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Abstract

Evolutionary game theory is the application of game theory to evolving populations in
different contexts as biology or economics. It defines a theoretical framework of contests
and strategies into which Darwinian competition can be modelled. In this work, we will
present the main concepts of this field from a mathematical perspective, being the evolu-
tionary stable strategies (ESS) and the replicator dynamics systems the most important
concepts.

Firstly, we present the basic concepts of game theory and qualitative theory of differ-
ential equations that will be used throughout the work. We also study how to represent
plannar differential systems using the Poincaré compactification. Then, we develop a the-
oretical study of the ESS and explain the different type of games where this concept can
be applied, player versus environment games and player versus player games. Finally,
we explain the replicator dynamics and weaker concepts of evolution than ESS. All the
sections will have different examples in order to help the reader understand and apply the
theory.

Resum

La teoria de jocs evolutiva és l’aplicació de la teoria de jocs a poblacions que evolucionen
en camps com la biologia o l’economia. Defineix un marc de treball teòric de competicions
i estratègies on l’evolució Darwiniana pot ser estudiada. En aquest treball, presentarem els
conceptes principals d’aquest camp des d’una persepectiva matemàtica, sent els conceptes
d’evolutionary stable strategy (ESS) i replicator dynamics els més importants.

Primerament, presentarem els conceptes bàsics de teoria de jocs i de teoria qualitativa
d’equacions diferencials que seran utilitzats en el treball. També estudiarem com repre-
sentar sistemes d’equacions diferencials en el pla usant la compactificació de Poincaré.
Més endavant, desenvoluparem l’estudi teòric de l’ESS i explicarem els diferents tipus de
jocs on aquest concepte es pot aplicar. Finalment, explicarem els de sistems de replicator
dynamics i conceptes evolutius més febles que l’ESS. Totes les seccions tindran diferents
exemples per tal d’ajudar al lector o lectora a entendre i aplicar la teoria.
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Introduction

Evolution can be defined from many complex and different perspectives. However, we
will use the simplest and broadest definition that can be found in a dictionary. Evolution
is a process of change in a certain direction. Using this definition as the starting point
of this work leaves us the opportunity to walk into many different fields. From here we
could start talking about the development of societies, the creation of the universe or
even about the world’s most famous video game of history, Pokémon. However, almost
every reader should direct his/her mind towards biology when he/she first hears about
evolution. On the other hand, what are we talking about when we refer to a game? Is
it the ferocious Monopoly that comes after a family lunch or maybe it’s just the most
important football match of the year, el Clásico. Once again, we will go to the dictionary
and define a game as a physical or mental competition conducted according to rules with
the participants in direct opposition to each other. From a biological perspective, a game
could be seen as the competition for survival between different species.

Evolutionary game theory encompasses Darwinian evolution, including competition,
natural selection and heredity. A big difference between classical game theory and evo-
lutionary game theory is that players do not require to act rationally, as Maynard Smith
[8] realised. The evolutionary process itself will be the one testing the adequacy of each
strategy and will keep eliminating those behaviours that do not help a species to survive.
That is, the survival of certain strategies or behaviours will mainly depend on the off-
spring left by the individuals who adopt these strategies. The most successful strategies
will then be passed to the next generations and will keep living on as long as they ensure
survival for those individuals who use them. Going back to Darwin, we can summarise
it by using the famous phrase, ”survival of the fittest”, which was first used by Herbert
Spencer after reading Darwin’s ”Origin of Species”.

The aim of this work will be to enter the reader into the world of evolutionary game
theory and approach it from a mathematical and economic point of view. The application
of game theory to evolutionary problems is very common nowadays, although it was not
so long ago when it all began to take shape. John Maynard Smith and George R. Price’s
1973 Nature article, ”The Logic of Animal Conflict”, [7], is often referred as the first
description of the concept of an evolutionary stable strategy, ESS, which will be one of the
main points of this work. As we previously said, biology is the field where the concept of
evolution has had a biggest importance and so it has been the field where evolutionary
game theory has primarily developed. In fact, even if the paper that we just mentioned
is marked as the ”birth of the ESS”, one of the authors, George R. Price, had already
got close to this same term in a previous publication in 1968, ”Antlers, Instraspecific
Combat, and Altruism” [3]. This is how Price described this concept in his article: ”A
sufficient condition for a genetic strategy to be stable against evolutionary perturbation
is that no better strategy exists that is possible for the species without taking a major

1



2 INTRODUCTION

step in intelligence or physical endowment. Hence a fighting strategy can be tested for
stability by introducing perturbations in the form of animals with deviant behaviour, and
determining whether selection will automatically act against such animals”. As we will
see, this definition is not far from the formal ESS definition that will be presented later
on. In 1974, Maynard Smith, [8], also developed more theory regarding this concept and
adding more complex situations.

The concept of stability in large populations had already been approached by John
Forbes Nash Jr., an American mathematician who made fundamental contributions to
game theory, differential geometry and the study of partial differential equations. He is the
only person to be awarded both the Nobel Memorial Prize in Economic Sciences and the
Abel Prize. Nash made an enormous impact in game theory, being the Nash equilibrium an
essential concept to understand and solve games. Nash, [12], also introduced evolutionary
game theory in his work with the concept of ”mass-action interpretation”, which refers
to the situation of a population where everyone uses the same strategy. The question in
this case is, will the population remain this way or can it be ”invaded” by individuals
using a different strategy? The answer to this question will turn around the concept of
ESS, which is a refinement of the concept of Nash equilibrium, as we will see later in this
work. A very good example of an ESS is the sex ratio in the majority of animal species,
as Maynard Smith studied in his work ”Did Darwin get it right?”, [9]. Why do we have a
50% ratio of males and females? The answer will be that this situation is an evolutionary
stable strategy and we will develop it in the second chapter of this work.

Having said all this, the study of evolutionary situations will not conclude only with
the concept of ESS. As we will see, not all games will end up having strategies that are
as stable as the concept of ESS requires, the classical Rock-Paper-Scissors game will be
an example. Then, to have a more complete view of the evolutionary process, we will
introduce the model of replicator dynamics. This model explains changes in fitness that
arise from changes in the population’s composition. In this case we will also be working
with a huge population of individuals, however, not all individuals will be using the same
strategy this time, all the possible strategies will be played with a certain probability or
proportion. The evolution of the population will be described by differential equations
that were firstly introduced by Peter Taylor and Leo Jonker, [15], in 1978.

Once we get at this point, we will have to use the concepts related to differential
equations that will have been defined in the first chapter of this work. The objective will be
the representation of the phase portrait that corresponds to the equations of the replicator
dynamics, that way we will be able to graphically see how the population evolves. In order
to provide this representation we will use,s the Poincaré compactification, which will also
allow us to study the trajectories of a planar differential linear system near infinity. Using
as a reference the book ”Qualitative Theory of Plannar Differential Systems” by Freddy
Dumortier, Jaume Llibre and Joan C. Artés, [2], we will explain in broad terms how this
process is done.

This work is organized as follows. In the first and second sections,s of chapter 1 we
will present the basic concepts of Game Theory that will be needed throughout the entire
work. The next two sections of the first chapter will be the most mathematical part as
they introduce the necessary concepts of differential equations as well as the phase por-
trait representation using the Poincaré compactification. Then, chapter 2 introduces the
concept of ESS and the different type of games that can be studied in evolutionary game
theory. Finally, the third and last chapter presents the replicator dynamics equations
and more concepts of stability that are weaker than the ESS and the relationships be-
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tween them. Several examples of games will be explained with their correspondent phase
portrait representations.
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Chapter 1

Background

The structure and organization of Section 1.1 and 1.2 of this chapter have been inspired
by the Part I of the book ”Game theory: decision, interaction, and evolution”, [17].
However, many concepts have been changed and explained in a different way using the
content provided in the Game Theory course of the Business Administration degreee who
was taught by one of the advisors of this work, Josep Maria Izquierdo Aznar.

Then, in sections 1.3 and 1.4 we have used as guidance the books ”Liçóes de equaçóes
diferenciais ordinárias” by Sotomayor, [14], and ”Qualitative theory of planar differential
systems”, [2]. In both cases, we restricted our study to the topics that were necessary
and more related to the purpose of this work, which is evolutionary game theory.

1.1 Games and Strategies

Game theory studies the interaction between decision-makers whose decisions affect
each other. The biggest distinction that can be made in tame theory involves the existence
or non-existence of cooperation between players. A game is cooperative if the players are
able to form binding commitments externally enforced, e.g., through contract law. A
game is non-cooperative if players cannot form alliances or if all agreements need to be
self-enforcing, e.g., through credible threats.

Non-cooperative game theory is the most traditional and general of both types, as
cooperative games can also be viewed from a non-cooperative perspective. While co-
operative game theory describes only the structure, strategies and payoffs of coalitions
that may arise, non-cooperative game theory also looks at how bargaining procedures will
affect the distribution of payoffs within each coalition.

A static game is one in which a single decision is made simultaneously by each player,
and none of them has any knowledge of the decision made by the other players before
making their own decision.

We will essentially work with non-cooperative static games in this work. However,
there is one part of evolutionary game theory where we will present a different kind of
situation where a single player competes against a bigger opponent, the environment. But
this point will be addressed later on in this document, for now we have to start with the
proper definition of the games that we will be working with.

5



6 CHAPTER 1. BACKGROUND

Definition 1.1. An action is a choice of behaviour in a single-decision problem. The set
of alternative actions will be denoted A and it can be a discrete or continuous set.

Definition 1.2. A payoff is a function π : A→ R that associates a numerical value with
every action a ∈ A.

Observation 1.1. In this definition of payoff function, the reader could think that the
payoff obtained only depends on the action chosen by the player. However, the situation is
more complex since the outcomes do not only depend on what the individual is doing but
also on what the rest of the players decide to do. That is, an action chosen by a player can
leave a different payoff depending on what behaviour he/she is facing. In each situation
that we expose during this work we will clarify which are the factors that affect the payoff
and the notation will take that aspect into account. That is, in the case of having two
players, the payoff function should be described as π : X1×X2 → R where X1 and X2 are
the sets of available actions for player 1 and player 2 respectively.

Definition 1.3. An action a∗ is an optimal action if

π(a∗) ≥ π(a) ∀a ∈ A.

That is, optimal actions are the ones that maximise the payoff π(a). There can be more
than one optimal action for each payoff function and set of actions. All the optimal actions
will lead to the same payoff.

Theorem 1.1. The optimal action is unchanged if payoffs are altered by an affine trans-
formation

π′(a) = απ(a) + β,

where α and β are constants and α > 0.

Proof. Suppose that a∗ is an optimal action for the payoff function π and π′ is an affine
transformation of π. Then, let’s check that a∗ is an optimal action for the payoff function
π′ too.

π′(a∗) ≥ π′(a) ⇐⇒ απ(a∗) + β ≥ απ(a) + β ⇐⇒ π(a∗) ≥ π(a).

Definition 1.4. A strategy is a plan of action, i.e., it is a rule for choosing an action at
every point where a decision has to be made.

Observation 1.2. It is important to clarify that even if we are only dealing with one-
decision games, i.e., there is only one action to be taken, we will refer to this action as a
strategy. So, strategies are the main concept that will be present in every part of this work.
The following definitions that will refer to the action concept will naturally be extended to
strategies too.

Definition 1.5. A pure strategy is one in which there is no randomisation. The set of
pure strategies will be denoted S. When there is only a single decision to be made, the
sets of actions and pure strategies are identical.

A mixed strategy σ specifies the probability p(s) with which each one of the pure
strategies s ∈ S is used.

Suppose that the set of strategies is S = {s1, s2, . . .}, then a mixed strategy can be
represented as the vector of probabilities:
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σ = (p(s1), p(s2), . . .),

where ∑
s∈S

p(s) = 1.

Mixed strategies can be represented as linear combinations of pure strategies. Then,
a pure strategy can be represented as a vector where all the components are zero except
for one that is one, for example,

s1 = (1, 0, . . .).

Definition 1.6. Assuming that we are in the case of a 2-player game, we will usually
denote p(s) as the probability of using the pure strategy s by player 1 and q(s) as the
probability of using the pure strategy s by player 2. Then, the payoff corresponding to a
pair of mixed strategies (σ1, σ2) is given by

πi(σ1, σ2) =
∑
s1∈S1

∑
s2∈S2

p(s1)q(s2)πi(s1, s2).

As we said before in the observation, the payoff in this case depends on the strategies
chosen by both players and the notation clearly identifies it. The definition of the payoff
function can clearly be extended to games that involve more than two players by just
adding the probabilities of the rest of the players and the correspondent payoff for every
combination of strategies chosen by them.

Observation 1.3. In some cases, authors make the distinction between ”mixed strategies”
and ”behavioural strategies” when there is potentially more than one action to be made.
However, in the situations that we will be treating in this work, that will not be necessary.
Even we did, it can be proved that choosing any of the concepts is equivalent, so we will
stick to the one that we have already defined.

Now that we have already defined some important concepts that will be present
throughout the work, we can give a proper definition of what a game is.

Definition 1.7. A non-cooperative static game is represented by the following elements:

1) Players. The number of individuals that take part of the game, which we will denote
as N, and their notion of rationality.

2) Strategies. We will define them by assigning a pure strategy set, Si, for each player
that participates in the game.

3) Preferences over outcomes, i.e., the valuation of what each player is going to receive
as an outcome of the game. We will formalize this with the already defined concept of
payoff.

A tabular description of a game, using pure strategies, is called the normal form or
strategic form of a game.

Example 1.1. Strategic Innovation
This example is inspired by the article ”Application of Evolutionary Game Theory to
Strategic Innovation”, [13], where the authors study the generation and evolution of
strategic innovation from the perspective of evolutionary game theory.
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Let’s assume that we are in a situation where two different companies, company A and
company B, are competing in the same market. Both firms have three different alterna-
tives when competing against each other, these are, not innovate(NI), low innovation(I)
and high innovation(HI), i.e., S = {NI,LI,HI} is the set of pure strategies.

Let’s also assume that the total market value is 1000M and these are the only two
firms competing in the market, so they share all the benefits. We will also assume that
innovating has no cost for the firms and that the firm with the higher innovation gets a
higher share of the market. Now we can represent the normal form of the game with the
associated payoffs matrix where company A acts is the row player and company B is the
column player.

NI LI HI

NI (500,500) (400,600) (250,750)

LI (600,400) (500,500) (300,700)

HI (750,250) (700,300) (500,500)

This game has two important characteristics to highlight. The first one is that this
game is clearly symmetric on the payoffs. Then, it is special type of game called zero-sum
game, in which the total payoff for both players is always the same, in this case, 1000M
and they share all of it. A decrease in a company’s payoff is totally absorbed by the other
company and the sum of both is always the same.

Observation 1.4. As we already mentioned before, the definitions that we established
about actions earlier in this section can be naturally extended to strategies. Therefore,
the reader should expect no difference when we start working with the same terms and
definitions either on actions or strategies.

Definition 1.8. The support of a mixed strategy σ is the set S(σ) ⊆ S of all the pure
strategies for which σ specifies p(s) > 0.

1.2 Solving Games

Across this section we will dig deeper into the concept of a game and how to solve
it. That is, taking into account all the possible strategies for each player and the payoffs
obtained when those strategies interact, we will have to establish criteria that helps us
find the ”best outcome”. Two related concepts that we will later define will allow us to
solve the games, these are domination between strategies and Nash Equilibrium.

All the results that will be obtained in this section only make sense assuming that the
individuals that take part of the game are ”rational”. That is, players always want to
obtain the best outcome of the game, i.e., the highest possible payoff taking into account
their possible actions and the counterparts’.

Definition 1.9. The solution of a game (not necessarily unique) is the set of strategies
that each participant in the game will use as a result of the rational decision process. We
will write these strategies between parenthesis in ascendant player order. For example,
for a 2-player game, the solution will be (σ1, σ2) where the first strategy corresponds to
player one and the second one to player two. Then, for an n-player game, it will naturally
be (σ1, σ2, . . . , σn).
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Definition 1.10. A solution is said to be a Pareto optimal (named after the Italian
economist Vilfredo Pareto) if no player’s payoff can be increased without decreasing the
payoff to another player. Such solutions are also termed socially efficient or just efficient.

Definition 1.11. A strategy for player 1, σ1, is strictly dominated by σ∗1 if

π1(σ
∗
1, σ2, . . . , σn) > π1(σ1, σ2, . . . , σn) ∀σi ∈ Si, i = 2, 3, . . . , n.

An equivalent definition can be given for any other player of the game.

A strategy for player 1, σ1, is weakly dominated by σ∗1 if

π1(σ
∗
1, σ2, . . . , σn) ≥ π1(σ1, σ2, . . . , σn) ∀σi ∈ Si, i = 2, 3, . . . , n,

An equivalent definition can be given for any other player of the game.

Observation 1.5. From the definition we can extract the conclusion that an individual
will never use a strategy that is strictly dominated by another one. We can’t be so sure
in the case of weakly dominated strategies, they will have to be studied in their particular
game. Using this conclusion we can derive a process to solve a game using domination,
the ”Iterated elimination of strictly dominated strategies”(IESD). These process consists
in checking the possible existing domination between strategies and removing the strategies
that are dominated and, hence, will not be played in any case. This iterative process can
end up giving us a solution for the game we are treating.

Example 1.2. Strategic Innovation(continued)
We will solve our previous example with the IESD process. As the game is symmetric,
if we find a strategy that is strictly dominated for any of the two players, the same will
happen to the other player. Let’s rewrite our initial matrix

NI LI HI

NI (500,500) (400,600) (250,750)

LI (600,400) (500,500) (300,700)

HI (750,250) (700,300) (500,500)

As we can see, the payoffs that player 1 obtains when using LI are always greater than
the ones using NI, so we can remove this strategy for both players. Then the matrix looks
like

LI HI

LI (500,500) (300,700)

HI (700,300) (500,500)

Now, we can observe that using HI gives a greater payoff in the two remaining cases
so we will remove LI from the table and therefore we will obtain the result of the game

HI

HI (500,500)
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Then, (HI,HI) is the solution of the game obtained by using the IESD process.

Observation 1.6. Looking at the previous example there is something that the reader
should clearly notice. While (500, 500) is the payoff every time both companies use the
same strategy, only the case where both of them innovate is the solution of the game. Why
does this happen? If the result obtained is the same in all three cases (NI,NI), (LI, LI)
and (HI, HI) why only the last one remains as the solution of the game. We will explain
this situation by defining the concepts of best response and Nash Equilibrium of a game.

Definition 1.12. A strategy for player 1, σ∗1, is a best response to some fixed strategy
profile for the rest of the players, (σ2, σ3, . . . , σn), if

π1(σ
∗
1, σ2, σ3, . . . , σn) ≥ π1(σ1, σ2, σ3, . . . , σn) ∀σ1 ∈ S1.

An equivalent definition can be given for any other player of the game.

Definition 1.13. A Nash equilibrium is a strategy profile (σ∗1, σ
∗
2, . . . , σ

∗
n) such that

πi(σ
∗
1, σ
∗
2, . . . , σ

∗
i , . . . , σ

∗
n) ≥ πi(σ∗1, σ∗2, . . . , σi, . . . , σ∗n) ∀σi ∈ Si, i = 1, 2, . . . , n.

That is, no player has incentive to unilaterally change his/her strategy because the pay-
off obtained would be lesser, i.e., they cannot do strictly better by adopting any other
combination of strategies.

Using the previous definition of a best response, we can give an alternative definition
for this concept. We say that (σ∗1, σ

∗
2, . . . , σ

∗
n) is a Nash equilibrium of the game if each

strategy σ∗i is a best response to every possible strategy of the other players.

Definition 1.14. A generic game is one in which a small change to any of the payoffs
does not introduce new Nash Equilibria or remove existing ones.

Observation 1.7. From these definitions of a Nash equilibrium we can also derive a
procedure to find the solution of a game. We have to find the best responses to every
possible strategy of the other players. Finally, we have to look for the sets of strategies
that are best responses to each other. There can be multiple or any Nash equilibrium in a
game, it will depend on every particular game.

Example 1.3. Strategic innovation(continued)
Going back to same example, this time we will solve it by highlighting the best responses
for each player

NI LI HI

NI (500,500) (400,600) (250,750)

LI (600,400) (500,500) (300,700)

HI (750,250) (700,300) (500,500)

Again we end up having the same conclusion, (HI, HI) is the NE of the game because
these are the only strategies that are a best response to each other.

Observation 1.8. Now we can answer to the questions asked in the previous observation.
Even if there are two more strategies that give exactly the same payoffs to both companies,
they are not a solution of the game because they are not mutual best responses. For
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example, if company A decided to use the strategy NI, then company B would unilaterally
move to LI or HI and obtain higher payoff. As the game is symmetric, exactly the same
thing would happen if company B did not use the strategy HI, company A would deviate
to improve its payoff.

Theorem 1.2. Equality of Payoffs
Let σ∗ = (σ∗1, σ

∗
2, . . . , σ

∗
n) be a Nash Equilibrium, and let S∗1(σ∗1) be the support of σ∗1 .

Then

π1(s, σ
∗
2, . . . , σ

∗
n) = π1(σ

∗
1, σ
∗
2, . . . , σ

∗
n) ∀s ∈ §∗1.

Proof. If the set S∗1 contains only one strategy, then the theorem is trivially true. Suppose
now that the set S∗1 contains more than one strategy. We will suppose that the theorem
is not true and we will end up with a contradiction. If the theorem is not true, then there
is at least one strategy in the support that gives a higher payoff than (σ∗1, σ

∗
2, . . . , σ

∗
n); let

s′ be that strategy and let(s′, σ∗2, . . . , σ
∗
n) be the combination of strategies that gives a

higher payoff. Then

π1(σ
∗
1, σ
∗
2, . . . , σ

∗
n) =

∑
s∈S∗

p∗(s)π1(s, σ
∗
2, . . . , σ

∗
n)

=
∑
s 6=s′

p∗(s)π1(s, σ
∗
2, . . . , σ

∗
n) + p∗(s′)π1(s

′, σ∗2, . . . , σ
∗
n)

<
∑
s 6=s′

p∗(s)π1(s
′, σ∗2, . . . , σ

∗
n) + p∗(s′)π1(s

′, σ∗2, . . . , σ
∗
n)

= π(s′, σ∗2, . . . , σ
∗
n)

which contradicts the assumption that (σ∗1, σ
∗
2, . . . , σ

∗
n) is a Nash Equilibrium. In the third

line, to establish the inequality, we have used that (s′, σ∗2, . . . , σ
∗
n) is the combination of

strategies that gives strictly a higher payoff.

Observation 1.9. A question that we could ask after proving this theorem is, why does
player 1 choose the randomising strategy σ∗1 if all pure strategies in the support end up
giving him/her the same payoff? The reason is that if player 1 decides to deviate from
this strategy, then the Nash Equilibrium disintegrates. As we have mentioned before, a
NE is the combination of strategies where all the players obtain a result that cannot be
improved without reducing the other players’. Therefore, if player 1 decided to change to
any other possible strategy, the rest of the players would ”counterattack” to improve their
payoff and the equilibrium would be broken. That is the reason why randomising strategies
will be very important from now on.

Theorem 1.3. Nash′s Theorem
Every game that has a finite strategic form, i.e., with finite number of players and finite
number of pure strategies for each player, has at least one Nash Equilibrium involving
pure or mixed strategies.

This theorem was provided by John Forbes Nash Jr. as part of his PhD thesis in
1950 and it involves the use of a fixed point theorem(e.g., Brouwer’s). The proof of the
theorem is not an essential part for this thesis as we are going to be focusing on the topic
of evolutionary game theory. However, it is important to mention it because the concept
of Nash equilibrium is very important in game theory.
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It is also important to mention that even if this theorem provides us with the existence
of at least one Nash equilibrium for the type of games previously mentioned, it does not
necessarily have to be unique.

Observation 1.10. Then, one more important question that should arise from the concept
of Nash Equilibrium is, what happens when we have multiple Nash Equilibrium in a game?
Is there any way to determine which one of them is better? Unfortunately, there is no
other concept or refinement of Nash Equilibrium that leads us to a unique equilibrium
in a game. However, this does not mean that we cannot go a bit further to analyze the
different equilibriums of a game and cast more light upon them. This is the point where
evolutionary game theory comes into play.

1.3 Qualitative Theory of Differential Equations

In this section we will introduce all the mathematical concepts, specially related to
differential equations, that will be used later on in this work.

Definition 1.15. A differential equation is a functional relation that involves a function
and its derivatives. An ordinary differential equation (ODE) is a differential equation
in which the function contains only one independent variable. On the other hand, a
partial differential equation (PDE) is an equation which imposes relations between the
various partial derivatives of a multivariable function. A differential equation that does
not explicitly depend on the independent variable is called an autonomous differential
equation.

Example 1.4. A linear homogeneous 1-dimensional differential equation is for example

ẋ(t) = ax(t), x, a ∈ R.

Which we can easily solve in the following way

dx

x
= adt ⇐⇒

∫
dx

x
=

∫
adt ⇐⇒ log(x(t)) = at+ k ⇐⇒

⇐⇒ x(t) = exp(at+ k) ⇐⇒ x(t) = k′ exp(at)

where the parameter k′ = exp(k) ∈ R gives the ”family of solutions” of the differential
equation.

Definition 1.16. The normal formalization of the ODE can be written as ẋ = f(t, x),
where t ∈ R, x ∈ Rn and f : U ∈ R×Rn → R. Usually f is assumed to be continuous and
Lipschitz with respect to the second variable. Then, we can define the Cauchy problem or
initial value problem as the previous differential equation together with an initial condition
x(0) = x0 ∈ Rn. That is, {

ẋ = f(t, x)

x(0) = x0.
(1.1)

With this regularity, the Picard’s theorem, which will be presented soon, guarantees
the existence and uniqueness of a local solution of (1.1).
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Example 1.5. Let’s consider the linear differential equation ẋ = A(t)x, t ∈ R, x ∈ Rn.
In this case, the Cauchy problem is, {

ẋ = A(t)x

x(0) = x0.

Then, the solution of the initial value problem is written as a fundamental ma-
trix φ(t) where each column of the matrix is a solution (linearly independent) of the
equation. Therefore, solution of the previous initial value problem can be written as
ϕ(t) = φ(t)φ−1(0)x0. If A(t) ≡ A, i.e., A(t) is a constant matrix, the equation is called
homogeneous linear with constant coefficients. In this case, the fundamental principal
solution of the differential equation can be written as the exponential of the matrix, i.e.,
φ(t) = exp(tA) and the solution of the initial value problem is ϕ(t) = φ(t)x0.

Theorem 1.4. Picard′s Theorem
Let f : U ∈ R× Rn → R be a Lipschitz continuous function in x, and continuous in t in
U = Ia × Bb, where Ia = {t; |t − t0| ≤ a}, Bb{x; |x − x0| ≤ b}, a, b > 0. Given M such
that f ≤M in U, there is a unique solution of{

ẋ = f(t, x)

x(t0) = x0.

in Iα, where α = min{a, b
M }.

Definition 1.17. Let U ∈ Rn be a on open set. A vector field is an application

X : U ⊂ Rn −→ Rn.

This vector field induces an autonomous differential equation

ẋ = X(x).

The solution curves of ẋ = X(x) satisfy that at each point the tangent vector corresponds
to the vector field defined by X. We will assume that the vector field X ∈ Cr(U), r ≥ 1.

Let’s now consider an autonomous 2-dimensional ODE{
ẋ = f(x, y)

ẏ = g(x, y),
(1.2)

where X = (f, g) : U −→ R2 is the correspondent vector field, X ∈ C1(U). Let’s present
some theoretical concepts related to this vector field.

Definition 1.18. The vector field X is integrable if there is a function H : U −→ R,
H ∈ C1(U), named first integral, that is not constant in any open set but is constant over
the solutions of (1.2). Then, for each solution ϕ : I −→ U of (1.2), H(ϕ(t)) = H(ϕ(0)),
∀t ∈ I.

Definition 1.19. The vector field X is conservative if divX = 0, i.e., ∂f∂x (x, y)+ ∂g
∂y (x, y) =

0, ∀(x, y) ∈ U.
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Definition 1.20. An integrant factor of (1.2) is a non constant function µ : U −→ R,
µ ∈ C1(U), such that the vector field µX is conservative, i.e., ∀(x, y) ∈ U,

f(x, y)
∂µ

∂x
(x, y) + g(x, y)

∂µ

∂y
(x, y) + divX(x, y)µ(x, y) = 0.

Definition 1.21. The vector field X = (f, g) is a Hamiltonian vector field if there exists
a function H(x, y) such that

∂H

∂y
(x, y) = f(x, y),

∂H

∂x
(x, y) = −g(x, y).

We also say that vector field X is a Hamiltonian with Hamiltonian H.

We will follow up by writing two propositions that explain the relationships between
conservative and integrable vector fields. We will not prove the second proposition since
we think it is too technical and does not serve the purpose of this work.

Observation 1.11. It is important to note that in both propositions we suppose that the
open set U has particular characteristics. We suppose that U is a star convex set in
respect to a certain point x0 ∈ U , that is, for all x ∈ U the segment between x0 and x is
contained in U .

Proposition 1.1. A C1 vector field X = (f, g) with a first integral H is integrable ⇐⇒
DH(x, y)X(x, y) = 0 ∀(x, y) ∈ U.

Proof. ⇒) Let’s suppose that X is integrable. Then, we know that ∃H first integral which
is a function not constant on any open set but constant over the solutions of the system.
That is, for any given solution ϕ(t) of ẋ = X(x) we have d

dtH(ϕ(t)) = 0.

Now, we have that

d

dt
H(ϕ1(t), ϕ2(t)) = 0 ⇐⇒ Hx(ϕ1(t), ϕ2(t))ϕ̇1(t) +Hy(ϕ1(t), ϕ2(t))ϕ̇2(t) = 0 ⇐⇒

⇐⇒ < (Hx(ϕ1(t), ϕ2(t)), Hy(ϕ1(t), ϕ2(t))), (ϕ̇1(t), ϕ̇2(t)) >= 0 ⇐⇒

⇐⇒ DH(x, y)|(ϕ1(t),ϕ2(t))X(ϕ1(t), ϕ2(t)) = 0.

⇐) Reciprocally, let’s suppose that DH(x, y)X(x, y) = 0 for a given function H ∈
C1(U) not locally constant. That is,

< (Hx(x, y), Hy(x, y)), (f(x, y), g(x, y)) >= 0 ⇐⇒ Hx(x, y)f(x, y)+Hy(x, y)g(x, y) = 0.

We want to prove that H is a first integral of the field, i.e., that it is constant over the
solutions ϕ(t) of (1.2). Let’s now calculate d

dtH(ϕ(t)),

d

dt
H(ϕ(t)) = DH(x, y)|ϕ(t)

d

dt
ϕ(t) = [∗].

If we calculate both terms separately we have,

DH(x, y)|ϕ(t) = Hx(x, y)|ϕ(t) +Hy(x, y)|ϕ(t).
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As ϕ(t) = (ϕ1(t), ϕ2(t)) is the solution of{
ẋ = f(x, y)

ẏ = g(x, y),

we have that
d

dt
ϕ1(t) = f(ϕ1(t), ϕ2(t))

d

dt
ϕ2(t) = g(ϕ1(t), ϕ2(t)).

Consequently d
dtϕ(t) =

(
d
dtϕ1(t)
d
dtϕ2(t)

)
=

(
f(ϕ1(t), ϕ2(t))
g(ϕ1(t), ϕ2(t))

)
.

Writing them together again, we have

[∗] = Hx(ϕ1(t), ϕ2(t))f(ϕ1(t), ϕ2(t)) +Hy(ϕ1(t), ϕ2(t))g(ϕ1(t), ϕ2(t)) = 0.

Proposition 1.2. A conservative field X is integrable, i.e., ∃H function that is a first
integral of the system.

Now, after having defined the basic concepts of differential equations we can start to
dig deeper into the qualitative theory.

Definition 1.22. Let X ∈ C1(U) be a vector field as previously described. Given x ∈ U
we define the orbit of x as

θ(x) = {ϕt(x), t ∈ I(x)}.

From the definition it is easy to see that y ∈ θ(x) ⇐⇒ θ(y) = θ(x). The relationship
y ∼ x ⇐⇒ y ∈ θ(x) is an equivalence relationship. Then, the set U and the partition in
orbits that is induced by the relationship ∼ is called the phase portrait.

Definition 1.23. Let ẋ = X(x), and let x∗ ∈ U . We say that x∗ is a fixed point if
X(x∗) = 0. Otherwise, we say that x∗ is a regular point. There are different types of fixed
points:

1. x∗ is a hyperbolic fixed point ⇐⇒ Re(λ) 6= 0, ∀λ ∈ Spec(DX(x∗)).

2. x∗ is an elliptical fixed point ⇐⇒ Re(λ) = 0, Im(λ) 6= 0, ∀λ ∈ Spec(D(X(x∗)).

3. x∗ is a parabolic fixed point ⇐⇒ 0 ∈ Spec(D(X(x∗)).

Definition 1.24. Consider the differential equation ẋ = Ax, A ∈ M2x2, x ∈ R2. Let’s
suppose that det(A) 6= 0, so that the origin is the only fixed point. The phase portrait of
the linear system is then determined by the eigenvalues λ1, λ2 of A. Concretely:

1. Case λ1, λ2 ∈ R, λ1 6= λ2. In a base of eigenvectors the system is reduced to the
fundamental form

ẋ =

(
λ1 0
0 λ2

)
x.

The signs of λ1, λ2 determine the type of the point:



16 CHAPTER 1. BACKGROUND

(a) If λ1λ2 > 0 the origin is a node. We have a stable node if λ1, λ2 < 0 and an
unstable node if λ1, λ2 > 0.

(b) If λ1λ2 < 0 the origin is a saddle point.

2. Case λ1, λ2 ∈ R, λ1 = λ2 = λ 6= 0. We distinguish 2 cases:

(a) If A diagonalizes, the system is reduced to the fundamental form (??). The
origin is a node.

(b) If A does not diagonalize, the system is reduced to the fundamental form

ẋ =

(
λ 1
0 λ

)
x.

The origin is a node.

3. Case λ1, λ̄2 = α+iβ, β 6= 0 (conjugate complex eigenvalues). The system is reduced
to the fundamental form

ẋ =

(
α −β
β α

)
x.

We distinguish two cases:

(a) If α = 0 the origin is a center. It is a non-hyperbolic case.

(b) If α 6= 0 it is a focus. If α < 0 the focus is stable and if α > 0 the focus is
unstable.

Example 1.6. Phase portraits of some of the cases that we have just defined, i.e., systems
ẋ = Ax, where A is a 2× 2 matrix with det(A) 6= 0.

Figure 1.1: Phase portrait of systems ẋ = Ax. Source: ’Qualitative theory of planar
differential systems’, [2].

In case a) we have a saddle; case b) is a stable node; case c) is a node where λ1 =
λ2 = λ 6= 0 and A diagonalizes; case d) is a node where λ1 = λ2 = λ 6= 0 and A does not
diagonalize; case e) is an unstable focus; case f) is a center.
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Definition 1.25. A separatrix is a trajectory separating two regions in which the be-
haviour of solutions as t → ∞ or t → −∞ is different. The trajectories entering and
leaving a saddle point are very often separatrices.

Theorem 1.5. Hartman−Grobman

Consider the vector field X : U −→ Rn, U ⊂ Rn, X ∈ C1(U) and let x∗ be a fixed
hyperbolic point. Let A = DX(x∗) and let Y : Rn −→ Rn be the linear field Y(y) =
Ay. Then, the vector fields X and Y are locally topologically conjugate. That is, ∃U∗
neighbourhood of x∗ and ∃V∗ neighbourhood of y∗ = 0 and there exists h : U∗ −→ V∗
homeomorphism such that h(ϕ(t, x)) = ψ(t, h(x)). Where ϕ is the flow of the field X and
ψ is the flow of the field Y.

Observation 1.12. This theorem will be very important because using it we will be able
to transfer the local study that we do about a linear field to the correspondent conjugate
vector field. The map h has the property of sending orbits to orbits, i.e.,

h(θ1(x)) =
⋃
t∈R

h(ϕ1(t, x)) =
⋃
t∈R

ϕ2(t, h(x)) = θ2(h(x)).

In particular, h sends fixed points to fixed points.

1.4 Poincaré Compactification

In order to study the behaviour of the trajectories of a planar differential system near
infinity it is possible to use a compactification. A good approach to do so is using the
so called Poincaré sphere. It has the advantage that the singular points along infinity
are spread out along the equator of the sphere. In the Poincaré sphere it is possible to
work only in one of the hemispheres that will be called the Poincaré disk. If the functions
defining the vector field that we are studying are polynomials, we can apply the Poincaré
compactification, which will tell us how to draw the phase portrait in a finite region. As
we previously said, the construction of the Poincaré compactification is completely based
on the fifth chapter of the book ”Qualitative Theory of Planar Differential Systems”. To
find more detailed information we refer the reader to [2].

Just as a reminder, we will define a differential geometry concept that will be used in
the construction of the compactification.

Definition 1.26. Let M be an m-dimensional manifold. We say that (U, φ), where U ⊆M
and φ : U → Rm is a map, is an m-dimensional chart on M if φ(U) ⊆ Rm is open and φ
is a bijection from U to φ(U).

Let’s now consider the polynomial vector field X = (P (x1, x2), Q(x1, x2)) where P and
Q are polynomials of arbitrary degree in the variables x1 and x2. The degree of X, d, will
be the maximum of the degrees of P and Q.

The Poincaré compactification works as follows. First we consider R2 as the plane in R3

defined by (y1, y2, y3) = (x1, x2, 1). We consider the sphere S2 = {y ∈ R3 : y21+y22+y23 = 1}
which is tangent to R2 at (0, 0, 1) and we will call it Poincaré sphere. This sphere can be
divided into the northern and southern hemisphere, which are respectively H+ = {y ∈
S2 : y3 > 0} and H− = {y ∈ S2 : y3 < 0}. Then, the equator is S1 = {y ∈ S2 : y3 = 0}.
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Now we consider the projection of the vector field X from R2 to S2 given by the central
projection f+ : R2 → S2, which is the intersection of the straight line passing through the
point y = (x1, x2, 1) and the origin with the northern hemisphere of S2:

f+(x) =

(
x1
∇(x)

,
x2
∇(x)

,
1

∇(x)

)
,

where ∇(x) =
√
x21 + x22 + 1. The southern projection, f−(x), can be similarly defined.

Observation 1.13. As the projection f+(x) goes from the plane R2 to the sphere S2,
then the differential of this projection sends the vector that we have in the point x ∈ R2

to a vector in the sphere.

In this way we have induced two vector fields, one in each hemisphere, that are ana-
lytically conjugate to X. The induced vector field on H+ is X̄(y) = Df+(x)X(x), where
y = f+(x) and it is a vector field on S2 \S1 that is everywhere tangent to S2. Notice that
the points at infinity of R2 are in bijective correspondence with the points of the equator
of S2.

Observation 1.14. Clearly, the length of the vector field X will tend to infinity at the
speed that is marked by the degree of the polynomials. What we will do in the construction
is to stop the evolution to infinity by multiplying or dividing by a factor that ”reduces the
speed”. We will be able to do this because, as we have a polynomial vector field, the speed
with which X goes to infinity ”uniformly controlled” by the degree of the field, which is
the maximum degree of P and Q. The ”uniformity of a polynomial field” lets us find a
factor that slows down the speed of all its orbits.

Now we will extend the induced vector field X̄ from S2 \ S1 to S2. To do so, we need
to multiply the vector field by the factor ρ(x) = xd−13 (which allows us to adequately do
the extension) and the extended vector field on S2 is called the Poincaré compactification
of the vector field X on R2, and it is denoted by p(X).

Definition 1.27. The finite singular points of X or p(X) are the singular points of p(X)
that lie in S2 \ S1. The infinite singular points of X or p(X) are the singular points of
p(X) that lie in S1.

To make the calculations in a curved surface like this one, we will use the six local charts
given by Uk = {y ∈ S2 : yk > 0}, Vk = {y ∈ S2 : yk < 0} for k = 1, 2, 3. The corresponding
local maps φk : Uk → R2 and ψk : Vk → R2 are defined as φk(y) = −ψk(y) = (ymyk ,

yn
yk

) for
m < n and m,n 6= k. We denote by z = (u, v) the value of φk(y) or ψk(y) for any k, such
that (u, v) will play different roles depending on the local chart that we are considering.
The points of S1 in any chart have v = 0.
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Figure 1.2: The local charts (Uk, φk) for k = 1, 2, 3 of the Poincaré sphere. Source:
’Qualitative theory of planar differential systems’, [2].

We will not go into detail to work out the construction of the compactification, all the
details and calculations can be found in [2]. However, we will present the main elements
that we think the reader should pay more attention to.

We have

X̄|U1 = v2
(
−u
v
P

(
1

v
,
u

v

)
+

1

v
Q

(
1

v
,
u

v

)
,−P

(
1

v
,
u

v

))
.

Now,

ρ(y) = yd−13 =
1

∇(x)d−1
=

vd−1

∇(z)d−1
= vd−1m(z),

where m(z) = (1 + u2 + v2)
1−d
2 . It follows that

ρ(X̄|U1)(z) = vd+1m(z)

(
−u
v
P

(
1

v
,
u

v

)
+

1

v
Q

(
1

v
,
u

v

)
,−P

(
1

v
,
u

v

))
.

Observation 1.15. As we mentioned before, we have added a factor that makes the
extension of ρX̄ to p(X) possible. Notice that while X̄|U1 is not well defined when v =
0, p(X)|U1 = ρX̄|U1 is well defined along v = 0 since the multiplying factor vd+1 cancels
any factor of v which could appear in the denominator. This is linked to the previous
observation where we talked about slowing down the speed of the field as it got close to
infinity.

Now, in order to simplify the extended vector field we can make a change in the time
variable and remove the factor m(z). Finally, we can give the expressions of p(X) in each
local chart. In the local chart (U1, φ1) is given by

p(X)|U1 =


u̇ = vd

[
−uP

(
1

v
,
u

v

)
+Q

(
1

v
,
u

v

)]
v̇ = vd+1P

(
1

v
,
u

v

)
.
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The expression for (U2, φ2) is

p(X)|U2 =


u̇ = vd

[
P

(
u

v
,

1

v

)
− uQ

(
u

v
,

1

v

)]
v̇ = vd+1Q

(
u

v
,

1

v

)
.

Finally, for (U3, φ3) we have

p(X)|U3 =

{
u̇ = P (u, v)

v̇ = Q(u, v).

The expression for p(X) in the charts (Vk, ψk) is the same as for (Uk, φk) multiplied by
(−1)d−1, for k = 1, 2, 3.

Observation 1.16. As we previously said, it is not necessary to work with the complete
sphere to study the initial vector field X. It is sufficient to work in the Poincaré disk, i.e.,
H+ ∪ S1and all the calculations can be done using the charts (Uk, φk), for k = 1, 2, 3.

Observation 1.17. The infinite singular points of the vector field will be spread along the
equator of the sphere and the finite ones will be contained in the northern and southern
hemispheres. It is important no note that if y ∈ S1 is an infinite singular point, then −y
is also a singular point. Since the local behaviour near −y is the local behaviour near y
multiplied by (−1)d−1 it follows that the orientation of the orbits changes when the degree
is even. For example, if d is odd and y ∈ S1 is a stable node of p(X), then −y is a stable
node too. Then, it is just necessary to study half of the singular points and use the degree
of the field to know the behaviour of the rest.

Observation 1.18. The tool used by the program P4&P5 for studying nonelementary
singularities of a differential system in the plane consists on changes of variables called
blow-ups. This technique is used to show that at isolated singularities, an analytic system
has a finite sectorial decomposition. A consequence of a Theorem proved by Freddy Du-
mortier that we will not specify in this work, is that with a finite number of blow-ups we
will eventually end up in a situation where all the singular points will be saddles, nodes or
saddle-nodes. Then, as there is a finite number of blow-ups, when the desingularisation
process is done to study the local behaviour around the point, that will consequently lead
to a finite number of sectors. We will see several examples in the third chapter of this
work that illustrate the sectorial decomposition of different systems.



Chapter 2

Evolutionary Models and ESS

Evolution is a broad concept that can be viewed and approached from many different
points. Our first interest will be to make a first contact through the biological approach,
since we think it is the field where it has achieved a greatest development and it will
therefore be a good starting point to establish our basis.

There are three main concepts that are involved in the process of evolution, these
are selection, inheritance and mutation. Starting with the first one, selection, we can go
back to the famous phrase referred to Charles Darwin’s work, ”the survival of the fittest”.
That is, selection is the force that determines the chances of survival and reproduction of
a certain species with a certain behaviour versus the environment where it lives. Survival
will clearly have a short-run effect in the evolution process and the repeated process
through generations will end up having a long-run effect which will decide the species
that populate the environment.

The concept that follows is inheritance. It is conceived as the force that establishes
links between generations of individuals. That is, it is the way through which individ-
uals behaviours’ get transferred to their offspring. Linking this concept to selection, we
could say that once we know which individuals will be ”chosen” to continue living and
reproducing, we would like to know to which extent does their behaviour get transferred
to their offspring. This will also be a very important issue related to evolution since the
behaviour of individuals is crucial to their survival and so it will be for the ones that come
after them.

Finally, mutation plays also a very important role en evolutionary processes. Mutation
acts as the creator and modifier of existing behaviours in the environment to enrich (or
not) patterns of behaviour and make them ”better against the environment”. That is,
mutation acts as a force that introduces new behaviours into the game and therefore it
changes the adaption process of individuals against the environment they are facing or
living in.

Hence, it will be our task to try to formalize these biological concepts and give them
a proper and formal economic and mathematical form. We will have to establish a base
where to start our assumptions and start building the theory of Evolutionary games.

The organization of this chapter has been inspired by the third part of the book
”Game Theory. Decisions, Interaction and Evolution”, [17]. while also adding more
detailed information provided by Vega-Redondo, [16], in his book ”Evolution, games, and
economic behaviour”. The first reference provides an easier and not so in depth approach
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to the topic and in the second one we can find more complex information to complement
this work in some specific points.

2.1 Framework

In the first chapter we have presented all the basic concepts that are important to ex-
plain evolutionary game theory and we have done this for n-player games. However, from
now on we will present the theory from the perspective of just a specific type of games,
this will be 2 player symmetric games. Placing ourselves in this type of games allows us
to give a different interpretation of Nash Equilibrium by seeing the game in a population
context. If we encounter the situation of a population where all its members use the
the Nash Equilibrium, σ∗, then the population will remain that way, it is in equilibrium.
This concept was introduced by Nash in 1951, [12], as the ”mass action interpretation”.
A question we must ask ourselves is whether the equilibrium is reached or not if the
population is close to but not in equilibrium. Where does the evolutionary process lead?
Does the ”most popular” strategy remain or will it be ”invaded” by mutations? Then, we
will try to identify the ending points of evolutionary processes. This will be formalized
later on with the concept of Evolutionary Stable Strategy (ESS).

Hence, we will consider a population of decision makers that keeps evolving. That is,
the proportion of a population that has a certain behaviour or decides to carry out an
action keeps changing. From a biological perspective we would consider a population of
animals that present a certain behaviour that is transferred to their offspring. Fittest
individuals will have more offspring and hence, their behaviour will have a better chance
of survival over time. Economically speaking, the population does not change over gener-
ations but over repetition. That is, individuals keep evaluating the result of their actions
and eventually may decide to change their behaviour in the seek of a better payoff.

2.2 Evolution and Stability

Definition 2.1. Consider an infinite population of individuals that can use some set of
pure strategies, S. A population profile is a vector x that gives a probability x(s) with
which each strategy s ∈ S is played in the population.

Before continuing we will go through an example to make a clear distinction between
what a strategy and a population profile are, because they may lead to confusion at some
point.

Example 2.1. Consider nowadays situation, where we are in the middle of a pandemic.
Imagine that the global population can use two strategies, wearing a mask (M) and not
wearing a mask (NM), i.e., S = {M,NM}. If every member of the population decides to
randomise by wearing a mask 80% of the time and not wearing it 20% of the time, then
the population profile is x = ( 8

10 ,
2
10). In this case, the population profile is equivalent to

the mixed strategy used by each individual because of the randomisation.

Let’s now imagine that in this same population, 80% of the individuals wear a mask
all the time and the rest never do. The population profile is exactly the same as before,
x = ( 8

10 ,
2
10). But in this case, the population profile is not the same as any strategy
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adopted by any member of the population. That is because every member plays one of
the possible pure strategies without randomising.

Now, we will consider a specific individual using a strategy σ ”against a population”
that has a population profile x. We will specify later who the individual is playing against,
but, for now, we just have to note that his/her payoff depends both on his/her strategy
and the population profile.

Definition 2.2. Given x and σ the payoff to an agent will be denoted π(σ, x) and
calculated by

π(σ, x) =
∑
s∈S

p(s)π(s, x)

where S = (s1, s2, . . . , sn).

As we already mentioned before, the payoffs that each strategy gives to the individ-
uals will affect their chances of survival, i.e., the payoffs determine the evolution of the
population.

Before continuing, we have to make a distinction between the two types of games that
will be present in the evolutionary context. The difference between them is who the
opponent is. We will consider two situations, in the first one the player will be playing
against the whole population or versus the environment, i.e., there is no specific player.
Then, in the second case the player will be randomly matched with another player that
belongs to a population with a given population profile. After making this distinction we
will be able to give a more explanatory definition of how π(s, x) behaves as a function of
x.

Definition 2.3. A Player versus Environment or PVE game describes a situation in
which a given individual plays against an nonspecific opponent. This type of games escape
from classical Game Theory because, as we said, they consist in the interaction that occurs
between a single player and the environment that surrounds him/her. In classical Game
Theory all the situations consist of a certain number of players that choose a concrete
strategy between all their options and the different combinations chosen produce all the
possible outcomes for the players.

A Player versus Player or PVP game is the case where our individual plays against a
random opponent extracted from a population with a population profile x. Therefore, the
payoff obtained depends just on what both individuals do. This case will be translated
as a 2-player game with its correspondent normal form and payoff matrix and it will be
the type of game where we will mainly focus all our study.

Assuming that the population from where the individual has been selected has a pop-
ulation profile x and that the set of pure strategies available for players is S, we can
write

π(σ, x) =
∑
s∈S

∑
s′∈S

p(s)x(s′)π(s, s′).

Example 2.2. Turning our attention again to the current pandemic situation we can
also give a very simple example of each type of game. Assuming that we are in the same
situation as before, i.e., a population using a set of two pure strategies, S = {M,NM}
with an associated population profile x = ( 8

10 ,
2
10).

A PVE game would consist in, for example, going to a concert in a disco full of
people. In this case, the player will enter a situation where he/she is interacting against
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a great number of individuals that may or may not be wearing a mask with the described
population profile.

Then, a PVP game would consist in, for example, a date over dinner between the
player and a certain individual from the population with the previous population profile.
Our player does not know if his/her partner will be wearing a mask but he/she knows
what the population profile is, 80% of individuals wear a mask and the rest do not.

What we will be interested in, is studying if there is an end to the evolutionary process
of the population. That is, we want to establish certain conditions under which the
population does not evolve anymore, i.e., where it is stable. Clearly, there is a necessary
condition for a strategy to be stable and this is that the strategy must give a better
payoff than the rest of possible strategies available. In terms of the concepts that we have
introduced in the first chapter of this work, we can say that a strategy needs to be a best
response to the associated population profile. Looking back at the first chapter, we can
also write an equivalent of Theorem 1.2.

Theorem 2.1. Let σ∗ be a strategy that generates a population profile x∗. Let S∗ be the
support of σ∗. If the population is stable, then

π(s, x∗) = π(σ∗, x∗) ∀s ∈ S∗.

Proof. The proof is equivalent to the one used in Theorem 1.2. We would also start
assuming that there is a strategy that gives a higher payoff and would end up contradicting
the fact that the the strategy σ∗ is a best response to the associated population profile.

Observation 2.1. It is also clear that if there is a unique best response to the strategy
profile, then the evolution of the population stops. Hence, the cases where we will have
to drive our attention is those that have more than one best response and find a way to
decide which one of them guides the population (if it does) to a stable situation.

Definition 2.4. Let’s assume that initially there is a population where all individuals
adopt the same strategy σ∗ and the associated population profile is x∗. Then suppose that
a mutation occurs and a small portion of individuals, ε, starts using a different strategy, σ.
The entrance of these individuals that adopt a different behaviour alters the composition
of the population. We will refer to this new population as invasive population and the
new population profile will be xε.

Definition 2.5. A strategy σ∗ is an ESS (Evolutionary Stable Strategy) if there exists an
ε′ such that for every 0 < ε < ε′ and every σ 6= σ∗

π(σ∗, xε) > π(σ, xε).

That is, a strategy is an ESS if the population that adopts any other different strategy ends
up having a smaller payoff. In biological terms we would say that the mutant population
gives fewer offspring by not using σ∗ and therefore this new behaviour will not last.

2.3 ESS in PVE games

In this section we will go through an example to determine if a strategy is an ESS
in the context of a PVE game. A classical example is the ratio of males and females
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in human and other animal populations. This ratio is 50:50 in this species because this
situation is an ESS. More details and examples of this type of games can be found in [9],
one of them is the classical Hawk-Dove game.

Example 2.3. Males to females ratio
Let’s consider a game with the following initial conditions:

1. The proportion of males in the population is µ and the proportion of females is
1− µ.

2. Each female reproduces once and produces n offspring.

3. Each male reproduces 1−µ
µ times on average.

4. Only female genes affect the sex ratio, so females are the only ones that drive the
evolution process.

Let’s also suppose that there are two possible pure strategies available for each female,
s1= all male offspring and s2= all female offspring. The population profile can be clearly
expressed in terms of the proportion of males and females and therefore written as x =
(µ, 1− µ).

The number of offspring that each female gives birth to is always fixed at n, so we
cannot use this number as a payoff to determine the evolution of the population. However,
when we look at the ”third generation”, the number of grandchildren that each female
from the first generation has is different. So, our payoff will be determined by this number.
Now we can establish the payoffs given by every pure strategy with a population profile
x = (µ, 1 − µ). We know that each female from the second generation gives birth to n
grandchildren and each male from the second generation reproduces 1−µ

µ times:

π(s1, x) = n ∗ n1− µ
µ

= n2
1− µ
µ

π(s2, x) = n ∗ n = n2.

Observation 2.2. What this payoffs try to explain is how many descendants will the
second generation bring. If its all females, each of them will mate once and bring n
children. If its all males, each of them will mate 1−µ

µ times and from each mating he will
bring n children.

Now we can also express the payoff of a general mixed strategy σ = (p, 1− p) as:

π(σ, x) = pn2
1− µ
µ

+ (1− p)n2 = n2
[
(1− p) + p

1− µ
µ

]
.

As we are only interested in the sex ratio and not the total number of males and
females, we can suppose that n = 1 because the ratio is independent of this number.
Then the previous payoff can be rewritten as:

π(σ, x) = (1− p) + p
1− µ
µ

.

What we want to do now is prove that the only ESS is, as we have already mentioned,
a 50% ratio, i.e., µ = 1

2 . It is important to remember that several conditions have to hold
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for a strategy to be an ESS. Firstly, a necessary but not sufficient condition is that this
strategy has to be a best response to the associated population profile. Then, following
Theorem 2.1, if the population is stable then π(s, x∗) = π(σ∗, x∗) ∀s ∈ S∗. If this first
condition is passed, then we have to check the definition of ESS, which is, that σ∗ is an
ESS if there exists an ε′ such that for every 0 < ε < ε′ and every σ 6= σ∗

π(σ∗, xε) > π(σ, xε).

The three cases that we have to consider are the following:

1.

µ <
1

2
⇒ 1− µ

µ
< 1⇒ n2

1− µ
µ

> n2.

Clearly, females using s1 have more grandchildren and µ would end up rising. The-
orem 2.1 is violated and therefore we do not have an ESS in this case.

2.

µ >
1

2
⇒ 1− µ

µ
> 1⇒ n2

1− µ
µ

< n2.

Clearly, females using s2 have more grandchildren and µ would end up decreasing.
Theorem 2.1 is violated and therefore we do not have an ESS in this case.

3.

µ =
1

2
⇒ 1− µ

µ
= 1⇒ n2

1− µ
µ

= n2.

In this case, both s1 and s2 leave the same offspring, n2 which is the same payoff
that the mixed strategy σ∗ = (12 ,

1
2) gives. Theorem 2.1 is not violated this time, so

we can proceed to and check if this strategy also meets the definition of ESS with
a population profile x = (12 ,

1
2).

Let σ = (p, 1− p) be another strategy and

xε = (1− ε)σ∗ + εσ

µε =
1

2
(1− ε) + εp =

1

2
+ ε

(
p− 1

2

)
.

We have to check that this mutation does not invade the population, i.e., we have
to check if π(σ∗, xε)− π(σ, xε) > 0.

π(σ∗, xε)− π(σ, xε) =
1

2
+

1

2

1− µε
µε

− (1− p)− p1− µε
µε

=

(
1

2
− p
)(

1− µε
µε

− 1

)
=

(
1

2
− p
)(

1− 2µε
µε

)
We just have to prove that this difference is positive ∀σ = (p, 1− p) 6= σ∗.

(a) p < 1
2 ⇒ µε <

1
2 ⇒

1−2µε
µε

> 0⇒
(
1
2 − p

) (1−2µε
µε

)
> 0.

(b) p > 1
2 ⇒ µε >

1
2 ⇒

1−2µε
µε

< 0⇒
(
1
2 − p

) (1−2µε
µε

)
> 0.

Then, as we said at the beginning of the example, the strategy σ∗ = (12 ,
1
2) is the only

ESS and so it is the sex ratio 50:50.
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2.4 ESS and Nash Equilibria

In this section we will try to link the concepts of Nash Equilibria and Evolutionary
Stable Strategy in PVP games. As we said before, a necessary condition for a strategy to
be an ESS is that it must be a best response to the population profile generated. Hence,
there will be a connection between NE and ESS, as we will see in the following pages.

Observation 2.3. From now on we will only be working with PVP games. The reason
is that the concept of NE cannot be applied to PVE games as they do not involve an
interaction between specific players(one of them is always ”the nature”). In PVP games
it is always possible to associate a two-player game to work with the concepts that we have
defined so far.

In a PVP game we have expressed the payoff like:

π(σ, x) =
∑
s∈S

∑
s′∈S

p(s)x(s′)π(s, s′).

Theorem 2.2. In a PVP game, σ∗ is an ESS if and only if ∀σ 6= σ∗ either:

1. π(σ∗, σ∗) > π(σ, σ∗)

2. π(σ∗, σ∗) = π(σ, σ∗) and π(σ∗, σ) > π(σ, σ).

Proof. The definition of ESS that we established in the last section was that σ∗ is an ESS
if, for ε sufficiently small,

π(σ∗, xε) > π(σ, xε)

where the population profile xε is xε = ((1− ε), ε). Now that we have already defined how
the payoffs are expressed for PVP games, we can rewrite the previous condition for ESS
as

(1− ε)π(σ∗, σ∗) + επ(σ∗, σ) > (1− ε)π(σ, σ∗) + επ(σ, σ). (2.1)

⇐) If condition 1 holds, then equation (2.1) can be satisfied for ε sufficiently small. If
condition 2 holds, then we can cancel the terms that are equal on both sides of (2.1) and
then we can rewrite it like

επ(σ∗, σ) > επ(σ, σ)

which is clearly satisfied ∀ε ∈ (0, 1).

⇒) We will try to prove it using a counter-reciprocal argument. In this case, we assume
that σ∗ is an ESS and we want to prove that either condition (1) or (2) have to hold. If
σ∗ is an ESS, by definition, (2.1) holds. Let’s assume that (1) and (2) do not hold, i.e., we
assume that π(σ∗, σ∗) < π(σ, σ∗). In this case, ∃ε sufficiently small that (2.1) is violated,
i.e., σ∗ is not an ESS. So we have

(2.1)⇒ π(σ∗, σ∗) ≥ π(σ, σ∗).

If π(σ∗, σ∗) = π(σ, σ∗), then

(2.1)⇒ π(σ∗, σ) > π(σ, σ).
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Observation 2.4. It is important to note that for a strategy σ∗ to be an ESS, one of the
previous conditions has to hold for any other possible strategy σ. Let’s suppose that in a
particular example we have a set of pure strategies S = {s1, s2, . . . , sn}. Then, any other
mixed strategy σ is a linear combination of the pure strategies with the associated vector
of probabilities as the parameters of the linear combination

σ =
∑
s∈S

p(s)s,
∑
s∈S

p(s) = 1.

Then, in a practical example if we prove that either condition (1) or (2) of the theorem
hold ∀s ∈ S, then it will also hold for any possible mixed strategy.

Observation 2.5. It is also important to clarify that when we write the payoff function
as π(σ1, σ2), even if we do not use a sub-index, we are referring to the first player’s
payoff. That is, we are studying the performance of the established individual against the
opponent selected from the population.

As we can see, the definition of ESS is more restrictive than the definition of a NE,
so the set of ESS will be a subset of the NE in the associated two-player game. There
will be cases where we have a non-empty set of NE but none of them passes the test to
be an ESS. Thanks to this theorem we can establish a procedure to find the set of ESS
in a PVP game. Once we associate the correspondent two-player game, we just have to
find the set of NE and test them with the conditions of the theorem. The ones that pass
either condition 1 or 2 will be the ESS of the game.

As we have just mentioned, we will not always find strategies that end up being
evolutionary stable as the set of ESS can be empty. But, is there any result that can
ensure the existence of ESS? In fact, there is one for a very specefic type of game.

Theorem 2.3. All generic, two-action, symmetric PVP games have an ESS.

Proof. A symmetric two-player game has the following form

A B

A (a,a) (b,c)

B (c,b) (d,d)

By applying the previously defined affine transformations we can modify the matrix
as follows. First we will transform payoffs of player 1,

A B

A (a - c,a) (0,c)

B (0,b) (d - b,d)

Then, similarilly, we will modify the payoffs of player 2,

A B

A (a - c,a - c) (0,0)

B (0,0) (d - b,d - b)
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As it happens with Nash Equilibria, ESS conditions are not affected by applying affine
transformations to the payoffs. The fact that we are considering generic games implies
that a 6= c and d 6= b. Now, we will consider the different possibilities that we have
depending on the payoffs and we will see that in all the cases an ESS exists.

If either a − c > 0 or d − b > 0 then, π(A,A) > π(B,A) or π(B,B) > π(A,B)
respectively. In both cases, condition (1) of Theorem 2.2 holds and then σ∗ = (A,A) or
σ∗ = (B,B) are the respective ESS. If both a − c > 0 and d − b > 0 at the same time,
then we have two ESS in the game.

So, there is one more case to cover, a− c < 0 and d− b < 0. In this case there are no
symmetric NE in pure strategies, but, as we know, at least one NE exists. Therefore it
will have to be a mixed strategy σ∗ = (p∗, 1− p∗) that leads to a symmetric NE (σ∗, σ∗).
Using the Equality of Payoffs theorem and the initial matrix without having applied affine
transformations, we have that

π1(A, σ
∗) = π1(B, σ

∗) ⇐⇒ ap∗+b(1−p∗) = cp∗+d(1−p∗) ⇐⇒ p∗ =
b− d

(c− a) + (b− d)
.

To be completely strict we should have done this calculation assuming that we had a NE
(σ∗1, σ

∗
2) with σ∗1 = (p∗, 1 − p∗) and σ∗2 = (q∗, 1 − q∗) and we would have end up getting

the same result and p = q, i.e., seeing that the NE is effectively symmetric. In this case
we cannot prove that an ESS exists by using (1) of Theorem 2.2 because also using the
Equality of Payoffs theorem we have that π(σ∗, σ∗) = π(σ, σ∗). Then, we have to focus
on the second option of the theorem. Now, for a mixed strategy σ = (p, 1− p)

π(σ∗, σ) = p∗p(a− c) + (1− p)(1− p∗)(d− b)

and
π(σ, σ) = p2(a− c) + (1− p)2(d− b).

So,

π(σ∗, σ)− π(σ, σ) = p(p∗ − p)(a− c) + (1− p)(p− p∗)(d− b)
= (p∗ − p)[p(a− c+ d− b)− (d− b)]
= −(a− c+ d− b)(p∗ − p)2

> 0.

Then, σ∗ is an ESS and we have proved that in all cases we can effectively find an ESS
in a generic PVP 2-player, 2-action game.

As we have seen in the last theorem, there is only a very special case where we will
always find an ESS. In these cases where we cannot find it, we may have NE that do
not end up being evolutionary stable, as we will see when we develop more examples
in the next chapter. At this point we would not be able to say anything about the
evolution of the population if there is no ESS. Our goal then will be to find new concepts
that are weaker than ESS and can give us some information about the evolution of the
population. To do that, we will shift our focus to the population instead of the strategies.
Hopefully that will give us more information about evolution and stability than only the
ESS concept.
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Chapter 3

Replicator dynamics

In the previous chapter of this work we have studied the evolutionary games with the
concept of ESS as the main argument. We have done it for both PVP and PVE games,
although we have remarked that the first type of games will be the ones where we will
mainly focus our attention, since these are the ones that are approached by classical game
theory.

As we already established by the end of the previous chapter, the concept of ESS,
while giving a clear concept of an evolutionary process, cannot be the only tool we have
to measure or test evolution in a population. The first problem about the ESS is that
we cannot always find a strategy that is so stable in the game. In this case, we have
no information at all about the evolution of the system described by the game. That
is the reason why we want to find weaker evolutionary concepts that can give us some
information in case the ESS could not be reached. Second, the definition of ESS was
presented in a very specific type of situation, we had a population where all individuals
used the same strategy, i.e., we were dealing with a monomorphic population. Then, if
we could find a strategy σ∗ that was an ESS, all the other strategies in the support of σ∗

would obtain the same payoff than the ESS.

At this moment the replicator dynamics come into play. We want to address the
situations where we have a polymorphic population, i.e., populations where variations of
the strategy exist and can be adopted by its members. What will happen then, can we
find any stability of any kind? The replicator dynamics will approach the evolution and
stability of the population from a different perspective that can cast more light upon the
overall evolutionary process.

Again, we will follow [16] and [17] as a reference for the organization and development
of this chapter. In the parts where we use more concepts related to differential equations
we will again follow procedures and notation used in [14] and [2].

3.1 Framework

This time we will consider a population with the following characteristics. Firstly,
there will be different type of individuals in the same population and every type of indi-
viduals will use a pre-programmed strategy for each game. Second, these pre-programmed
strategy or behaviour is passed to descendants without modification.

31
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All the individuals use strategies from a finite set S = {s1, s2, . . . , sk} and we will call
ni the number of individuals using each strategy si. Then, the total population size is

N =

k∑
i=1

ni

and the proportion of individuals using each strategy si is

xi =
ni
N

where clearly
∑k

i=1 xi = 1. As we did in the previous chapter, we will define the
population profile as the vector of probabilities with which each strategy is played as
x = (x1, x2, . . . , xk).

We will consider a factor that represents the growth or decrease of the total number
of individuals in the population that is independent of each game, ε. That is, ε represents
the rate of appearance and disappearance of individuals in the population. However, the
payoffs of each strategy will also affect the evolution of the population as those that give a
better payoff have to be ”rewarded” in some way. Having this in mind, we should conclude
that the rate of change in the number of individuals using si is affected by a systematic
component (independent of the game), ε, and an idiosyncratic component, π(si, x). We
can explicitly express the rate of change in the number of individuals using si as

ṅi = (ε+ π(si, x))ni

and the rate of change in the total population as

Ṅ =

k∑
i=i

ṅi

=
k∑
i=i

(ε+ π(si, x))ni

= ε
k∑
i=i

ni +
k∑
i=i

π(si, x)ni

= εN +N
k∑
i=i

xiπ(si, x)

= (ε+ π̄(x))N

where

π̄(x) =
k∑
i=i

π(si, x)xi

is the average payoff of the population.

However, what are more interested in is the evolution of the number of individuals of
each type that integrate the population, i.e., how the proportion of individuals using each
strategy changes. Let’s show how to find this variation.

ni = Nxi ⇒ ṅi = Ṅxi +Nẋi.
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Now, using the previous definitions,

Nẋi = ṅi − xiṄ = (ε+ π(si, x))ni − (ε+ π̄(x))xiN = (ε+ π(si, x))xiN − (ε+ π̄(x))xiN

and cancelling and dividing by N, we have

ẋi = (ε− ε+ π(si, x)− π̄(x))xi

= (π(si, x)− π̄(x))xi.

In conclusion, the increase and decrease in the proportion of individuals using strategy
si depends on the payoff that this strategy gives compared to the average payoff. As we
can see, the systematic component that we had previously defined, ε, has no effect in the
rate of change of the proportion of individuals using si.

3.2 Stability in PVP games

In this section we will dig into PVP player games and offer new definitions related to
the concept of stability that are weaker than the ESS concept. We will proceed as follows.
First we will present all the concepts that will appear from now on. Then, we will develop
some examples and theoretical results in two-strategy PVP games to give an initial view
of how the evolutionary process is going to be approached. Finally, we will present all the
results for n-strategy PVP games and give more examples for 3-strategy PVP games.

Definition 3.1. A fixed point of the replicator dynamics describes a population that is
no longer evolving. That is, a population where the proportion of individuals using each
strategy remains constant, i.e., ẋi = 0 ∀i. A fixed point of the replicator dynamics is said
to be asymptotically stable if any small deviations from that state are eliminated by the
dynamics as t→∞.

Let’s now define some sets that we will be frequently using in the section.

Definition 3.2. Assume that we are studying a PVP game and the correspondent dy-
namical system associated to this game (we will show in the next example how to connect
both). Then,

1. N = set of symmetric Nash equilibria in the PVP game.

2. E = set of evolutionary stable strategies in the PVP game.

3. F = set of fixed points of the dynamical system.

4. A = set of asymptotically fixed points of the dynamical system.

As we saw in the previous section, ESS ⊆ NE. And, clearly, A ⊆ F . Our job from
now on will be to link these concepts and establish relationships between them in PVP
games and their respective associated dynamical systems.

Let’s go through an example of a two-strategy PVP game first. In the case of a two-
strategy PVP game we can rewrite the previous conditions as, S = {s1, s2}, x = (x1, x2)
where x2 = 1− x1. Then,

ẋ1 = (π(s1, x)− π̄(x))x1
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ẋ2 = −ẋ1

where,

π̄(x) = x1π(s1, x) + (1− x1)π(s2, x).

In conclusion,

ẋ1 = (π(s1, x)− x1π(s1, x) + (1− x1)π(s2, x))x1

= x1(1− x1)(π(s1, x)− π(s2, x)).

Observation 3.1. All the calculations to find NE in both pure and mixed strategies, fixed
points and ESS will be generally done with the help of a Python script that can be found
in appendix A. In this first example we will do the calculations ”by hand” to show how
it should be done, but in future examples where the number of strategies increases we will
apply the mentioned program.

Example 3.1. Let’s assume that we are in a two-strategy PVP game where both players
can use strategies from the set S = {A,B} with the following associated payoff matrix

Player 2

A B

A (3,3) (0,0)

B (0,0) (1,1)

There are two Nash equilibria in pure strategies in this game, (A,A) and (B,B),
where A and B can be represented as the mixed strategies σA = (1, 0) and σB = (0, 1)
respectively. Then, to find out if there are more Nash equilibria in mixed strategies, let’s
suppose that player 1 is using a mixed strategy σ1 = (p, 1 − p) and player 2 is using a
mixed strategy σ2 = (q, 1− q). Then, the expected payoff for players is,

πσ1 = p[3q + 0(1− q)] + (1− p)[0q + 1(1− q)]

πσ2 = q[3p+ 0(1− p)] + (1− q)[0p+ 1(1− q)].

Player 1 is using a mixed strategy such that player 2 in indifferent between using the
first or the second column(since the respective expected payoffs are the same). The same
thing happens with the strategy of player 2 and the rows for player 1. Then, we have,

3q = 1− q ⇒ q =
1

4

3p = 1− p⇒ p =
1

4
.

Therefore, we have found one NE mixed strategy σ = (14 ,
3
4) and we can write the set

N = {(σ1, σ1), (σ2, σ2), (σ, σ)}. Now we can check if any of them is also an evolutionary
stable strategy. We will do it by checking the definition of ESS for each one of them. Just
as a reminder, σ∗ is an ESS if and only if ∀σ 6= σ∗ either:

1. π(σ∗, σ∗) > π(σ, σ∗)
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2. π(σ∗, σ∗) = π(σ, σ∗) and π(σ∗, σ) > π(σ, σ).

Let’s check if any of the two conditions holds for each NE:

1. σA = (1, 0). π(σ1, σ1) = 3 > π(σ2, σ1) = 0. Condition 1) holds, so σA is an ESS.

2. σB = (0, 1). π(σ2, σ2) = 1 > π(σ1, σ2) = 0. Condition 1) holds, so σB is an ESS.

3. σ = (14 ,
3
4).

π(σ, σ) = (
1

4
)2π(A,A) + 2

1

4

3

4
π(A,B) + (

3

4
)2π(B,B) =

7

4
< π(B,B) = 3.

None of the conditions hold, so σ is not an ESS.

Then, E = {σA, σB}.
Let’s now begin to work with the replicator dynamics. Let x and 1−x be the porportion

of individuals using A and B respectively. Then,

ẋ = x(1− x)(π(A, x)− π(B, x))

= x(1− x)(3x− (1− x))

= x(1− x)(4x− 1).

We can clearly see that the set of fixed points is F = {0, 14 , 1}. Now we would like to
check which of these points are asymptotically stable. Now,

dẋ

dx
= −12x2 + 10x− 1

1. x = 0
dẋ

dx
(0) = −1.

So, x = 0 is a stable fixed point.

2. x = 1
4

dẋ

dx

(
1

4

)
=

3

4
.

So, x = 1
4 is an unstable fixed point.

3. x = 1
dẋ

dx
(1) = −3.

So, x = 1 is a stable fixed point.

Then, A = {0, 1}.
Now that we have all the sets, we want to establish the links and relationships between

them. It’s easy to see that, ẋ > 0 if x > 1
4 and ẋ < 0 if x < 1

4 . That is, if the population
starts with a population profile where more than 25% of individuals use A, then all the
population evolves until everyone uses A. In contrast, if the population starts with less
than 25% of individuals using A, then all the population evolves until everyone uses B.
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In conclusion, only the pure strategies are evolutionary end points and only the evolu-
tionary end points (asymptotically stable) correspond to an ESS. So, falling into an abuse
of notation that identifies a strategy with the population profile it generates, we can write
all the relationships in this particular example as,

E = A ⊆ N = F.

Now that we have presented an example of how to work with two-strategy PVP games
and their correspondent replicator dynamics, we will explain some results that highlight
the relationships between the different sets in a general two-strategy PVP game.

Theorem 3.1. Let S = {s1, s2} and let σ∗ = (p∗, 1− p∗) be the strategy that uses s1 with
probability p∗. If (σ∗, σ∗) is a symmetric NE, then the population profile x∗ = (x∗, 1−x∗)
with x∗ = p∗ is a fixed point of the replicator dynamics

ẋ = x(1− x)(π(s1, x)− π(s2, x)).

Proof. Suppose that the NE strategy σ∗ is pure, i.e., every player in the population uses
sj ∈ S. Then, x∗ = 0 or x∗ = 1 and in both cases ẋ = 0.

Now suppose that the NE strategy σ∗ is a mixed strategy, then the Equality of Payoffs
theorem tells us that π(s1, σ

∗) = π(s2, σ
∗). Now, in a PVP game,

π(si, σ
∗) = p∗π(si, s1) + (1− p∗)π(si, s2) = x∗π(si, s1) + (1− x∗)π(si, s2) = π(si, x

∗)

where we have used that p∗ = x∗. Then, we also have that π(s1, x
∗) = π(s2, x

∗) and
consequently ẋ = 0.

Theorem 3.2. For any two-strategy PVP game, a strategy is an ESS if and only if the
corresponding fixed point in the replicator dynamics is asymptotically stable.

Proof. Suppose that the set of pure strategies is S = {s1, s2} and let x be the proportion
of individuals using s1. As we have already seen, the replicator dynamics system is

ẋ = x(1− x)(π(s1, x)− π(s2, x)).

Let’s define f(x) = ẋ. If x∗ is an equilibrium, we have that f(x∗) = 0 for x ∈ [0, 1].
We want to check the stability of x∗ in the case of the pure strategies and the case of a
mixed strategy that is different to pure ones. The point x∗ is a solution of the Cauchy
problem {

ẋ = f(x)

x(0) = x∗.

Let’s now compute the derivative of the function f

d

dx
f(x) =

d

dx
[x(1− x)(π(s1, x)− π(s2, x)))] =

=
d

dx
[x(1− x)] ∗ (π(s1, x)− π(s2, x)) + x(1− x) ∗ d

dx
[π(s1, x)− π(s2, x)]

= (1− 2x) ∗ (π(s1, x)− π(s2, x))

+ x(1− x) ∗ d

dx
[xπ(s1, s1) + (1− x)π(s1, s2)− xπ(s2, s1)− (1− x)π(s2, s2)]

= (1− 2x) ∗ (π(s1, x)− π(s2, x))

+ x(1− x) ∗ [π(s1, s1)− π(s1, s2)− π(s2, s1) + π(s2, s2)] .
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Suppose that σ∗ = (1, 0), i.e., the pair (s1, s1) with the correspondant fixed point
x∗ = 1. Then, for any other σ = (y, 1− y), σ∗ is an ESS if and only if

π(s1, xε)− π(σ, xε) > 0

⇐⇒ π(s1, xε)− yπ(s1, xε)− (1− y)π(s2, xε) > 0

⇐⇒ (1− y)[π(s1, xε)− π(s2, xε)] > 0

⇐⇒ π(s1, xε)− π(s2, xε) > 0

because y ∈ (0, 1). Let’s consider x = x∗ − ε and evaluate

d

dx
f(1) = −(π(s1, xε)− π(s2, xε))) < 0,

because (π(s1, xε)−π(s2, xε)) > 0 when ε→ 0. Then, the point x∗ = 1 is an asymptotically
stable fixed point. An analogous procedure is used to see that σ∗ = (0, 1), i.e., the pair
(s2, s2), is an ESS if and only if the correspondent population x∗ = 0 is asymptotically
stable.

Let’s now prove the same result for a mixed strategy σ∗ = (p∗, 1− p∗) that is different
to the pure strategies, i.e., p∗ ∈ (0, 1). The Equality of Payoffs theorem tells us that
π(σ∗, σ∗) = π(σ, σ∗) for any other mixed strategy σ. Then, for σ∗ to be an ESS we
will have to check the second condition of Theorem 2.2, i.e., check if π(σ∗, σ) > π(σ, σ)
∀σ 6= σ∗. As we have already mentioned earlier, it is enough to check that the condition
holds for both pure strategies. Then, taking σ = s1 and σ = s2 the condition becomes
the two conditions,

π(s2, s1) > π(s1, s1) , π(s1, s2) > π(s2, s2).

Let’s again evaluate

d

dx
f(x∗) = x(1− x) ∗ [π(s1, s1)− π(s1, s2)− π(s2, s1) + π(s2, s2)] < 0,

because the first term, x(1−x), is positive as x ∈ (0, 1) and the second one is negative be-
cause of the inequalities that we previously wrote. Then, the point x∗ is an asymptotically
stable fixed point.

Then, in the case of two-strategy PVP we have the following relationships(with the
correspondent abuse of notation),

E = A ⊆ N ⊆ F.

Observation 3.2. As we saw in the previous example, we had 2 pure strategies and in
principle we had 2 equations to deal with, but using the constraint x1 +x2 = 1, we reduced
the number of equations and left it in 1. Then, exactly the same thing would happen if
we were dealing with a n-strategy PVP game. The initial number of equations would be
n but we can reduce it using the constraint

∑n
i=1 xi = 1 and then we would only have to

deal with a n− 1 equations dynamical system.

Now we will present another example of a PVP game, but this time it will be a 3-
strategy game. As we will see, this example is more complex and has more important
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points to study than the previous one. Also, even if the theory related to n-player games
is similar to the one applied to 2-player games that we have already presented, there will
be significant differences that will be proved after the example.

Example 3.2. Let’s assume that we are in a 3-strategy PVP game where both players
can use strategies from the set S = {A,B,C} with the following associated payoff matrix.

A B C

A (0,0) (3,3) (1,1)

B (3,3) (0,0) (1,1)

C (1,1) (1,1) (1,1)

We can assume that player 1 is the row player and player 2 is the column player but
it is not really important since the game is symmetric.

Firstly, we will present the NE of the game. As we said, the calculations will be done
using the program developed for this purpose, so we will only see the results. There are 3
NE in pure strategies, (A,B), (B,A) and(C,C), and there is one more NE in mixed strate-
gies, (σ, σ), where σ = (12 ,

1
2 , 0). Then, the set of symmetric NE is N = {(C,C), (σ, σ)}.

Now we will continue representing the dynamical system associated to the game. As
a reminder, we had established earlier that the evolution in the proportion of individuals
using each strategy si is ẋi = (π(si, x)− π̄(x))xi. Assuming that the population profile is
the vector x = (xA, xB, xC) we have,

ẋA = xA(3xB + xC − π̄(x))

ẋB = xB(3xA + xC − π̄(x))

ẋC = xC(1− π̄(x))

where π̄(x) = 6xAxB + xC(xA + xB) + xC .

Observation 3.3. We will use x as the new variable and we had use it to define the
population profile, but we think there will be no problem to distinguish which one we are
using during the example.

As we did in the 2-strategy case, writing xA = x, xB = y and xC = 1− x− y, we have{
ẋ = x(1− x+ 2y − π̄(x, y))

ẏ = y(1 + 2x− y − π̄(x, y))

where π̄(x) = 1 + 4xy − x2 − y2. Then, we can now represent our vector field

X =

{
ẋ = x(x2 + y2 − 4xy − x+ 2y)

ẏ = y(x2 + y2 − 4xy + 2x− y)

Now we can proceed calculating the fixed points of the system, the set of fixed points
is F = {(0, 0), (1, 0), (0, 1), (12 ,

1
2)}. There are also 4 invariant lines in the system, these

are the horizontal and vertical isoclines y = 0, x = 0 and x− y = 0 and x+ y = 1.

Now we can proceed with the local study near the fixed points. Let’s first write the
matrix of partial derivatives corresponding to the vector field,
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DX(x, y) =

(
3x2 + y2 − 8xy + 2y − 2x −4y2 + 2xy + 2y

−4x2 + 2xy + 2x 3y2 + x2 − 8xy + 2y − 2x

)
.

Let’s now evaluate each point in the matrix and obtain the corresponding eigenvalues
and eigenvectors to lineally classify the points.

DX(0, 0) =

(
0 0
0 0

)
.

There is just one eigenvalue with multiplicity 2, λ = 0. Then the origin is not a hyperbolic
point and the study cannot go further since we cannot apply the Hartman-Grobman
theorem.

DX
(

1

2
,
1

2

)
=

(
−1 1

2
1
2 −1

)
.

The eigenvalues are λ1 = −1
2 , λ2 = −3

2 . Then this point is a stable node. The eigenvectors
are x = y and x = −y respectively.

DX(1, 0) =

(
1 0
−2 3

)
.

The eigenvalues are λ1 = 3, λ2 = 1. Then this point is a unstable node. The eigenvectors
are x = 0 and x = y respectively.

DX(0, 1) =

(
3 −2
0 1

)
.

The eigenvalues are λ1 = 3, λ2 = 1. Then this point is a unstable node. The eigenvectors
are y = 0 and x = y respectively.

We have then that A = {(12 ,
1
2)}. To get a clearer view of how the phase portrait will

look like we can observe the behaviour of the system on the invariant lines.

1. Over y = 0. We have that ẋ = x(x2 − 1) ⇒ ẋ < 0 if x ∈ (0, 1) and ẋ > 0 if
x ∈ (−∞, 0) ∪ (1,∞).

2. Over x = 0. We have that ẏ = y(y2 − 1) ⇒ ẏ < 0 if y ∈ (0, 1) and ẏ > 0 if
y ∈ (−∞, 0) ∪ (1,∞).

3. Over x− y = 0. We have that ẋ, ẏ > 0 if x, y ∈ (0, 12).

4. Over x+ y = 1. We have that ẋ, ẏ < 0 if x ∈ (0, 12) and ẋ, ẏ > 0 if x ∈ (12 , 1).

With all the information that we have gathered so far we can represent the phase
portrait using the Poincaré compactification.

Observation 3.4. The green points in the representation correspond to the saddle points,
the red points correspond to unstable nodes and the blue points correspond to stable nodes.
Also, following the same color code, we can see the stability of the invariant lines, blue
corresponds to stable lines and red to unstable lines. With all this information its easier
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to see how each phase portrait will be divided into sectors. In each representation we will
comment how many different sectors can be found and the type of each of them. The
stability is over the invariant lines could be checked in every particular case as we have
done in this example.

Figure 3.1: phase portrait of the vector field X.

As we can see, infinity is a line of singularities in this case. In the finite representation,
the invariant separatrices break the representation into 6 hyperbolic sectors. The sectors
boundaries are the set of invariant separatrices, which is S = {x = 0; y = 0;x = y}.

Seeing the representation we can already guess which one of the two symmetric NE
will be an ESS. It is clear that the orbits escape from the unstable fixes point (0, 0) and
end up going to the fixed point (12 ,

1
2) so let’s check if this last one effectively holds any of

the conditions to be an ESS. Let’s check if any of the two ESS conditions holds for each
NE:

σ =

(
1

2
,
1

2
, 0

)
= π(σ, σ) =

3

2
= π(A, σ) = π(B, σ).

We have to check if condition 2) holds.

π(A, σ) = π(B, σ) =
3

2
> π(A,A) = π(B,B) = 0.

It holds, so, as we already imagined, σ =
(
1
2 ,

1
2 , 0
)

is the only ESS, i.e., E = {σ}.

Example 3.3. Let’s modify the previous example by adding a parameter in the payoffs,
leaving the matrix as follows

A B C

A (λ,λ) (3,3) (1,1)

B (3,3) (λ,λ) (1,1)

C (1,1) (1,1) (1,1)
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We will just comment the parameter cases where there is a change in the dynamics.
We will not go into every case in details but just present the results and the representation
of the dynamical system.

λ = 2 Fixed Point Type

(0,0) Not Hyperbolic

(1,0) Saddle Point

(0,1) Saddle Point

(12 ,12) Stable Node

X2 =

{
ẋ = x(−x2 − y2 − 4xy + x+ 2y)

ẏ = y(−x2 − y2 − 4xy + 2x+ y)

Figure 3.2: phase portrait of the vector field X2.

As we can see, infinity is a line of singularities in this case. In the finite representation,
the invariant separatrices break the representation into 4 parabolic and 2 elliptic sectors.
The sectors boundaries are the set of invariant separatrices, which is S = {x = 0; y =
0;x = y}. The first elliptic sector’s boundaries are the separatrices {x = 0, y < 0}
and {y = 0, x > 0} and for the second we have the separatrices {x = 0, y > 0} and
{y = 0, x < 0}.

In this case, the only ESS is still σ =
(
1
2 ,

1
2 , 0
)
.
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λ = 4 Fixed Point Type

(0,0) Not Hyperbolic

(1,0) Stable Node

(0,1) Stable Node

(12 ,12) Saddle Point

X4 =

{
ẋ = x(−3x2 − 3y2 − 4xy + 3x+ 2y)

ẏ = y(−3x2 − 3y2 − 4xy + 2x+ 3y)

Figure 3.3: phase portrait of the vector field X4.

As we can see, infinity is a line of singularities in this case. In the finite representation,
the invariant separatrices break the representation into 4 parabolic and 2 hyperbolic
sectors. The sectors boundaries are the set of invariant separatrices, which is S = {x =
0; y = 0;x = y}. The first hyperbolic sector’s boundaries are the separatrices {x = 0, y <
0} and {y = 0, x > 0} and for the second we have the separatrices {x = 0, y > 0} and
{y = 0, x < 0}.

In this case, we have two ESS, σA = (1, 0, 0) = A and σB = (0, 1, 0) = B.

Observation 3.5. Additional information about each vector field and its correspondent
phase portrait representation can be found in appendix B of this work. This is the in-
formation and the calculus provided by the software P4&P5, [1], developed by ”Grup de
sistemes dinàmics de la UAB”.

As we did after the example of the 2-strategy PVP game, we will now prove the
relationships between the four sets that we have previously mentioned. This time, we will
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end up having the following relationship (with the correspondent abuse of notation):

E ⊆ A ⊆ N ⊆ F.

Theorem 3.3. If (σ∗, σ∗) is a symmetric Nash equilibrium, then the population state
x∗ = σ∗ is a fixed point of the replicator dynamics.

Proof. First, let’s suppose that the NE strategy σ∗ is pure, i.e., every member of the
population uses one pure strategy sj from the set S = {s1, s2, . . . sn}. Then, clearly
xi = 0 for i 6= j and π(x∗) = π(sj , x

∗)⇒ ẋi = (π(xi, x)− π̄(x))xi = 0. Then, x∗ is a fixed
point of the system.

Now, let’s suppose that σ∗ is a mixed strategy and let S∗ be the support of σ∗. The
Equality of Payoffs theorem tells us that π(s, σ∗) = π(σ∗, σ∗) ∀s ∈ S∗. Then, in the case
of a polymorphic population with x∗ = σ∗, i.e., where xj = pj ∀s ∈ S∗, we have that

π(si, x
∗) =

k∑
j=1

π(si, sj)xj =

k∑
j=1

π(si, sj)pj = π(si, σ
∗) = k,

where k is a constant.

Now,

ẋj = (π(sj , x
∗)− π̄(x∗))xj

=

(
π(sj , x

∗)−
k∑
i=1

xiπ(sj , x
∗)

)
xj

=

(
k − k

k∑
i=1

xi

)
xj

= (k − k)xj = 0,

where we have used that
∑k

i=1 xi = 1. For the strategies si that are not in the support
of σ∗ we have that xi = 0 and hence, as before, ẋi = 0. Then, x∗ is a fixed point of the
system.

Therefore, we have proved that N ⊆ F .

Observation 3.6. What we can highlight after having proved the theorem is that, an
evolutionary process can ”produce Nash equilibriums”. This is particularly important in
this case because we are treating a population of non-rational individuals which are able to
get to a rational behaviour, the Nash equilibrium. The result would not be so surprising if
we had assumed that the population is more critical and rational. In that case individuals
could only observe other’s members behaviour and discard the options that would give
them a worse result than the strategy they are actually following.

Theorem 3.4. If x∗ is an asymptotically stable fixed point of the replicator dynamics,
then the symmetric strategy pair (σ∗, σ∗) with σ∗ = x∗ is a Nash equilibrium.

Proof. First, if x∗ is a fixed point with xi > 0 ∀i, then because of the Equality of Pay-
offs theorem, the payoff obtained by any pure strategy must be the same. And, with
the correspondence of σ∗ and x∗ we can prove as we did in the previous theorem that
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π(si, x
∗) = π(si, σ

∗) = k, ∀si in the set of pure strategies, where k is a constant. There-
fore, the pair (σ∗, σ∗) is a Nash Equilibrium, because if any individual deviated from this
strategy, he/she would not get a better payoff.

Let’s now suppose that S∗ is the support of σ∗. Because x∗ is a fixed point, we have
that ẋi = (π(si, x

∗) − π̄(x∗))xi = 0 ∀i. In the case of the strategies that have a non-null
probability, we must have π(si, x

∗)− π̄(x∗) because xi 6= 0. Also, because of the Equality
of Payoffs theorem, π(si, x

∗) = π(si, σ
∗) = k, ∀si ∈ S∗. Let’s now suppose that the pair

(σ∗, σ∗) is not a NE and we will get to a contradiction. Then, there must be some strategy
s′ 6∈ S∗ such that π(s′i, σ

∗) > π(σ∗, σ∗) and consequently π(s′, x∗) > π̄(x∗). Consider a
population close xε to x∗ but with a small proportion ε of players using s′. Then,

ε̇ = [π(s′, xε)− π̄(xε)]ε

= [π(s′, x∗)(1− ε) + π(s′, s′)ε− π̄(x∗)(1− ε)− π̄(ε)ε]ε

= [π(s′, x∗)− π̄(x∗)]ε+O(ε2),

where we have used that ε << 1 and then we can ignore the terms with εn with n > 1.

So, the proportion of players using s′ increases because π(s′, x∗) > π̄(x∗) and that is
a contradiction because we have assumed that x∗ is an asymptotically stable fixed point.
Then, we have proved that the pair (σ∗, σ∗) is a Nash Equilibrium.

Observation 3.7. What we have seen in this case is that if a point is stable locally,
then the corresponding strategy leads to a Nash Equilibrium, i.e., a situation where all the
players have no incentive to change their behaviour.

Therefore, we have proved that A ⊆ N .

Before we prove the last inclusion, we need to give the definition of a specific type of
function that we will use in the proof of the theorem.

Definition 3.3. Let ẋ = f(x) be a dynamical system with a fixed point at x∗. Then, let
V (x) be a function, defined for all allowable states of the system close to x∗, such that

1. V (x∗) = 0

2. V (x∗) > 0 for x 6= x∗

3. dV
dt < 0 for x 6= x∗.

This is called a (strict) Lyapunov function. If such a function exists, then the fixed point
x∗ is asymptotically stable.

Theorem 3.5. Every ESS corresponds to an asymptotically stable fixed point in the repli-
cator dynamics. That is, if σ∗ is an ESS, then the population with x∗ = σ∗ is asymptoti-
cally stable.

Proof. If σ∗ is an ESS then, by definition, there exists an ε̄ such that for all ε < ε̄,
π(σ∗, σε) > π(σ, σε), ∀σ 6= σ∗, where σε = (1 − ε)σ∗ + εσ′, σ′ 6= σ∗. In particular, this
holds for σ = σε, so π(σ∗, σε) > π(σε, σε). This implies that in the replicator dynamics
we have, for x∗ = σ∗, x = (1− ε)x∗ + εx′ and ∀ε < ε̄, π(σ∗, x) > π̄(x).
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Now, let’s consider the function

V (x) = −
k∑
i=1

x∗i ln

(
xi
x∗i

)
.

Let’s check the conditions described in the previous definition. Clearly, V (x∗) = 0. Now,
using that the function ln(x) is concave, and therefore −ln(x) is convex, and using that∑k

i=1 xi = 1, we have

V (x) = −
k∑
i=1

x∗i ln

(
xi
x∗i

)
≥ −ln

(
k∑
i=1

x∗i
xi
x∗i

)
= −ln

(
k∑
i=1

xi

)
= −ln(1) = 0.

Where the equality is only reached in x = x∗. Finally, the time derivative of V (x) along
solution trajectories of the replicator dynamics is

d

dt
V (X) =

d

dt

(
−

k∑
i=1

x∗i ln

(
xi
x∗i

))

= −
k∑
i=1

x∗i ẋi
∂

∂xi
ln

(
xi
x∗i

)

= −
k∑
i=1

x∗i
xi
ẋi

= −
k∑
i=1

x∗i
xi

(π(si, x)− π̄(x))xi

= −((π(σ∗, x)− π̄(x))

k∑
i=1

x∗i

= −((π(σ∗, x)− π̄(x))

< 0.

Where we have used that ẋi = (π(si, x) − π̄(x))xi and
∑k

i=1 x
∗
i = 1. We have also used

that (π(σ∗, x) − π̄(x)) > 0, which why previously proved for σ∗ ESS in a region near x∗

for x 6= x∗.

Then, we have seen that V (x) is a Lyapunov function for population profiles close to
the fixed point. Consequently, the fixed point x∗ is asymptotically stable.

Observation 3.8. From this theorem we can derive that there will be cases where we can
find asymptotically stable fixed points in the replicator dynamics that do not correspond
to an ESS. We will see a classical example of that later.

So, we have proved that E ⊆ A.

In conclusion, we have proved the relationships that we previously established in n-
strategy PVP games

E ⊆ A ⊆ N ⊆ F.

Example 3.4. Rock-Paper-Scissors
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This game is represented by the following payoffs matrix. When both players use the
same strategy they get a payoff of 0 and in the rest of the combinations the winner gets
1 and the loser gets -1. It is a good and simple example of a zero-sum game.

R P S

R (0,0) (-1,1) (1,-1)

P (1,-1) (0,0) (-1,1)

S (-1,1) (1,-1) (0,0)

As we can clearly see, there is no NE in pure strategies. The only NE of this game is
the mixed strategy σ = (13 ,

1
3 ,

1
3). Then, NE = {σ}.

Let’s now write the replicator dynamics system,
ẋ1 = x1(x3 − x2)
ẋ2 = x2(x1 − x3)
ẋ3 = x3(x2 − x1).

Then, as we did in the other example, we will write x1 = x, x2 = y and x3 = 1−x−y.
Then we can rewrite the previous equations,

XRPS =

{
ẋ = x(1− x− 2y)

ẏ = y(−1 + 2x+ y).

This system has 4 fixed points, F = {(0, 0), (0, 1), (1, 0), (13 ,
1
3)}. Let’s now write the

matrix of partial derivatives,

DX(x, y) =

(
−2x− 2y + 1 −2x

2y 2y + 2x− 1

)
.

Let’s evaluate the fixed points in the previous matrix to check its linear type.

DX(0, 0) =

(
1 0
0 −1

)
.

The eigenvalues are λ1 = 1, λ2 = −1. Then, the origin is a saddle point.

DX(1, 0) =

(
−1 −2
0 1

)
.

The eigenvalues are λ1 = 1, λ2 = −1. Then, this point is a saddle point.

DX(0, 1) =

(
−1 0
2 1

)
.

The eigenvalues are λ1 = 1, λ2 = −1. Then, this poing is a saddle point.

DX
(

1

3
,
1

3

)
=

(−1
3

−2
3

2
3

1
3

)
.
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There are two complex conjugate eigenvalues, λ1 = i
√

1
3 , λ2 = −i

√
1
3 . Then, this point

in non-hyperbolic and we cannot apply the Hartman-Grobman theorem. To know if this
point is either a focus or a center we can try to find a first integral of the system, let’s
proceed. Remember that our dynamical system is,{

ẋ = x(1− x− 2y)

ẏ = y(−1 + 2x+ y)
.

Then, the orbital equation of the field is ẏdx+ ḋy, which in our case can be written as

y(−1 + 2x+ y)dx+ x(1− x− 2y)dy.

Now, we have to see if the field is conservative by checking if ẏdx + ẋdy = 0, i.e., if
dẏ
dy = −dẋ

dx .

−dẋ
dx

= 2(x+ y)− 1

dẏ

dy
= 2(x+ y)− 1.

It is conservative, therefore we can try fo find a first integral of the system, i.e., a
function H(x, y) that satisfies the Pfaffian: dH

dx = −ẏ, dHdy = ẋ. To do so, we will integrate
the second equation and then derive it to find the integration constant,

H(x, y) =

∫
f(x, y)dy + C(x) =

∫
x(1− x− 2y)dy + C(x) = xy − yx2 − xy2 + C(x)

dH

dx
= y − 2yx− y2 + C ′(x) = y(1− 2x− y) + C ′(x)

dH

dx
= −ẏ ⇐⇒ C ′(x) = 0 ⇐⇒ C(x) = k

where k is a constant. Then, we have that H(x, y) = xy(1− x− y) + k is a first integral
of the system.

Then, after having found a first integral of the system, we can assure that the point
(0, 0) is a center of the system

Observation 3.9. We will just explain in broad terms why the point (13 ,
1
3) cannot be a

focus after having found the first integral. Let’s suppose that P = (13 ,
1
3) is a stable focus

and that Q is a point very close to P. Then, the orbit of this point should be attracted to
P after some time. At the same time, the orbit of Q lives on one of the contour lines
of the first integral. Then, as the point Q is very close to P and the first integral is a
continuous function, the images of these two points have to be also very close to each
other, i.e., H(Q) = H(P ). As we have chosen any point Q that is sufficiently close to the
origin, we can find a neighbourhood of the origin where the function H is constant. That
is a contradiction, because by definition a first integral is a non-constant function. Then,
the singular point (13 ,

1
3) is a center.

Having said all this, we can have a look at the phase portrait of the system

XRPS =

{
ẋ = x(1− x− 2y)

ẏ = y(−1 + 2x+ y)
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Figure 3.4: phase portrait of the vector field.

In this case we do have singular infinite points that lie in the equator, as we can clearly
see in the representation. Remember that depending the on the degree of the vector field,
opposite singularities had the same or opposite behaviour. In this case, as the degree
of the vector field is d = 2 (the maximum degree of the polynomials) the behaviour of
the opposite singularities changes. We have 3 stable nodes and their respective unstable
nodes for the projections of this points.

Also, as we already proved when we found a first integral for the Hamiltonian system,
the program tells us that (13 ,

1
3) is a weak focus and therefore, we have a center. The other

three singular finite points are saddle points.



Appendix A

Python code to solve games

This is the code that we used for the particular example that we developed in the
third chapter of this book. To be able to use it in different games, it is just necessary
to modify the dynamical system and the partial derivatives matrix. The rest of the code
should work without making any more changes. As a reminder, the code is used to find
Nash equilibria, fixed points and classify the linear type of the fixed points in PVP games.
However, it could also be used in games that are not symmetric.

To create this code, the implementation of several Python libraries is required. These
libraries and more complementary information can be found in the references as [4], [5],
[6], [10] and [11].

#IMPORTING THE NECESSARY MODULES

import numpy as np

import pandas as pd

import sympy

import nashpy as nash

import matplotlib.pyplot as plt

from sympy import symbols, Eq, solve

#HERE WE DEFINE THE PAYOFF MATRICES OF BOTH PLAYERS. THE INPUT CAN BE ANY

N-DIMENSIONAL PAIR OF MATRICES

A = np.array([[0,3,1], [3,0,1], [1,1,1]])

B = np.array([[0,3,1], [3,0,1], [1,1,1]])

#HERE WE COMPUTE THE NE OF THE GAME

rps = nash.Game(A, B)

eqs = rps.support_enumeration()

print(list(eqs))

print()

#HERE WE DEFINE THE REPLICATOR DYNAMICS SYSTEM

x,y = symbols(’x y’)

eq1 = Eq(x*(x**2 + y**2 - 4*x*y + 2*y - x))

eq2 = Eq(y*(x**2 + y**2 - 4*x*y + 2*x - y))

#NOW WE FIND THE FIXED POINTS BY SOLVING THE SYSTEM

49
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sol = solve((eq1, eq2), (x,y))

print(sol)

#HERE WE DEFINE THE MATRIX OF PARTIAL DERIVATIVES ASSOCIATED TO THE SYSTEM.

WE ALSO DEFINE ANOTHER MATRIX WHERE WE WILL HAVE THE RESULT OF EVALUATING THE

FIXED POINTS IN THE PARTIAL DERIVATIVES MATRIX

eq1_x = "3*x**2 + y**2 - 8*x*y + 2*y - 2*x"

eq2_x = "2*x*y - 4*y**2 + 2*y"

eq1_y = "2*x*y - 4*x**2 + 2*x"

eq2_y = "3*y**2 + x**2 - 8*x*y + 2*x - 2*y"

der_matrix = []

der_matrix_eval = [[0,0],[0,0]]

col_1 = [eq1_x, eq2_x]

col_2 = [eq1_y, eq2_y]

der_matrix.append(col_1)

der_matrix.append(col_2)

print(der_matrix)

print()

#EVALUATING EACH FIXED POINT IN THE PARTIAL DERIVATIVES MATRIX

for i in range(len(sol)):

x = sol[i][0]

y = sol[i][1]

der_matrix_eval[0][0] = eval(der_matrix[0][0])

der_matrix_eval[0][1] = eval(der_matrix[0][1])

der_matrix_eval[1][0] = eval(der_matrix[1][0])

der_matrix_eval[1][1] = eval(der_matrix[1][1])

#TRANSFORMING THE MATRIX INTO FLOAT TO USE THE FUNCTION TO FIND EIGENVALUES

AND EIGENVECTORS

A = np.array(der_matrix_eval)

A = A.astype(’float64’)

w, v = np.linalg.eig(A) #w eigenvalues, v eigenvectors

print("Fixed Point = ",sol[i])

print(der_matrix_eval)

print("Eigenvalues = ",w)

if(w[1]*w[0] < 0):

print("PUNT DE SELLA")

if(w[1]*w[0] == 0):

print("NOT HYPERBOLIC")

if((w[1]*w[0] > 0) and (w[0] > 0)):

print("UNSTABLE NODE")

if((w[1]*w[0] > 0) and (w[0] < 0)):

print("STABLE NODE")

print("Eigenvectors. Column i corresponds to eigenvalue i:")
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print(v)

print()

print()
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Appendix B

P4&P5 phase portraits

In this appendix we will give more information about each vector field that we have
studied and its correspondent phase portrait. The extra information if part of the output
obtained by using the program P4&P5 that was created by ”Grup de sistemes dinàmics
de la UAB” and that is referenced in the bibliography, [1].

Regarding the phase portrait of figure 3.1:

LET US STUDY THE DIFFERENTIAL SYSTEM:

x’ = x*(x^2-4*x*y+y^2-x+2*y)

y’ = y*(x^2-4*x*y+y^2+2*x-y)

AT THE FINITE REGION

(0.,0.) is a non-elementary point.

The invariant separatrices are: (t>0)

[01]: [0, -1.*t] : unstable

hyperbolic sector

[02]: [t, 0] : stable

hyperbolic sector

[03]: [t, 1.*t] : unstable

hyperbolic sector

[04]: [0, t] : stable

hyperbolic sector

[05]: [-1.*t, 0] : unstable

hyperbolic sector

[06]: [-1.*t, -1.*t] : stable

hyperbolic sector

The singularity (0.,0.) has index -2

Sector representation (counterclockwise):

| | | | | |

^ HYP v HYP ^ HYP v HYP ^ HYP v HYP

| | | | | |

->-*-<- -<-*->- ->-*-<- -<-*->- ->-*-<- -<-*->-

01 02 03 04 05 06

########################################################
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(0.,1.) is an unstable node.

########################################################

(1.,0.) is an unstable node.

########################################################

(.500000000000000,.500000000000000) is a stable node.

########################################################

Regarding the phase portrait of figure 3.2:

LET US STUDY THE DIFFERENTIAL SYSTEM:

x’ = x*(-x^2-4*x*y-y^2+x+2*y)

y’ = y*(-x^2-4*x*y-y^2+2*x+y)

AT THE FINITE REGION

(0.,0.) is a non-elementary point.

The invariant separatrices are: (t>0)

[01]: [0, -1.*t] : stable

elliptic sector

[02]: [t, 0] : unstable

parabolic sector

[03]: [t, 1.*t] : unstable

parabolic sector

[04]: [0, t] : unstable

elliptic sector

[05]: [-1.*t, 0] : stable

parabolic sector

[06]: [-1.*t, -1.*t] : stable

parabolic sector

The singularity (0.,0.) has index 2

Sector representation (counterclockwise):

| | | | | |

v ELL ^ PAR ^ PAR ^ ELL v PAR v PAR

| | | | | |

->-*-<- -<-*->- ->-*-<- -<-*->- ->-*-<- -<-*->-

01 02 03 04 05 06

########################################################

(0.,1.) is a saddle point.

########################################################

(1.,0.) is a saddle point.

########################################################

(.500000000000000,.500000000000000) is a stable node.

########################################################

Regarding the phase portrait of figure 3.3:

LET US STUDY THE DIFFERENTIAL SYSTEM:

x’ = x*(-3*x^2-4*x*y-3*y^2+3*x+2*y)

y’ = y*(-3*x^2-4*x*y-3*y^2+2*x+3*y)
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AT THE FINITE REGION

(0.,0.) is a non-elementary point.

The invariant separatrices are: (t>0)

[01]: [0, -1.*t] : stable

hyperbolic sector

[02]: [t, 0] : unstable

parabolic sector

[03]: [t, 1.*t] : unstable

parabolic sector

[04]: [0, t] : unstable

hyperbolic sector

[05]: [-1.*t, 0] : stable

parabolic sector

[06]: [-1.*t, -1.*t] : stable

parabolic sector

The singularity (0.,0.) has index 0

Sector representation (counterclockwise):

| | | | | |

v HYP ^ PAR ^ PAR ^ HYP v PAR v PAR

| | | | | |

-<-*->- ->-*-<- -<-*->- ->-*-<- -<-*->- ->-*-<-

01 02 03 04 05 06

########################################################

(0.,1.) is a stable node.

########################################################

(1.,0.) is a stable node.

########################################################

(.500000000000000,.500000000000000) is a saddle point.

########################################################

Regarding the phase portrait of figure 3.4:

LET US STUDY THE DIFFERENTIAL SYSTEM:

x’ = x*(1-x-2*y)

y’ = y*(-1+2*x+y)

AT THE FINITE REGION

(0.,0.) is a saddle point.

########################################################

(0.,1.) is a saddle point.

########################################################

(1.,0.) is a saddle point.

########################################################

(.333333333333333,.333333333333333) is a weak focus.

Since the system is hamiltonian, we have a center.

########################################################
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