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Generalized synchronization in directionally coupled systems with identical individual dynamics
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A simple chaotic flow is presented, which when driven by an identical copy of itself, for certain initial
conditions, is able to display generalized synchronization instead of identical synchronization. Being that the
drive and the response are observed in exactly the same coordinate system, generalized synchronization is
demonstrated by means of the auxiliary system approach and by the conditional Lyapunov spectrum. This is
interpreted in terms of changes in the structure of the system stationary points, caused by the coupling, which
modify its global behavior.
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Synchronization of chaos is an issue of major interest irwith R a parameter of the model. This system was introduced
nonlinear dynamics. A significant result is the discovery of ato study the stability of IS in spatially symmetric chaotic
variety of different synchronization phenomena that includesystems and its use in communicatidé$ In what follows
identical synchronizatioflS), and generalized synchroniza- we will take R=5.2, which makes the system chaotic with a
tion (GS among other$1]. Such variety of chaos synchro- Lyapunov spectrum (0.13,6,2.13). A plot of the chaotic
nization scenarios raises questions regarding fundamental iattractor, given in Fig. 1, shows that the system dynamic
sues such as the conditions for the occurrence of the differeftehavior can be described as a coherent rotation in a simple
phenomena. The present paper addresses GS, which is a pleeaotic band attractor. Local stability analysis shows that this
nomenon defined in the frame of directionally coupled chasystem has three fixed points. One,»f’=(0,0,0), is a
otic systems, and refers to the situation when there is a corsaddle node, with eigenvalua§”=—1, \{")~ —5.86, and
tinuous mapping that allows to define the trajectory of the)\go)%4_36_ The respective eigenvectors ag@:(o,o,l),
response from the trajectory of the drif2]. This form of &0~ (1 —107,0), ande®~(1,0.89,0). The other fixed

synchronization, which includes identical synchronization,.. i< are located X 12=(=R,0R), and are spiral-out
[3] as a particular case, was introduced and has been StUd'EﬁddleS, with eigenvaluels(ll'z)~ —454 and )\(21é2)~ 1.27

[1,2,4,5 as a form of synchronization proper of chaotic sys-, . : 1), '
tems with nonidentical individual dynamics. IS is then seenlzll%'gl’ and _elgenvector . = 0'59’0'4_9'_0'76)' and
57~(0.37£10.92, —0.47+i0.44, —1.10+i0.25). These

as the form of synchronization proper of identical chaotic® . | o h s h h
systems, while GS is understood as its generalization to defjed points are displayed in Fig. 1. There, it is seen how the

with nonidentical systems. In the present paper, it will bemqtion in the.attractor results fo_rm tlhze interplay .between the
shown that nonidentity of the systems is not a necessaryPira! dynamics around the pm)nlé ?: a departing phase
condition for GS, because identical systems are also able {gPaC€ point that rotates ar_ou)(ée , after having completed a
exhibit nontrivial forms of GS. This will be done by means Pit more tg?” a half rotation falls down onto the neighbor-
of the example of two identical three-dimensional fluxesh©0d of X', this makes it to swirl around this point going
coupled directionally and monitored in exactly the same co-
ordinate system; which, however, display GS combined with
IS, depending on initial conditions. The origin of GS will be
traced by a qualitative analysis of the global dynamics of the
coupled six-dimensional system. Moreover, because of the
existence of different basins of attraction, these results will
provide an example of a case in which the test for GS known

as the auxiliary system approach may fail to detect GS as
warned, although not demonstrated, in Réf. X
Synchronization under a drive-response scheme is studied 3
here. The drive system is an autonomous three-dimensional
flow, x=(x41,X5,X3), whose dimensionless equations of mo-
tion are
X1=Xo+3.25iM(1.4 X,), (1)
Xo=—Xo— (X3—R)Xq, 2 FIG. 1. Dynamic behavior of the flow given by Edq4)—(3) for
R=5.2. The stationary points appear as filled circles. Trajectories
. 5 and points appear in black, and their projections onto the coordinate
X3= X1~ X3, 3 planes are plotted in gray. All quantities plotted are dimensionless.
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RO~ T T 120 neglected before starting to plot. So one obtains IS only for
[ @ ] 100 certain initial conditions but not for all.
90 F - r To study the case when no IS was observed the auxiliary
vs i 1 v, 80 system approactASA), which is a test for GS introduced by
60 N ] 60 Abarbanel, Rulkov, and SushcHik] was used. For that aim
L 1 20 an auxiliary systemz=(z;,2,,z3), was constructed, given
30, ———tl——l 20 by
T30 60 90 120 :
%s 2,=2,+3.2siM(1.4 z,), 7
RO—~T T T 7717 20T T T 17
1 [ (@ :
100 [ — Z,=—2,—[X3—R]zy, (8
9.0
2 2 O ] y
Ll o | . 23=24—17;. 9
I 40 -
20 A o it According to Ref. [4] if the dynamics of the nine-
20 40 60 80 100 120 20 40 60 80 100 120 dimensional system given by Eq&l)—(9) collapses to a
Vs Ys manifold that verifiesy;(t) =z(t), i=1,2,3; then, there is

GS of the drive to the response in the sense that there is a
(@ yg", or (b) Y, for the response. Auxiliary system approach response from the dynamics of the drive, with- ] a locally
test for GS whery{” is used for the initial conditions of the re- ontinuous point to point non-time-dep’)endent transforma-
sponse, anc) Z(ao+,)’ or (d) 2y for the auxiliary system. All quan- jon This test for GS, which is partly shown in Fig. 2, dis-
tities plotted are dimensionless. plays different outputs depending on the initial conditions

, 2 used for the responsgy/!?) or y{”] and for the auxiliary
over a new arc back to the influence ¥f?. The whole systen'[z(o)z(o 8,0) Orz(O):(G 80)]. Fory(O) one obtains
dynamics results from a back and forth motion between theSﬁ1 o)) o b Lo Ua .

: : (0) at forz,”’ there is IS, which is a trivial case of GS, while
two repellors. The fixed point &'~ acts as a repellor when () . o
the phase space trajectories approach their loweralues. for Z,” ASA fayls tq detect s_ynchronlzatlon. The correspond-
In Ref.[6] the focus was on IS and symmetry. However, N9 Plots are identical to F%?.(Q) and 2b), and, therefore,
there are other dynamic behaviors available that will be shoW?Ot displayed. The test foyy”, [Figs. 2c) and 2d)], pro-
here to be a case of GS in directionally coupled systems witides an indication that is B?versed respecyfd: no syn-
identical individual dynamics. For this aim, we consider thechronization is detected fat” , and a proper case of GS for

response systeny=(y;,Y»,ys), with Z? . In this last case the ranges of variationygfandz; are
. different and disjoint from those observed for IS. Moreover,
y1=Y,+3.2si(1.4 y,), (4) Fig. 2 suggests thap[ - ] is a complicated function. Some
insight on the nature of[ - ] can be obtained from a look to
Vo= —Y,— [x3—Rly;, (5)  the plot of the trajectory of the response given in Fi@) %or
v While a plot fory!® will be identical to that given in
Ya=Y2—Vs, (6) Fig. 1 for the drive, the plot foqyfjo) in Fig. 3@ shows a

response trajectory that is roughly an amplified version of the

which generalizes the driving scheme studied in R&fbe-  drive with a broader band structure. These results suggest
cause here a full copy of the drive is used instead of a part dhat, in the six-dimensional space of initial conditions %or

it [3]. According to the literaturd3,7], this sort of coupling, andy, there are two basins of attraction one leading to IS,
being the systems identical, may produce IS. If this were th@and other to GS. When both the response and the auxiliary
case, the full dynamics occurring in the six-dimensionalsystems are started at the same basin of attraction, ASA de-
space defined by the combined set of E{$-(6) will col- tects synchronization, which may be IS or GS. When the
lapse onto a manifold such that(t)=y;(t), for i=1,2,3. initial conditions of these two systems are in different basins,
Results of a study of that possibility are given in Fig&)2 the ASA test fails to detect the synchronized statds

and Zb) for two realizations that differ on the set of initial Another test for GS, given by Kocarev and Parli2, has
conditions usedx&°)=(—2.5,—2.6,4.2) for the drive, and been done computing the conditional Lyapunov exponents
g°)=(3,o,o) or yEJO):(lO,O,O), respectively, for the re- for the response. The average values of the conditional
sponse. In these plots and other similar that follow, only thelyapunov exponents have been obtained over trajectories
third component of each subsystem is displayed because tfiitiated at, xS, for the drive, andy?) or y{* for the re-
plots for the other components would provide no new infor-sponse. According to Ref5], GS occurs if and only if all the
mation. Figure 2a) displays a clean straight line with slope exponents are negative. The conditional Lyapunov spectra
equal to one, after a short transignbt shown, while Fig.  obtained are {0.42,—0.58-1.00) for yg°> and (—0.25,

2(b) looks cloudy despite TOcycles aftert=0 have been —0.76~1.00) foryfjo). Therefore, in the two cases we have
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jectories in the response subspace tend to drop onto
the points of the attracting curve of stationary points
y;=*ys, but the driving act prevents them to do so, and as
a result they evolve around that curve. This is indeed what
has been observed as mentioned previously, where we have
obtained two separated attractors following this kind of mo-
tion (one for IS and other for GSand response evolutions,

as shown in Fig. @), that spiral outwards following a curve
around X(12® Y(12)(y.) that mimics the trajectory of the
drive at ever increasing values pf.

The synchronization behavior cannot be inferred only
from local stability arguments because a drive-response cou-
pling does not warrants synchronization. According to the
literature on synchronization of identical systefs3] there
is a basin of initial conditions leading to IS only when the
largest conditional Lyapunov exponent is negative. When
this happens, the response phase space points having coordi-
nate values close to coordinate values of points of the drive
attractor will follow trajectories that lead them to reproduce
the dynamics of the drive. In other words, the drive trajec-
tory is an attractor for the response. In the present case this
exponent isA ;= —0.42; therefore, the response will evolve
around its stationary point¥*?(y,=R), i.e., the points
(= R,0R) of the response subspace, in IS to the drive, for

some initial conditions. However, for; sufficiently greater
thanR (let us sayy;>y{" for certainy{™>R), there is a
competition between two attractions: for one side there is a
continuous segment of stationary poin&?(y;) with
yimW<y,<yM (being y§™ to be determined in the next
paragraph and for the other there is the drive trajectory. The
balance these two attractions results in the GS attractor.

We have that for motions in the response subspace re-
gions, the dynamics of the distance squasée-y3+y3
+y2 will be given by

FIG. 3. Dynamic behavior of the response for initial conditions
@y, and(b) y{¥=(15,8,100). The drive was startecd? . The
set of points given by the parabo}g:yf that is discussed in the
text is also displayed. All quantities plotted are dimensionless.

asymptotically stable synchronized trajectories, being the ab- 5 s o )
solute value of the largest conditional Lyapunov exponent for ds’/dt=y7ys+B(X3)y1yo— (Y3 +Y3) +y1A SN Qy,).
GS smaller than for IS.

The six-dimensional system given by Edq4)—(6) has Despite this expression being quite complicated, if we re-
one fixed point at the originX(®¥®Y(©®=(0,0,0)(0,0,0) strict x3;~R (motion of the drive in its stable attracior
and an infinite set of couples of fixed points givenX{y?  which allows |B(x3)|=|1+R—x3|~1, we obtain that, if
®Y®I(ys)=(+VROR)®(*\y30ys). Because of the [y, [y2|, andys are all very large|fy,|,|y|,ys>R,A), be-
unidirectional nature of the coupling, the stability analyses ofcause of the cubic term, which is positive for @i>0, it is
these points, can be factorized into two three-dimensionalis?/dt>0 and the distance is an overall increasing func-
problems, one for the drive and another for the response. Fdion of time. In particular, for phase space trajectories of the
the drive one obtains, as it must be, the same global behaWind depicted in Fig. @) following the drive attractor
ior, within its own subspace, as for the uncoupled systemaround X:2gY@®3(y.), but with y; very large one has
For the response, it results that®) = (0,0,0) has exactly the ds?dt>0 in wide regions of phase space and no stable mo-
same eigenvalues and eigenvector as that8f and then tion is expected. This has been observed in the numerical
has the same effect on the dynamics in the response subimulation[Fig. 3(b)]. The GS attractor then results from the
space. The relevant points here afg?(y,) that have ei- wandering of the response phase space points, following the
genvalues—-1 and O for any positive value gf;, being the drive, around two segments of stationary poirks?
former eigenvalue degenerate. Therefoxé-2eY12(y;) @ Y®I(y,), with y§W<y,<y{™ , beingy{™ large enough
are still repellors in the full drive-response phase space, haws to prevent them from dropping onto the IS attractor, and
ing a spiral-out saddle structure in the drive subspace, Whilgg'v') small enough as to avoid motions in regions of phase
in the response subspace there are two manifolds: one #pace where the response is unstable.
stable and two dimensional, and the other is marginally The dynamic behaviors described above have been found
stable, one dimensional, and tangent to the eigenvectao be reproducible using other values for the initial condi-
(1,0+2.y;) of A\§"? at each point £ \/y;,0y3). The tra-  tions and different system parameters. However, to appreci-
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ate the extent of the occurrence of GS, it is interesting to @
have a view of the basins of attraction to the two types of " T T T "1
synchronization available. For this aim four of the six coor- X i
dinates that define a complete set of initial conditions were %
fixed, and values for the other two were taken in a rectanguy:” ; [ ]
lar grid chosen in a region around the stable attractor. Then L ]

Egs. (1)—(6) were evolved for each initial condition in the 3 r ]

grid, and the output reached was tested by means of twc o [tV —

criteria: from the ASA test it follows that if Emax(ys) 24 12 0 12 24

<11 we have IS, and if 160maxf3)<120 we have GS; y,?

otherwise, from the Lyapunov spectrum test—D.45<A 4

<—0.40 we have IS, and if0.22<A;<—0.27 we have FIG. 4. Two-dimensional sections of the basins of attraction for

GS. The basins of attraction obtained are exactly the same ﬁi(?g)) and the init(igl conditions of the response in the plar(es:
matter which of these two criteria is used. A thorough studyy: =9, and(b) y37'=0. The color code is: white for IS, black for
showed that, for fixek(®), the relevant structures appear in GS, and gray for gnstable motions of the response. All quantities
the y{?-y{) plane, the particular shapes of these basind'°tted are dimensionless.

change wherx'®) changes, displaying, however, the SaMeqiven that displays a nontrivial form of GS in directionally
overall behavior: regions leading to IS, close to the origin,.q pled chaotic systems with identical individual dynamics
and regions leading to GS, around them. Moreover, there arg ¢ ajjow |IS. This GS occurs for initial conditions in wide
regions of unstable motion far from the origin, where the egiong of the initial conditions six-dimensional space. Its

response trajectories do spiral outwards to infinity. Exampl%rigm has been associated with the appearance of new sets of
images of such basins are given in Fig. 4 for grids of 99ationary points, caused by the coupling, which happen to
x99 points. All this is in accordance with the stability argu- pe attractive in the response subspace and compete with the
ments given above. _ _ attraction to the drive trajectory. This supports the assertion
Finally, | would like to mention that Maistrenket al.[9]  hat nonidentity between drive and response is not a neces-
have observed that.mutually coupled_ identical logistic MapSary condition for GS. Moreover, this system provides an
have attractors, which are curves, different from the diagoystration of how the auxiliary system approach has to be

nal, x=y. Although they did not discuss their results from seq with care to detect GS when there are two or more
the point of view of synchronization, this suggest GS in iden55ins of attraction.

tical systems in a case very different from the one studied
here. This research has been supported by DGI through Project
In conclusion, an example of a chaotic flow has beerNo. BFM2000-0606.

[1] R. Femat and G. SatPerales, Phys. Lett. 262, 50(1999; R. [6] J.M. Gonzéez-Miranda, Phys. Rev. B3, 5656(1996; Phys.

Brown and L. Kocarev, Chaos0, 344 (2000; S. Boccaletti, Lett. A 251, 115(1999.
L.M. Pecora, and A. Péet, Phys. Rev. B3, 066219(2001). [7] J. Giemez and M.A. Mafs, Phys. Rev. 52, R2145(1995.
[2] N.F. Rulkov, M.M. Sushchik, L.S. Tsimring, and H.D.I. Abar- [8] P. Badola, S.S. Tambe, and B.D. Kulkarni, Phys. Rew6A
banel, Phys. Rev. B1, 980(1995. 6735(1992; M. de Sousa Vieira, A.J. Lichtenberg, and M.A.
[3] L.M. Pecora and T.L. Carroll, Phys. Rev. Ledt}, 821(1990. Lieberman,ibid. 46, R7359(1992.
[4] H.D.l. Abarbanel, N.F. Rulkov, and M.M. Sushchik, Phys. [9] Yu.L. Maistrenko, V.L. Maistrenko, A. Popovich, and E.
Rev. E53, 4528(1996. Mosekilde, Phys. Rev. 57, 2713(1998.

[5] L. Kocarev and U. Parlitz, Phys. Rev. LeTi6, 1816(1996.

047202-4



