to improve on previous results so that we can obtain
more optimal accuracy for both the linear and logistic classifier.

Hypothesis and objectives

The goal of this work is to study and characterize the influence of modularity
on the neural dynamics of reservoir computing networks. Specifically, our inter-
est is to study the impact of brain-like modular reservoirs in the representation
of brain states, characterized by temporal series recorded from separate cortical
areas. Can a modular reservoir network outperform a single reservoir network?

We formulate the next operational hypotheses:

• A modularized reservoir network yields a more faithful (accurate) represen-
tation of brain states than an unmodularized reservoir.

• An increasing number of nodes improves the accuracy of any state represen-
tation. We predict that the accuracy would have a logarithmic growth as a
function of the number of nodes.

• In a modularized reservoir, the use of a linear and/or logistic classifier would
not yield fundamentally different accuracies.

Our analysis of performance, in addition to accuracy, will be based on a newly
designed metric: the join_probability, which we deem provide a more complete
characterization of network performance, than the simpler accuracy metric.

Chapter 1

Complex network

In this section you will find a short explanation of how complex networks work
and their most important utilities, in order to be aware of their relevance. [3]

1.1 Artificial neural network

Artificial neural networks (ANN) are the basis of deep learning, a subfield of
machine learning in which algorithms are based on a trial an error method. This
process of learning is inspired by the structure of human brain which is made up
of layers of neurons, the central processing units of the network.

To understand the brain’s learning process, let’s assume that we have an image
that consists of 28 by 28 pixels, in total 784 pixels. Each pixel is fed as an input
value to the neurons in the first layer, and then the neurons in this layer are con-
nected through channels to the neurons in the next layer. It is important to note
that all these neurons are associated with a numerical value called bias, which is
added to the sum of the input values. The new value of each neuron is passed
through a threshold function called the activation function, which transmits the
data to the neurons of the next layer through the channels. This forward prop-
agation process is repeated through all the layers of the network until it reaches
the output layer, where the neuron with the highest value determines the output.
Below, you can see a schematic of the brain learning process.

1

Figure 1.1: Fully connected feedforward neural network with two hidden layers
and only one node in the output layer

Once we understand the process, we must comment on a drawback that we
encounter, and that is that there is the possibility that our neural network makes
an erroneous prediction, but how does the network find out? We must bear in
mind that our network still has to be trained by means of several different inputs
of what we want to learn by repeating this neural process. The learning process
is linked to the magnitude of the error that tells us how wrong we are, and it
decreases as we pass more information to it.

Thus it is crucial to understand that this cycle of backward and forward prop-
agation is done iteratively with multiple inputs, and that this process continues
until the values are assigned in such a way that the network can correctly predict
what has been learned. In most cases, the time it takes to train neural networks
can take hours or even months. But this time is a reasonable trade-off, as for ex-
ample, thanks to these complex systems we are able to enable facial recognition
cameras in phones to estimate a person’s age based on their facial features.

Neural networks are trained to understand patterns and have great application
in our daily lives. Among other things, they can detect the possibility of rain,
predict stock prices with high accuracy, and can even learn musical patterns to the
point of being able to compose a new melody.

1.2 Types of ANN

There are many kinds of artificial neural networks used for the computational
model. The set of parameters and operations of mathematics determines the type
of neural networks to be used to get the result. Here we will discuss some of the
critical Neural Network types in Machine Learning:

• Modular Neural Networks: In this type of neural network, many indepen-
dent networks contribute to the results collectively. There are many sub-tasks
performed and constructed by each of these neural networks. This provides
a set of inputs that are unique when compared with other neural networks.
There is no signal exchange or interaction between these neural networks to
accomplish any task.

Figure 1.2: Modular Neural Networks example

• Feedforward Neural Network: The information in the neural network trav-
els in one direction and is the purest form of an Artificial Neural Network.
This kind of neural network can have hidden layers and data enter through
input nodes and exit through output nodes. Classifying activation function
is used in this neural network. There is no backpropagation, and only the
front propagated wave is allowed. This type of neural newtork is the one
that can be seen in the figure 1.1.

• Kohonen Self Organizing Neural Network: In this neural network, vectors
are input to a discrete map from an arbitrary dimension. Training data of
an organization is created by training the map. There might be one or two
dimensions on the map. The weight of the neurons may change that depends
on the value. The neuron’s location will not change while training the map
and will stay constant. Input vector and small weight are given to every
neuron value in the first phase of the self-organization process. A winning
neuron is a neuron that is closest to the point. Other neurons will also start
to move towards the point along with the winning neuron in the second
phase.

Figure 1.3: Kohonen Self Organizing Neural Network example

• Recurrent Neural Network: A RNN is an Artificial Neural Network (ANN)
that, in addition to feed-forward connections, also has recurrent connections.
They are distinguished by their "memory", as they can utilize the information
of previous inputs to influence the present inputs and/or outputs.

Figure 1.4: Recurrent Neural Newtork example

RNN are a very powerful tool for solving complicated temporal automated
learning problems, and since they can take variable length inputs we will see that
they are good candidates to use it in our project. That is why the whole practical
part is based on the modularization of a recurrent neural network-based program
using reservoir computing. Therefore, we will proceed to explain a bit more in
depth how recurrent neural networks work with the use of reservoir computing.

1.3 Recurrent neural network with reservoir computing

Reservoir computing is an algorithm process information generated by dynam-
ical systems using observed time-series data. Importantly, it requires very small
training data sets and thus requires minimal computing resources. Promising to
be both theoretically sound and computationally fast, reservoir computing has al-
ready been applied successfully to numerous fields: natural language processing,
computational biology and neuroscience, robotics, even physics. The use of reser-
voir computing in our RNN will solve the basic problem of this kind of network,
it is hard to train. Reservoir Computing is a framework that aims to make this
process easier without a significant loss of performance.

The difference between a classical RNN and one working under the Reservoir
Computing paradigm is that with RC all the network’s connections are fixed ex-
cept for the ones at the readout layer, making it computationally cheaper than
other RNN approaches [5], [2], [4], [8].

The structure of the RC network that was used in the present work can be
described in the following way:

• An input layer of size K denoted by u. In our case K = 128 since our input
will be the number of electrodes.

• A hidden layer of size N denoted by x. N is given by the number of nodes
of our network.

• An output layer of size L denoted by y. In our case, the size of the output
layer is given by the number of states (5) that we want to be able to classify.

The following connectivity matrices will tell us how the different layers connect
between themselves:

• The input connectivity matrix W in ∈ M(R)N×K holds the connection weights
that relate the input units of the network to its internal units. Therefore, W in

i,j

represents the connection weight of the input unit with index j to the internal
unit with index i.

• The internal connectivity matrix W ∈ M(R)N×N holds the connection weights
between the different internal units of our network.

• The output connectivity matrix Wout ∈ M(R)L×N gives us the weights from
the internal units of our network to the output layer.

• Finally, the feedback connectivity matrix Wback ∈ M(R)N×L holds the con-
nection weights from the output layer to the internal units of the network,
but for the present work these weights were set to 0.

Therefore, the internal state of the network will be updated at every timestep
as indicated by the following formula:

where f is an activation function.
It can be observed that the internal state of the network at time n + 1 is com-

puted using its previous state at time n. Since we are dealing with a RC network,
we will set fixed values for both W and W in and we will only train the values
of Wout. The weights of Wout are obtained with a regression method of our own
choosing and, for the present work we chose to use a logistic regressor.

The values of the output y are obtained with the next equation:

where f out is the activation function. In our case these activation functions are
hyperbolic tangent functions, which are one of the most commonly used activation
functions for RNNs and are defined as:

Once the basic structure of the network is defined, we procceed to explain in
detail all the modularization and how we use this powerful tool, such as reservoir
computing, for our particular case.

Chapter 2

Modularization of the network

This section will be dedicated to the practical part of the work, that is, to the
development of the script and the results obtained. To begin with, we will talk
about key aspects of the program, then we will give a brief explanation of the
script and finally we will test it.

2.1 Data

In order to train this model, we will be using a Local Field Potential (LFP)
dataset collected by the Dancause Laboratory at the University of Montreal. The
intracerebral local field potential (LFP) is a measure of brain activity that reflects
the highly dynamic flow of information across neural networks. This is a compos-
ite signal that receives contributions from multiple neural sources, yet interpreting
its nature and significance may be hindered by several confounding factors and
technical limitations. This measure of brain activity constitutes an increasingly im-
portant tool both in neurophysiology and medicine. Specifically, these neural data
were collected while Non-Human Primates (NHP’s) performedreward retrieval
tasks involving reaching and grasping.

Figure 2.1: Timeline of a single trial

7

The data set is divided into trials, and the figure above shows the structure of
each trial. Initially, it starts in a baseline condition, the second state is when the
visual signal is active, the third is begin the movement towards the handle. The
next is reache the object and the last state is to grab it. Finally, the primate drops
the handle expecting a reward.

The data we will be using has been separated by motor state (5 states in total,
as we have explain above) and it includes data in which the handle to reach for
was positioned in diferent orientations (0, 45, 90 and 135 degrees). The dataset
consists of 140 trials, each one proceed form an LFP collected from 128 electrodes,
sometimes referred to as channels. Each trial has a duration of roughly 0.25 sec-
onds (508 samples). Moreover, each trials in total resulting in an input matrix of
size [128,508,140,5].

2.2 Hyperparameters

In Machine Learning and Deep Learning, the hyperparameters are those pa-
rameters whose values are set prior to the training process, for example, the num-
ber of nodes in the reservoir layer, or the probability of connection between layers.

Hyperparameters are important because they directly control the behaviour of
the training algorithm and have a significant impact on the performance of the
model that is being trained.

In our program we have four hyperparameters that need to be defined be-
forehand. These hyperparameters are: the number of nodes in each reservoir
(num_nodes), the probability of connection between the input layer and the reser-
voir layer (input_probabiliy), the probability of connection between the nodes in
each reservoir (reservoir_probability) and finally, the probability of connection be-
tween the two reservoirs (join_probability).

In the previous work to the modularization of the network, only the first three
hyperparameters were available, and the values were studied in such a way that
the program would learn more accurately. After this study through heatmaps, it
was deduced that the best values for the hyperparameters in the non-modularized
network were input_probability=0.15, reservoir_probability=0.5 and num_nodes >
100.

However, in our network we have an extra hyperparameter, the join_probability.
Therefore, we will now proceed to study how this factor affects the other three val-
ues and what are the new optimal values for the program to learn more accurately.

2.3 Classifiers

To train our network, we need a classification model to classify the training
matrix of our network. To obtain the cataloguing of the five states, the program
consists of two classifiers: the linear and the logistic one. We will now proceed to
explain in more detail what a classification model is and the types of classifier we
use.

Classification models are used on labelled data sets. These data are considered
labelled because they belong to a certain class, which is known and bounded (has
a finite range of values). Examples of classification models could be predicting
whether a customer will make a purchase or not, predicting whether a customer
will leave our company or not, or predicting whether a customer will be able to
repay a loan or not. These are examples of binary classification (there are only
two classes, yes or no) but there are also examples of multiple classification. These
examples would be detecting which animal a picture belongs to or identifying
which musical instrument a melody belongs to. Now we are going to talk about
two kind of classification model: lineal regression and logistic regression.

2.3.1 Lineal regression

Linear regression in statistics, is an approach based on the conditional proba-
bility of y given X, used to model relationships between scalar independent vari-
ables and one or more, dependent variables. In this approach, data are modeled
through a LPF and weights are computed to allow credible predictions for un-
known inputs of the same type which the regressor was trained on. [6] Linear
regression in machine learning is a supervised learning algorithm whose output
computes as follows:

Where hθ is the hypothesis formulated by the regression and the x’s are the
input. Here you can see an example of Linear Regression over a dataset of houses.

Figure 2.2: Linear Regression over a dataset of houses

2.3.2 Logistic regression

This problem is considerably different from the linear regression one, compos-
ing another field in the Analysis of regressions. Logistic regression is a relatively
simple machine learning technique whose results are interpretable and widely
used. It works very well when there is a lot of data and the interrelationships
between them are not very complex. Given a set of data, it studies the probability
of a data to belong or not, to a specific class. Compared to Linear Regression, this
algorithm solves the task providing an hypothesis hθ(x) in the range [0,1] com-
puting the probability p(y = 1|x; θ) that a data belongs to a positive class (y = 1)
or a negative one (y = 0). This is done computing the hypothesis using a logistic
function, in the range [0, 1]:

Where hθ is the hypothesis formulated by the regression and the x’s are the
input. Below you can see and example of Logistic Regression over a dataset of
exams’ scores. [6]

Figure 2.3: Logistic Regression over a dataset of exams’ scores

2.4 Script explanation

It is important to discuss the operation of the network so that it is easier to
understand why it works and the final comparisons between the modularized
and non-modularized program. Mainly, the program consists of three classes:
Network, Data and Reservoir, besides having a main where we manage the use
of the classes and the articulation of the script. We will proceed to explain briefly
each class individually.

2.4.1 Data class

It serves basically to manage the neuronal information of the non-human pri-
mate, which we give to the program at the beginning of everything to be able to
train and test itself. Specifically, the file with the information is a .mat that contains
a matrix of dimension four that we will comment later.

2.4.2 Reservoir class

This is where we create and define the characteristics of the reservoir individ-
ually with the hyperparameters set in the main. In addition, this class is in charge
of defining, training and testing the network. It is worth mentioning that in the
modularized network three different reservoirs and three different networks are
created: two of them we consider partial since they are in charge of managing
independent information and represent different parts of the brain, and the third
one is the combination of the two previous ones and the only one we train and
test. Before proceeding to explain the next class, we are going to comment on
some of the attributes of the class.

• To analyze performance of different brain functions, we can filter the data in
different frequency bands, known to encode different brain processes. Fil-
ter_name is an attribute that determine which frequency band are we using.

• Classifier is the name of the classifier that we are using, it could be linear o
logistic.

• Num_nodes is the number of nodes that has each parcial reservoir.

• Input_probability, reservoir_probability and join_probability are probabili-
ties to define the adjacency matrices of the network.

2.4.3 Newtork class

Here is where we apply most of the mathematical operations necessary to
operate the network. Next we will explain the general operation of our neural
network, but roughly speaking, it is in this class where we operate the matrices
that are created with the information of the connections between the nodes of the
input, reservoir and output layers of our network. In this class is important to
talk about the main parameters to understand who the script works. So let’s see a
briefly explanation of it.

• K is the dimension of the input denoted.

• N is the dimension of the hidden layer denoted.

• L is the dimensional of the output.

• T is the number of training steps

• Input connections, W in ∈ M(R)N×K, adjacency matrix with the connection
weights from the input units to the internal units of the reservoir. W in

i,j gives
the weight of the connection from the j-th input unit to the i-th internal unit.

• Internal connections, W ∈ M(R)N×N , matrix with the connection weights
between the different internal units of the reservoir. Wi,j gives the weight of
the connection from the j-th internal unit to the i-th internal unit.

2.4.4 How the script works?

Initially, we define the two partial reservoirs; the pre-engine and the engine,
and then the full reservoir of the network which is made up of a combination
of both reservoirs. It is important to note that these two reservoirs are simply
initialised, i.e. we define the attributes but neither train nor test them. As we said
before, we use the information of the partial reservoris to create the total reservoir,
which is the one we train and test.

In the first part of this project, we have explained theoretically how reservoir
computing works. However, will be at this point where we are going to explain
more in general how our network works with the particular information that we
use and after the modularization. Below, we show a diagram of the phases that
the network goes through, which will make the explanation of the script more
understandable.

Figure 2.4: Diagram of how the script works

As you can see in the figure above, first there is an input layer, where each blue
circle symbolises a different input. In our case, because of the type of data we are
dealing with, we have 128 different inputs that represent the electrodes that were
put into the non-human primate’s brain to obtain the information. However, it
is important to explain that we pass the first 64 inputs to the premotor reservoir
and the remaining 64 to the motor. Initially, our program creates the W matrix for
each reservoir individually, and is in these where we store the random connections
between the nodes of the input and those of each partial reservoir. To create these
random connections we use the hyperparameter input_probability.

Next, we create the W in matrix, also for each separate reservoir, where anal-
ogously to the previous one, we randomly generate the connections between the
internal nodes of the reservoir. However, for this matrix we use the hyperparam-
eter reservoir_probability.

Subsequently, we have to repeat the proces with the full reservoir. Therefore,
we create the W and W in matrices for the total reservoir using the information from
the partial matrices and generate the new matrix components randomly using the
join_probability hyperparameter.

It is crucial to understand that W and W in matrices are adjacency matrices
representing the connections between the nodes of the layers, and their role is es-
sential for training the network. The next step in our script is to train the network,
and we do this by training each node in the network using mathematical opera-

tions. These operations involve the use of the adjacency matrices described above,
and as a result, we obtain an average training and testing matrices. It should be
noted that the calculations used in the functions to train the nodes are based on
Núria Sánchez’s master’s thesis [7]. Finally, to train the program we pass the mean
training matrix through a classifier, which in our case we have defined the linear
and the logistic, and we can proceed to test the network.

2.4.5 The program

If you want to access the complete program and see the different classes ex-
plained above as well as test it, you can do so using the following QR.

2.5 Results

The main goal of the program that we have just explained above, has achieved
the better accuracy’s testing for the network. As we said previously, there are
some parameters that must be defined before the network starts the training pro-
cess. These parameters are the hyperparameters, and to know which ones are the
most optimal, we will proceed to make some tests with it. Mainly, we have four
hyperparameters that have been discussed above:

• The probability of binding between the input and the reservoir layer (in-
put_probability).

• The probability of binding for each reservoir individually (reservoir_probability).

• The probability of binding between the two reservoirs (join_probability).

• The number of nodes.

2.5.1 Study of input_probability and reservoir_probability according to
the number of nodes

To begin with, we will focus on the study of the optimal number of nodes that
should have our reservoirs. Mainly, what we want to work at is, from what num-
ber of nodes the results are good and from what value of nodes is the accuracy
stabilized. Obviously, the greater the number of nodes, the greater the computa-
tional expense of the program. Therefore, thanks to finding these accuracy thresh-
olds based on the nodes that the reservoir has, we will be able to manage the
relationship between the computational cost with good results.

To do so, we have made some heatmaps (each one with a given number of
nodes) where there is the accuracy of the network using join_probability=0 and
varying the input_probability and reservoir_probability.

The number of nodes that we have studied are: 1, 2, 5, 20, 50 and 100, and
we have tested them with both classifiers: first with the linear and then with the
logistic. To clarify the results you will see below, it is important to note that the
number of nodes indicated on the title of the graph is for each partial reservoir.
That is to say, if it indicates one node, it means that both the motor reservoir and
the premotor reservoir consist of a single node each, and the number of nodes in
the total one is the sum of these, in this case two nodes.

Studying the number of nodes using linear classifier

Figure 2.5: Accuracy of the network in terms of input_probability and reser-
voir_probability with linear classifier

Studying the number of nodes using logistic classifier

Figure 2.6: Accuracy of the network in terms of input_probability and reser-
voir_probability with logistic classifier

First of all, we can observe that the results with both classifiers are really sim-
ilar. For that reason, we will discuss the graphic above in general. According to
the previous heapmaps, the accuracy varies a lot using different number of nodes
when we use a few, and almost doesn’t vary when we have a lot. In particular and
as an example of what we just said, we can observe that the maximum increase of
accuracy from having one node to have two is 42%. On the contrary, the increase
of accuracy from having fifty nodes to have 100 is 0.02%.

Another conclusion that we can deduce is that from having twenty nodes for
each reservoir, we start to achieve an excellent accuracy. Furthermore, we also can
say that when our network has more than two hundred nodes (a hundred nodes
for each partial reservoir) the accuracy is almost perfect for both classifier, and
therefore, the results are stabilized.

In addition, in the following figures you can see that for each classifier, a graph
showing the evolution of the accuracy of the network as a function of the number
of nodes.

Figure 2.7: Evolution of accuracy of the network depending on the number of
nodes with join_probability=0 and using lineal classifier

Figure 2.8: Evolution of accuracy of the network depending on the number of
nodes with join_probability=0 and using logistic classifier

To sum up and as we expected, the higher number of nodes, the higher accu-
racy of the network. Moreover, we also found out that the maximum performance
is reached asymptotically around two hundred nodes, and that it is achieved by
following a logarithmic function. Finally, at this point of the network’ study, we
can remark that the two classifiers obtain very similar results, but the linear clas-
sifier obtains, in general, more accurate results.

2.5.2 Study of join_probability

Up to this point, we have studied the accuracy without any connection between
the two partial reservoirs, the motor and the premotor. From now on, we are
going to connect them, i.e. we are going to vary the join_probaility to see how it
influences the accuracy of the network.

To make the graphs you will see below, we have set three of the four hyper-
parameters: num_nodes, input_probability and reservoir_probability. It is im-
portant to note that the values we chose to set the input_probability and reser-
voir_probability are chosen from the previous heatmaps. To find these, we look
for each number of nodes, the probability values for which the highest accuracy
has been obtained. In this way, in each graph, we will observe the accuracy of the
network as a function only of the join_probability. In this case, we will also test
first for the linear classifier and then for the logistic classifier.

Studying the join_probability using linear classifier

Figure 2.9: Network’s accuracy in terms of join_probability and using linear clas-
sifier

Studying the join_probability using logistic classifier

Figure 2.10: Network’s accuracy in terms of join_probability and using logistic
classifier

As before, we observe that with both classifiers we achieve very similar results,
so we are going to comment the graphics in general. At a glance, join_probability
doesn’t seem to have much influence in the accuracy. As we can see, the results
of most of the graphs vary around a fix accuracy, but without following a clear
direction of growth.

On the other hand, and in the same way than with the number of nodes,
the evolutions of the accuracy in concordance with the join_probability have a
logarithmic increase. In the following graph you will observe how the accuracy
evolves as a function of the number of nodes and the join_probability.

Figure 2.11: Evolution of accuracy of the network depending on the number of
nodes with join_probability!=0 and lineal classifier

Figure 2.12: Evolution of accuracy of the network depending on the number of
nodes with join_probability!=0 and logistic classifier

2.5.3 Comparison of network with and without join_probability

Once we have studied which hyperparameters fixed the best for the accuracy
depending on the number of nodes, we will proceed to compare the results of the
modularized network without reservoir’s connexion with the one that has.

This comparison will help us to solve our hypothesis about join_probability.
Since from the last graphics we have suspected that connecting the two reservoirs
doesn’t make a very significant difference in the accuracy of the network. To
develop the table, we are going to select individually the better input_probability,
reservoir_probability and join_probability from the graphs above. And again, we
are going to distinguish the use of the classifier; first we are going to do the
comparison with linear and then with the logistics.

Table 2.1: Comparative table depending on the join_probability using linear clas-
sifier

Table 2.2: Comparative table depending on the join_probability using logistic clas-
sifier

Looking at the two tables above and as we suspected, we can affirm that con-
necting the reservoirs does not help to obtain greater accuracy in the network. But
rather we obtain very similar accuracies, or even worse results when using the lo-
gistic classifier. When we developed the idea of join_probability, we thought that
it would have had a crucial role in the network, but these data dismantle the first
hypotheses, since we expected that connecting the reservoirs would lead to better
accuracy and it is not that way.

2.5.4 Comparison of modularized and non-modularized network

At this point, we have observed that the join_probability is not a significant
hyperparameter for the accuracy of the network. Consequently, we decided to
compare the results of the modularized network with join_probability=0 with the
results of the unmodularized network of Arnau Naval [Naval2020]. Next, we show
two tables very similar to the previous ones, where we can see if the modulariza-
tion really influences the accuracy.

As we explained at the beginning of the work, the modularized network has
twice times the number of nodes than in non-modularized network. For this
reason and because both networks play on equal terms, we have trained and have
tested the non-modularized network with the double of nodes.

Table 2.3: Comparative table about results of modularized network and non-
modularized using linear classifier

Table 2.4: Comparative table about results of modularized network and non-
modularized using logistic classifier

This time, we can observe that the modularized network obtains better results
in all cases and with any of the classifiers. Just as we hypothesised, modularize
the network is a good way to improve the accuracy. And not only that, we can
add that in the best case, the accuracy improves by up to 0.15 points, so we get a
percentage increase of around 20%. And in the worst case, the accuracy improves
by up to 0.07 points, that is equivalent to a 0.13% of increase.

Conclusions

The aim of this project was to study and characterize the influence of mod-
ularity on the neural dynamics of reservoir computing networks. At the very
beginning of the work, we asked ourselves if modular reservoir network could
outperform a single module one. This is made evident on the previous testing of
the spcrit, where we have observed better accuracy with modularized network.
Though the comparative table of the network’s results with several reservoirs
against the basic ones, we can conclude that the accuracy improves by up to 20%
in the best case, and 2% in the worst cases.

Additionally, another hypothesis that we established from using non-modularized
network was to assume that the hyperparameter of the number of nodes would
grow logarithmically. In short, we expected the greater number of nodes, the
greater accuracy of the program, and that from a certain value onwards it would
stabilise. This aspect makes a lot of sense, since the learning process in our brain
involves a large number of neurons, which would be our equivalent to a node.
Therefore, it is easy to deduce that with a single node we do not obtain much
accuracy, but with a big number of them we yield a notable improvement.

On the other hand, we formulated another operational hypothesis related with
the classifier. Based on the results of non-modularized network, we thought that
both classifiers would yield fundamentally similar accuracy. Although the logistic
classifier uses ordinal encoding and the linear one-hot encoding, both classify
using few computational resources while obtaining comparable results.

Finally, and once the network was modulated, the need arose to create the
hyperparameter join_probability. This was in charge of the connection between
the two reservoirs, and we assumed that it would play a key role in accuracy.
Nevertheless, not only did not, but we found out that in certain cases its influence
decreased the accuracy of the network by up to 17%. Hence, we deduced that the
connection probability between the nodes of the reservoir itself and the connection
probability of the reservoir to the input layer were much more relevant factors.

To conclude the project, we can affirm that it has been worthwhile studying
the impact of brain-like modular reservoirs in the representation of brain states
characterized by temporal series recorded from separate cortical areas.

Bibliography

[1] Michael DePass and Ignasi Cos, Characterization of movement-related neural states
in nhp’s, 2019.

[2] H. Jaeger, The "echo state" approach to analysing and training recurrent neural
networks-with an erratum note., Research Center for Information Technology
GMD Technical Report, Bonn, Germany, 2001.

[3] Vito Latora, Vincenzo Nicosia, and Giovanni Russo, Complex network, Cam-
bridge University Press, United Kingdom, 2017.

[4] Natschlager T. Markram H. Maass, W., Real-time computing without stable states:
A new framework for neural computation based on perturbations., Neural computa-
tion, 2002.

[5] Arnau Naval Ruiz and Ignasi Cos, Revealing brain states with reservoir computing,
2020.

[6] Andrea Roli, Introduction to reservoir computing methods.

[7] Nuria Sanchez Font and Oriol Pujol Vila, Reservoir computing for learning the
underlying dynamics of sequencial data points, 2020.

[8] D. Schrauwen, B. Verstraeten and J. Van Campenhout, An overview of reser-
voir computing: theory, applications and implementations. in proceedings of the 15th
european symposium on artificial neural networks, 2007.

28

