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Jiménez-Losada4

1Departamento de Estad́ıstica, Análisis Matemático y Optimización, Universidade de
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Abstract

We introduce new notions of superadditivity and convexity for games with

coalitional externalities. We show parallel results to the classic ones for trans-

ferable utility games without externalities. In superadditive games the grand

coalition is the most efficient organization of agents. The convexity of a game is

equivalent to having non decreasing contributions to larger embedded coalitions.

We also see that convex games can only have negative externalities.

Keywords: Externalities; Superadditivity; Convexity; Contribution; Partition

function; Lattice
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1 Introduction

Cooperative game theory provides tools to study situations in which the coalitions

are the main actors. In a cooperative game the details of the underlying interaction

among players are omitted to build a robust model. The focus is on what coalitions

will emerge and how to share the benefits of the cooperation. Even if these games

are as old as game theory itself1 their applications to economics have not been as

successful as the ones of their non-cooperative counterpart (Maskin, 2016). The

fact that, traditionally externalities have been overlooked in the literature may be a

reason. Indeed, externalities are present in most economic examples where coalitions

are the fundamental elements. For instance, when firms merge in a cartel or after a

takeover bid, the expected profit will depend on the potential merging carried out by

the rest of firms in the market. Jelnov and Tauman (2009) study a Cournot market

where there is a patent holder using games with externalities. The cooperative game

is defined using the equilibrium payoffs in a strategic game. The management of

fishing resources is another problem where coalitions play a significant role. Liu et al.

(2016) study the Norwegian spring-spawning herring fishing using a three players

game, Norway, Russia and the union of Iceland, the Faroe Islands and the EU. In

their model, what a player can get depends on weather the other two players reach

an agreement or not. The focus is on the stability of the grand coalition. There is a

large literature studying river sharing problems (Ambec and Sprumont, 2002) from

a cooperative perspective. When agents utility functions have a satiation point,

externalities across coalitions emerge naturally (Ambec and Ehlers, 2008). van den

Brink et al. (2012) formalize a model where the utility that a coalition can get from

water consumption depends on the whole coalition structure.

Thrall and Lucas (1963) introduced games in partition function form to describe

situations in which coalitions generate externalities on one another. In this model,

the main ingredient are not just coalitions but embedded coalitions, that consist

of a coalition and a partition of the rest of agents. This enables a coalition to

1Their origin dates back to Von Neumann and Morgenstern (1944).
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have different values depending on what partition it is embedded in. More recently,

many important contributions have been published, most of them focusing on the

problem of how to share the benefits of the cooperation. For instance, Macho-Stadler

et al. (2007), de Clippel and Serrano (2008), McQuillin (2009), and Dutta et al.

(2010) address the issue of how to extend the Shapley value and Kóczy (2007) and

Bloch and van den Nouweland (2014) propose generalizations of the core to games

with externalities. Fewer papers have explored the properties of the game itself.

Hafalir (2007) points out that extending the classic properties of superadditivity

and convexity is not a trivial task. He shows that superadditivity, as defined by

Maskin (2003) is not a sufficient condition for the efficiency of the grand coalition in

situations with negative externalities. Abe (2016) proposes alternative definitions of

superadditivity that do the work when externalities are either positive or negative.

Hafalir (2007) also introduced a notion of convexity that guarantees that the grand

coalition is the most efficient configuration. With a different purpose Abe (2020)

introduced another notion of convexity, logically independent to the previous one.

A different branch of the literature follows a non-cooperative approach to study

situations with coalitional externalities. For instance, Ray and Vohra (1999) use an

extensive form bargaining game to find out the coalition structures that are likely

to arise.

Here, we rely on a partial order among embedded coalitions implicitly defined

by de Clippel and Serrano (2008). Alonso-Meijide et al. (2017) analyze the set of

embedded coalitions endowed with this partial order and show that it has a lattice

structure. Then, it is very natural to interpret the supremum and the infimum of two

embedded coalitions as their union and intersection, respectively. The supremum

is obtained taking the union of the coalitions and the intersection of the partitions,

more precisely their infimum in the lattice of partitions of a finite set. That is, the

two coalitions whose worth is being evaluated are merged while the rest of agents

form the partition obtained by keeping the divisions of the two original partitions.

The infimum works just the other way around, intersection of coalitions and union

3



of partitions, which results in only keeping the divisions in which the two partitions

agree. These operations allow us to generalize the classic definitions of superaddi-

tivity and convexity to games with externalities in a natural way.

To start with, we see that our properties imply the superadditivity proposed by

Maskin (2003) and the convexity studied by Hafalir (2007). Our main result is the

characterization of convexity through a condition that requires the contributions to

embedded coalitions to be non decreasing with respect to their size. To define what

is a contribution to an embedded coalition in a game with externalities we use the

lattice structure again. Alonso-Meijide et al. (2019) employ these contributions to

build a super family of Shapley values that contains the ones proposed in the previous

references. Some intermediate results that we use are interesting on their own. For

instance, we show that a convex game can only have negative externalities. Which

means that coalitions’ worth decrease when the partition of the complement becomes

coarser. Finally, we also obtain some interesting implications of our property with

respect to certain core notions.

The rest of the paper is organized as follows. Section 2 presents some discrete

mathematical terms that we will employ. Then, the partial order among embedded

coalitions in which we ground our results is introduced and some of the results of

Alonso-Meijide et al. (2017) are adapted to our framework. In Section 3 we introduce

our notions of superadditive and convex game with externalities and discuss their

implications. Next, we present some interesting lemmata followed by our main

result. Section 4 features some additional results on the cores of convex games with

externalities. Finally, Section 5 concludes with a comparison of the different notions

of convexity in the literature. The proofs and the examples are relegated to the

Appendix.
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2 A lattice of embedded coalitions

Let (L,≤) be a partially ordered set, with L being a finite set and x, y ∈ L.2 The

supremum, denoted by x ∨ y, is the unique element of L such that x, y ≤ x ∨ y and

if z ∈ L is such that z ≥ x, y, then z ≥ x ∨ y. The infimum, denoted by x ∧ y, is

the unique element of L such that x ∧ y ≤ x, y and if z ∈ L is such that z ≤ x, y,

then z ≤ x ∧ y.3 A finite lattice is a finite partially ordered set in which every pair

of elements have supremum and infimum. From now on, we assume that (L,≤) is a

finite lattice.

A key notion for our paper is the covering relation. We say that x is covered

by y or y covers x if x < y and there is no z ∈ L such that x < z < y. A chain

C (between x0 and xk) is an ordered subset of L, C = {x0, x1, . . . , xk} such that

xl+1 covers xl, for every l = 0, . . . , k − 1. If x ≤ y, we denote by [x, y]L the set

of elements z ∈ L such that x ≤ z ≤ y. If no confusion arises, we may just write

[x, y]. Notice that [x, y] is also a lattice (see for instance Topkis, 1998). A lattice

is graded if all the chains between the infimum of L and a given element, x ∈ L,

have the same cardinality, the height of x. We say that (L,≤) is distributive if

x∧ (y∨ z) = (x∧ y)∨ (x∧ z) and x∨ (y∧ z) = (x∨ y)∧ (x∨ z), for every x, y, z ∈ L.

(L,≤) is lower semimodular if whenever x ∨ y covers both x and y, then both x

and y cover x ∧ y, for every x, y ∈ L. (L,≤) is semimodular or upper semimodular

if whenever both x and y cover x ∧ y, then x ∨ y covers both x and y, for every

x, y ∈ L.

The classic notion of convexity (Shapley, 1971) corresponds to the supermodu-

larity of the characteristic function, which is a real function on the Boolean lattice

of subsets. In general, a real function on (L,≤), f , is said to be supermodular

(submodular) if for every x, y ∈ L, f(x) + f(y) ≤ (≥)f(x ∧ y) + f(x ∨ y).

Let N be a finite set, n = |N |, S ⊆ N , and i ∈ N . We denote S∪{i} by S∪i and

S \ {i} by S \ i. The family of partitions of N is denoted by Π(N). Let, P ∈ Π(N).

2We write x = y if x ≤ y and y ≤ x. Also, x < y means that x ≤ y but x 6= y.
3The definition of supremum and infimum is extended to any finite subset of elements of L in

the usual way.
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We denote by |P | the number of non-empty elements of P , that we also call blocks.

The partition P−S of N \ S is given by {T \ S : T ∈ P}. The partition of singletons

of S, {{i} : i ∈ S}, is denoted by bSc and the partition of S in one block, {S}, is

denoted by dSe. If P ∈ Π(N \ i), we also denote {{i}}∪P by {i}∪P . A well-known

partial order on Π(N) is the following:

P � Q if and only if for every S ∈ P there is some T ∈ Q such that S ⊆ T.

It is known that (Π(N),�) is a semimodular lattice. The height of an element,

P ∈ Π(N) is given by r(P ) = n − |P |. If P,Q ∈ Π(N), we denote by P
∧
Q the

infimum of P and Q; the supremum of P and Q is denoted by P
∨
Q.

An embedded coalition of N is a pair (S;P ) with S ⊆ N and P ∈ Π(N \ S),

i.e., {S} ∪ P ∈ Π(N). In particular, (∅;P ) with P ∈ Π(N) is also an (empty)

embedded coalition. If all agents form the grand coalition we write (N ; ∅). That

is, we consider that ∅ is the only partition in Π(∅). For simplicity we denote by

(S;N \ S) the embedded coalition (S; dN \ Se), for every S ⊆ N . The family of all

embedded coalitions of N is denoted by ECN .

Alonso-Meijide et al. (2017) studied the partial order outlined in de Clippel and

Serrano (2008) over the set (ECN \ {(∅;P ) : P ∈ Π(N)})∪ {⊥}, being ⊥ a fictitious

infimum. Here we consider this partial order over the whole set ECN . It is convenient

to extend some of the results in Alonso-Meijide et al. (2017) to this framework. Next,

we introduce the partial order formally.

Definition 2.1. Let (S;P ), (T ;Q) ∈ ECN . We define the inclusion among embedded

coalitions as follows:4

(S;P ) v (T ;Q) if and only if S ⊆ T and Q � P−T . (1)

The inclusion relation describes two ways an embedded coalition can become

larger. On the one hand, some agents could join the coalition. On the other hand,

4As usual, (S;P ) @ (T ;Q) means that (S;P ) v (T ;Q) and (S;P ) 6= (T ;Q).
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the partition of the complement could become finer. Sometimes it may be convenient

to use an equivalent formulation of the condition in Eq. (1):

(S;P ) v (T ;Q) if and only if S ⊆ T and Q ∪ bT \ Sc � P. (2)

In the remainder of this section we describe some properties of the algebraic

structure
(
ECN ,v

)
.

Proposition 2.1. Let (S;P ), (T ;Q) ∈ ECN . Then,

1. (S;P ) ∨ (T ;Q) = (S ∪ T ;P−T
∧
Q−S).

2. (S;P ) ∧ (T ;Q) = (S ∩ T ;M), with M = (P ∪ bS \ T c)
∨

(Q ∪ bT \ Sc).

From Proposition 2.1 we conclude that
(
ECN ,v

)
is a lattice. The infimum of

this structure is (∅;N) and the supremum is (N ; ∅). However, the lattice is not

distributive as Example 5.1 shows.

Proposition 2.2. The lattice
(
ECN ,v

)
is graded, the height of any (S;P ) ∈ ECN

is given by h(S;P ) = |P |+ 2|S| − 1.

Notice that the height of every embedded coalition (S;P ) ∈ ECN can be de-

scribed by means of the height of S in the Boolean lattice, |S|, and the height of

P ∪ bSc in the partition lattice, r(P ∪ bSc) as follows:

h(S;P ) = n− 1− r(P ∪ bSc) + |S|. (3)

Since (Π(N),�) is a graded and semimodular lattice, the height is a submodular

function. This fact and Equation (3) are used to prove the following result.

Proposition 2.3. Let (S;P ), (T ;Q) ∈ ECN . Then,

h((S;P ) ∨ (T ;Q))− h(T ;Q) ≥ h(S;P )− h((S;P ) ∧ (T ;Q)). (4)

Given a pair of embedded coalitions, the length of the chains between one of

them and their supremum is greater or equal the length of the chains between
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their infimum and the other one. Note that this implies that
(
ECN ,v

)
is a lower

semimodular lattice.

3 Superadditiviy and convexity

In this section, we extend some of the most important properties of a classic game

to situations with coalitional externalities. Let N be a finite set. A game (with

externalities) with player set N is defined by a partition function v : ECN −→ R

such that v(∅;P ) = 0, for every P ∈ Π(N). We denote by GN the class of all games

with player set N . Any partition function v satisfying v(S;P ) = v(S;Q), for every

S ⊆ N and P,Q ∈ Π(N \ S) is called a classic game.5 To begin with, we introduce

the notion of superadditive game with externalities inspired by the inclusion relation

studied in Section 2.

Definition 3.1. Let v ∈ GN . We say that v is superadditive if and only if

v((S;P ) ∨ (T ;Q)) ≥ v(S;P ) + v(T ;Q),

for every (S;P ), (T ;Q) ∈ ECN such that S ∩ T = ∅.

That is, for every pair of embedded coalitions whose intersection is an empty

one, the worth of their supremum in (ECN ,v) is greater or equal to the joint worths

of the two embedded coalitions. Recall that (S;P ) ∨ (T ;Q) = (S ∪ T ;P−T
∧
Q−S).

In other words, if we evaluate the worths of two disjoint coalitions, each embedded

in an arbitrary partition, this amount is weakly less than the worth of the union of

the two coalitions embedded in the partition obtained by keeping all the divisions

in the original partitions.

Definition 3.1 extends the classic notion of superadditivity of a game without

externalities. Example 5.2 shows that this extension is not trivial as there are

superadditive games which are not classic games.

5A game in characteristic function.
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An important property of a game with externalities is the efficiency of the grand

coalition. Let v ∈ GN . We say that v is efficient for the grand coalition if for every

P ∈ Π(N), ∑
S∈P

v(S;P−S) ≤ v(N ; ∅).

It is easy to check that if a game is superadditive, then it is also efficient for the grand

coalition. Hafalir (2007) points out that this fact does not happen with Maskin’s

definition of superaditivity (Maskin, 2003): v ∈ GN is superadditive if for every

S, T ⊆ N with S ∩ T = ∅ and P ∈ Π(N \ (S ∪ T )),

v(S ∪ T ;P ) ≥ v(S; dT e ∪ P ) + v(T ; dSe ∪ P ).

It is clear that any superadditive game in our sense is also a superadditive game in

Maskin’s sense, but the reverse does not hold (see Example 5.3).

We also compare our definition of superadditivity with optimistic superadditivity

(Optimistic-SA) as defined by Abe (2016). A game v ∈ GN is optimistic-SA if

the associated optimistic game, vmax, is superadditive in the classic sense. The

optimistic game is defined for every S ⊆ N by vmax(S) = {v(S;P ) : P ∈ Π(N \

S)}. It is easy to check that our notion of superadditivity implies optimistic-SA.

Nevertheless, as Example 5.4 shows, the two notions are not equivalent.

Next, we formulate our notion of convexity for games with externalities as the

supermodularity of a real function on the lattice
(
ECN ,v

)
.

Definition 3.2. Let v ∈ GN . We say that v is convex if for all (S;P ), (T ;Q) ∈ ECN

v((S;P ) ∨ (T ;Q)) + v((S;P ) ∧ (T ;Q)) ≥ v(S;P ) + v(T ;Q) (5)

That is, for every pair of embedded coalitions, the sum of their worths is less than

or equal to the sum of the worths of their supremum and infimum in
(
ECN ,v

)
. It is a

very natural generalization of the classic definition (Shapley, 1971) if the supremum

and infimum in
(
ECN ,v

)
are understood as the union and intersection of embedded
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coalitions, respectively. As it happens when there are no externalities, any convex

game is a superadditive game. In the literature there are several definitions of

convexity for games with externalities. An important conceptual difference of our

property with respect to others in the literature is the fact that it applies to coalitions

which are embedded in potentially different partitions. In a sense, we evaluate

worths of coalitions that can have different expectations on how the complementary

coalition will be organized. Example 5.5 shows that this extension is not trivial.

Let us review the convexity notion of Hafalir (2007) and analyze its relationship

with Definition 3.2. The game v ∈ GN is Hafalir convex if and only if

v(S ∪T ;P ) + v(S ∩T ;P ∪ dS \T e ∪ dT \Se) ≥ v(S;P ∪ dT \Se) + v(T ;P ∪ dS \T e)

for every S, T ⊆ N and P ∈ Π(N \ (S ∪ T )). Notice that for every S, T ⊆ N and

P ∈ Π(N \ (S ∪ T )), we have (S;P ∪ dT \ Se) ∨ (T ;P ∪ dS \ T e) = (S ∪ T ;P ) and

(S;P ∪dT \Se)∧ (T ;P ∪dS \T e) = (S ∩T ;P ∪dS \T e∪dT \Se). This implies that

our convexity implies Hafalir convexity. However, the reverse implication does not

hold (see Example 5.6). In Example 5.7 we show that our notion of superadditivity

does not imply Hafalir convexity.

In order to present our main result we first have to specify what a contribution6

is in the presence of externalities. To that end, we use the lattice studied in Section

2. In classic games the contribution of an agent to a coalition corresponds to a link

in the Boolean lattice of subsets
(
2N ,⊆

)
. Then, we consider that each link in the

lattice
(
ECN ,v

)
generates a contribution to the embedded coalition on its top. Note

that this leads to two kinds of contributions. The first is the movement of a player

who is isolated in the partition and joins the coalition. The second is the movement

of a block in the partition that splits in two. Next, we present these contributions

that were introduced in Alonso-Meijide et al. (2019) and explain what it means for

a game to have non-decreasing contributions.

Let v ∈ GN and (S;P ) ∈ ECN such that {i} ∈ P for some i ∈ N . Then, we call

6What is many times called a marginal contribution.
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agent i’s contribution to the difference v (S ∪ i;P−i) − v(S;P ). Moreover, we say

that agents’ contributions are non-decreasing in v if

v(T ∪ i;Q−i)− v(T ;Q) ≥ v (S ∪ i;P−i)− v(S;P ), (6)

for every i ∈ N and (S;P ), (T ;Q) ∈ ECN such that (S;P ) v (T ;Q) 6= (N ; ∅) and

{i} ∈ P .

Let v ∈ GN , (S;P ) ∈ ECN , and P ′ ∈ Π(N \ S) covering P in the partition

lattice (Π(N \ S),�). Then, we call external contribution to the difference v(S;P )−

v(S;P ′).7 Moreover, we say that external contributions are non-decreasing in v if

v(T ;Q)− v(T ;Q′) ≥ v(S;P )− v(S;P ′), (7)

for every (S;P ), (T ;Q) ∈ ECN such that (S;P ) v (T ;Q) 6= (N ; ∅), P ′ ∈ Π(N \ S)

covering P , Q′ ∈ Π(N \ T ) covering Q, and (S;P ′) v (T ;Q′).

We state some auxiliary results that will be used to prove Theorem 3.1.

Lemma 3.1. Let v ∈ GN such that the external contributions are non-decreasing.

Then, v(S;P ) ≤ v(S;M), for every (S;P ), (S;M) ∈ ECN such that (S;P ) v

(S;M).

That is, a game in which the external contributions are non-decreasing exhibits

a monotonicity property in the sense that the worth of a coalition grows as the

coalitions in the complement get more divided. In other words, it is a game with

negative externalities (Hafalir, 2007).

Lemma 3.2. Let v ∈ GN such that the external contributions are non-decreasing.

Then,

v
(
T ;P

∧
Q
)

+ v
(
T ;P

∨
Q
)
≥ v(T ;P ) + v(T ;Q), (8)

for every (T ;P ), (T ;Q) ∈ ECN .

7Notice that the external contribution is just the externality effect on the worth of coalition S
when a coalition of N \ S splits in two.

11



That is, for a fixed coalition T the partition function of a game with non-

decreasing external contributions is a supermodular function on Π(N \ T ).

Lemma 3.3. Let v ∈ GN such that agents’ contributions are non-decreasing. Then,

v(T ;Q)− v(S;Q ∪ bT \ Sc) ≥ v(T ;P )− v(S;P ∪ bT \ Sc), (9)

for every S ⊆ T and P,Q ∈ Π(N \ T ), with Q � P .

The above result states that when agents’ contributions are non-decreasing in

a game, the incorporation of several agents that were singletons in the partition is

more beneficial for larger embedded coalitions.

Lemma 3.4. Let v ∈ GN such that agents’ contributions are non-decreasing. Then,

v(S∪T ;P )+v(S∩T ;P∪bS\T c∪bT \Sc) ≥ v(S;P∪bT \Sc)+v(T ;P∪bS\T c), (10)

for every S, T ⊆ N and P ∈ Π(N \ (S ∪ T )).

Notice that Equation (10) is very similar to Hafalir convexity. The only difference

is the fact that here we consider that agents who only participate in one of the two

coalitions are singletons.

We are now ready to present our main result, which is a characterization of con-

vexity by non-decreasing contributions. That is, we generalize the characterization

of classic convex games by Shapley (1971) to environments with externalities.

Theorem 3.1. Let v ∈ GN . The following three items are equivalent.

i) v is a convex game.

ii) Let (S;P ), (T ;Q) ∈ ECN \ {(N ; ∅)} such that (T ;Q) covers (S;P ). Then,

1. For every i ∈ N with {i} ∈ P , we have

v(T ∪ i;Q−i)− v(T ;Q) ≥ v (S ∪ i;P−i)− v(S;P ) (11)
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2. For every P ′ ∈ Π(N \ S) covering P and Q′ ∈ Π(N \ T ) covering Q such

that (T ;Q′) covers (S;P ′), we have

v(T ;Q)− v(T ;Q′) ≥ v(S;P )− v(S;P ′) (12)

iii) v has non-decreasing agents’ and external contributions.

Observe that condition ii) is a weakening of iii) as it is only applied when the

embedded coalition (T ;Q) covers (S;P ), in point 2. it is also required that (T ;Q′)

covers (S;P ′). This is parallel to the characterization of classic convex games where

it is sufficient to check that the contributions are non-decreasing when one player

is incorporated to the coalition. Hafalir (2007) also considered a similar weakening

of his notion of convexity, which is obtained by requiring Inequality (10) only when

|T \ S| = |S \ T | ≤ 1. However, as he points out, this condition alone is not even

sufficient for the efficiency of the grand coalition. Abe (2016) shows that for games

with negative externalities, Hafalir’s weak convexity implies the efficiency of the

grand coalition. From Theorem 3.1 we can also conclude that it is enough to check

that contributions are non-decreasing to coalitions that are just one link away from

one another to guarantee that the grand coalition is efficient.

4 Convexity and the core

In this section we include some comments on the core of the optimistic and the

pessimistic games8 associated to a convex game. Both of them are classic games.

First we recall the notion of the core of a classic game. Let w ∈ GN be a classic

game. The core of w is given by

Core(w) =

{
x ∈ RN :

∑
i∈N

xi = w(N),
∑
i∈S

xi ≥ w(S), for every S ⊆ N

}
.

8Which are essentially the α-core and β-core (Hart and Kurz, 1983). More recently Dutta et al.
(2010), Bloch and van den Nouweland (2014), and Abe (2016) also use these games.
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In general, Core(w) can be empty, but every convex classic game has a non-empty

core. Besides, it is quite easy to determine its extreme points. Denote the set of

permutations of N by Θ(N), i.e., σ ∈ Θ(N) if and only if σ is a bijective mapping σ :

N −→ {1, . . . , n}. Let σ ∈ Θ(N) and i ∈ N . The set of predecessors of i is Pr(σ, i) =

{j ∈ N : σ(j) < σ(i)}. The vector of marginal contributions with respect to σ is

given by mσ(w) ∈ RN such that mσ
i (w) = w(Pr(σ, i) ∪ i) − w(Pr(σ, i)), for every

i ∈ N . It is well known that if w is a classic convex game, then the vectors of marginal

contributions are the vertices of the core, i.e., Core(w) = conv {mσ(w) : σ ∈ Θ(N)}.

Let v ∈ GN . Recall that the optimistic game, denoted by vmax, is the clas-

sic game defined by vmax(S) = max{v(S;P ) : P ∈ Π(N \ S)}, for every S ⊆ N .

The pessimistic game, denoted by vmin, is the classic game defined by vmin(S) =

min{v(S;P ) : P ∈ Π(N \ S)}, for every S ⊆ N . Notice that vmax(S) ≥ v(S;P ) ≥

vmin(S), for every (S;P ) ∈ ECN and vmax(N) = vmin(N) = v(N ; ∅). Then,

Core(vmax) ⊆ Core(vmin). And any plausible definition of the core of v should

be in between the two. Abe (2016) proved that if v has negative externalities and

satisfies the weak convexity condition, then Core(vmax) is non-empty as well as

Core(vmin). Since a convex game according to Definition 3.2 satisfies the weak

convexity condition, we already known that both Core(vmax) and Core(vmin) are

non-empty sets when v is a convex game.

Definition 4.1. Let v ∈ GN . For every P ∈ Π(N), we define the classic game vP

by vP (S) = v(S;P−S), for every S ⊆ N .

Notice that vP is defined for every S ⊆ N even if S is not a block in P . Besides,

vP (S) = vQ(S), for every P,Q ∈ Π(N) and S ⊆ N with P−S = Q−S . The optimistic

game can then be defined by vmax(S) = max
{
vP (S) : P ∈ Π(N)

}
, analogously for

the pessimistic game by vmin(S) = min
{
vP (S) : P ∈ Π(N)

}
, for every S ⊆ N .

Proposition 4.1. Let v ∈ GN . Then,

Core (vmax) =
⋂

P∈Π(N)

Core
(
vP
)
.
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Next, we describe some properties of the classic games associated with a convex

game and characterize the extreme points of the core of one of them, the pessimistic

game.

Theorem 4.1. Let v ∈ GN be a convex game.

1. Let P,Q ∈ Π(N) such that Q � P . Then, Core
(
vQ
)
⊆ Core

(
vP
)
.

2. For every S ⊆ N , vmax(S) = vbNc(S) and vmin(S) = vdNe(S).

3. The classic game vmax is convex and

Core (vmax) = conv
{
mσ
(
vbNc

)
: σ ∈ Θ(N)

}
.

As a consequence of Theorem 4.1, if v is convex the Externality-free value

(de Clippel and Serrano, 2008) is the average of the extreme points of the core

of vmax and it also belongs to the core of vmin. Finally, Example 5.8 shows that our

definition of convexity is not enough to guarantee the convexity of the pessimistic

game.

5 Conclusion

We have proposed new notions of superadditivity and convexity for games with

externalities and compared them with the ones defined in the literature. Figure 1

summarizes the existing implications.

Our main result is a characterization of convexity by means of non-decreasing

contributions to embedded coalitions of incresing size. We also offer another char-

acterization that uses the standard convexity of some associated classic games. Our

results may help identifying games with negative externalities that are convex. Re-

call that only games with negative externalities can be convex. They also offer

alternative views on what a convex game with externalities is.

In the future, we would like to deepen the understanding on the different classes

of games with externalities. For instance, we would like to explore the implications
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Efficient

Superadditive

Optimistic-SA

Weakly convex

Hafalir’s convex

Convex

Figure 1: Relationship among several families of games with negative externalities.

of concave games with externalities, that can be defined by just reversing the in-

equality in the definition of convexity. Whether this implies that the game shows

positive externalities is an open question. In this line, we would also like to analyze

the structure of the core of the associated games and study if some of the existing

generalizations of the Shapley value belong to it. Finally, we would also like to con-

sider a definition of convexity based on blocking coalitions as Milgrom and Shannon

(1996) do and see if their results carry on to situations with externalities.

Acknowledgement

This work has been supported by the European Regional Development Fund (ERDF)

and Ministerio de Economı́a, Industria y Competitividad through grants ECO2017-

86481-P, MTM2017-83455-P, MTM2017-87197-C3-2-P, MTM2017-87197-C3-3-P, by

the Generalitat de Catalunya through grant 2017-SGR-778, by the Junta de An-
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Appendix

Proof of Proposition 2.1.

1. The first item can be proven in the same way as Item 1 of Proposition 1 in

Alonso-Meijide et al. (2017).

2. Take (S ∩ T ;M) with

M = (P ∪ bS \ T c)
∨

(Q ∪ bT \ Sc).

Then, (S ∩ T ;M) v (S;P ) and (S ∩ T ;M) v (T ;Q). Let (R;M ′) ∈ ECN

such that (R;M ′) v (S;P ) and (R;M ′) v (T ;Q) then, it is easy to see that

(R;M ′) v (S ∩ T ;M). �

Example 5.1. The lattice
(
ECN ,v

)
is not distributive.

Let N = {1, 2, 3, 4, 5, 6, 7}, (S;P ) = ({2, 3}; {{1, 4}, {5, 6}, {7}}), (T ;Q) = ({1, 2}; {{3, 5}, {4, 6, 7}}),

and (L;M) = ({1, 3}; {{2}, {4, 5}, {6, 7}}). Then

(T ;Q) ∧ (L;M) = ({1}; {{2}, {3, 4, 5, 6, 7}}),

(S;P ) ∨ ((T ;Q) ∧ (L;M)) = ({1, 2, 3}; {{4}, {5, 6}, {7}}),

(S;P ) ∨ (T ;Q) = ({1, 2, 3}; bN \ {1, 2, 3}c),

(S;P ) ∨ (L;M) = ({1, 2, 3}; bN \ {1, 2, 3}c), and

((S;P ) ∨ (T ;Q)) ∧ ((S;P ) ∨ (L;M)) = ({1, 2, 3}; bN \ {1, 2, 3}c).
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Then, (S;P ) ∨ ((T ;Q) ∧ (L;M)) 6= ((S;P ) ∨ (T ;Q)) ∧ ((S;P ) ∨ (L;M)).

Besides, (S;P )∧ ((T ;Q)∨ (L;M)) 6= ((S;P )∧ (T ;Q))∨ ((S;P )∧ (L;M)) as we

see next:

(T ;Q) ∨ (L;M) = ({1, 2, 3}; b4, 5c ∪ {6, 7}}),

(S;P ) ∧ ((T ;Q) ∨ (L;M)) = ({2, 3}; {{1, 4}, {5, 6, 7}}),

(S;P ) ∧ (T ;Q) = ({2}; dN \ {2}e),

(S;P ) ∧ (L;M) = ({3}; dN \ {2, 3}e ∪ {2}), and

((S;P ) ∧ (T ;Q)) ∨ ((S;P ) ∧ (L;M)) = ({2, 3}; dN \ {2, 3}e).

Proof of Proposition 2.2. The result follows immediately if |N | ≤ 2. Let

us assume that |N | ≥ 3 and (S;P ) ∈ ECN . We prove that all chains between the

infimum of the lattice, (∅;N), and (S, P ) have length |P |+ 2|S| − 1. We proceed by

induction on k, the length of such a chain.

If k = 0, then (S;P ) = (∅;N) and h(∅;N) = 0 = |P |+2|S|−1. Let us take k = 1.

That is, we consider a chain of length k = 1 joining (S;P ) and (∅;N), this implies

that (S;P ) covers (∅;N). Then, (S;P ) = (∅; {T,N \ T}) for some T /∈ {∅, N},

there is only one chain from (∅;N) to (S;P ), and h(S;P ) = h(∅; {T,N \ T}) =

1 + h(∅;N) = |P |+ 2|S| − 1.

Suppose that the result holds for every (S;P ) such that there is a chain of length

k > 0 from (∅;N) to (S;P ). Let (S;P ) ∈ ECN such that there is a chain of length

k joining (S;P ) and (∅;N). We distinguish two cases.

First, if |P | ≤ 1, we have |S| > 0 because k > 0. Then, (S;P ) only covers

embedded coalitions of type (S \ i;P ∪ {i}), for every i ∈ S and there is a chain of

length k − 1 from (∅;N) to (S \ i;P ∪ {i}). By the induction hypothesis, all chains

from (∅;N) to (S \ i;P ∪ {i}) have length k − 1 = h(S \ i;P ∪ {i}). Since (S;P )

covers (S \ i;P ∪ {i}),

k = h(S;P ) = 1 + h(S \ i;P ∪ {i}) = 1 + 1 + |P |+ 2|S \ i| − 1 = |P |+ 2|S| − 1.

Second, let us assume that |P | > 1 and take P = {P1, . . . , Pm}, with m ≥ 2.
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Then, we can have |S| = 0 or |S| > 0. If |S| = 0, then (S;P ) only covers embedded

coalitions of type
(
∅;P−Pj∪Pl

∪ dPj ∪ Ple
)

for every j, l ∈ {1, . . . ,m} with j 6= l

and there is a chain of length k − 1 from (∅;N) to (∅;P−Pj∪Pl
∪ dPj ∪ Ple). By

induction, all chains from (∅;N) to (∅;P−Pj∪Pl
∪ dPj ∪ Ple) have length k − 1 =

h(∅;P−Pj∪Pl
∪ dPj ∪ Ple). Since (S;P ) covers (∅;P−Pj∪Pl

∪ dPj ∪ Ple),

k = h(S;P ) = 1+h(∅;P−Pj∪Pl
∪dPj ∪Ple) = 1+(|P |−1)+2|S|−1 = |P |+2|S|−1.

Finally, if |S| > 0, (S;P ) covers embedded coalitions of two types, (S \i;P ∪{i}), for

every i ∈ S and (S;P−Pj∪Pl
∪dPj ∪Ple) for every j, l ∈ {1, . . . ,m} with j 6= l. Using

the induction hypothesis as before for each of the types of embedded coalitions we

obtain that k = h(S;P ) = |P |+ 2|S| − 1. �

Proof of Proposition 2.3. Let (S;P ), (T ;Q) ∈ ECN . First, recall that (S;P )∨

(T ;Q) = (S ∪ T ;P−T
∧
Q−S) and (S;P )∧ (T ;Q) = (S ∩T ; (P ∪bS \T c)

∨
(Q∪bT \

Sc)). Using Equation (3), Inequality (4) is equivalent to

r (Q ∪ bT c)− r
((
P−T

∧
Q−S

)
∪ bS ∪ T c

)
≥ r

((
(P ∪ bS \ T c)

∨
(Q ∪ bT \ Sc)

)
∪ bS ∩ T c

)
− r (P ∪ bSc) .

Taking P ∪ bSc, Q ∪ bT c ∈ Π(N), it happens that

• (P ∪ bSc)
∧

(Q ∪ bT c) = (P−T
∧
Q−S) ∪ bS ∪ T c, and

• (P ∪ bSc)
∨

(Q ∪ bT c) = ((P ∪ bS \ T c)
∨

(Q ∪ bT \ Sc)) ∪ bS ∩ T c.

Using the fact that the height of an element on the the partition lattice is a sub-

modular function and taking P ∪ bSc, Q ∪ bT c ∈ Π(N), we obtain

r (P ∪ bSc) + r (Q ∪ bT c)

≥ r
(

(P−T
∧
Q−S) ∪ bS ∪ T c

)
+ r

((
(P ∪ bS \ T c)

∨
(Q ∪ bT \ Sc)

)
∪ bS ∩ T c

)
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and the result follows. �

Example 5.2. There are superadditive games which are not classic games.

Let N = {1, 2, 3} and consider the partition function v defined by

v(N ; ∅) = 8, v({1}; d2, 3e) = 3, v({1}; b2, 3c) = 0,

v({i}; bN \ ic) = v({i}; dN \ ie) = 2, for every i ∈ N \ 1, and

v({i, j};N \ {i, j}) = 5, for every i, j ∈ N, i 6= j.

Since the worth of coalition {1} depends on the coalition structure of the comple-

ment it is not a classic game. Moreover, it is easy to check that v is superadditive

according to Definition 3.1.

Example 5.3. Maskin’s definition of superadditivity is not equivalent to Definition

3.1

Let N = {1, 2, 3} and v ∈ GN such that

v(N ; ∅) = 7, v({1}; d2, 3e) = 3, v({1}; b2, 3c) = 0,

v({i}; bN \ ic) = v({i}; dN \ ie) = 2, for every i ∈ N \ 1, and

v({i, j};N \ {i, j}) = 4, for every i, j ∈ N, i 6= j.

It is easy to check that v is superadditive in Maskin’s sense. However, it is not

superadditive according to Definition 3.1 as we can see taking (S;P ) = ({2}; d1, 3e)

and (T ;Q) = ({1}; d2, 3e).

Example 5.4. There are Optimistic-SA games which are not superadditive accord-

ing to Definition 3.1.

Let N = {1, 2, 3, 4} and v ∈ GN defined as follows:

v(N ; ∅) = 60, v(N \ i; bic) = 45, for every i ∈ N,

v({i, j}; dh, ke) = 29 and v({i, j}; bh, kc) = 30, for every {i, j, h, k} = N,

v({i};P ) = 15, for every ({i};P ) ∈ ECN .
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This game is an adaptation of Example 3.8 in Abe (2016). It is still superadditive

in Maskin’s sense, but it is not superadditive according to Definition 3.1 because, for

instance,

v({1}; {{2, 3}, {4}}) + v({4}; dN \ 4e) = 15 + 15 = 30 > v({1, 4}; d2, 3e) = 29.

The optimistic game associated to it, given by

vmax(N) = 60, vmax(N \ i) = 45, for every i ∈ N,

vmax(S) = 30, if |S| = 2,

vmax(S) = 15, if |S| = 1,

is a classic superadditive game, which means that v is Optimistic-SA.

Example 5.5. There are convex games which are not classic games.

Let N = {1, 2, 3} and v ∈ GN defined as follows:

v(N ; ∅) = 15, v(N \ i; {i}) = 10, for every i ∈ N,

v(N \ {i, j}; bi, jc) = 5, for every i, j ∈ N, i 6= j,

v(N \ {i, j}; di, je) = 4, for every i, j ∈ N, i 6= j,

v(∅;N) = 0.

Clearly, v is not a classic game. It is easy to check that it is convex according to

Definition 3.2.

Example 5.6. Hafalir’s definition of convexity is not equivalent to our notion of

convexity (see Definition 3.2).
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Let N = {1, 2, 3, 4} and v ∈ GN be defined as follows:

v(N ; ∅) = 12, v({1, 2, 3}; {4}) = 7, v({1, 2, 4}; {3}) = 6, v({1, 3, 4}; {2}) = 3,

v({2, 3, 4}; {1}) = 6, v({1, 2}; b3, 4c) = 4, v({1, 4};P ) = 1, for every P ∈ Π({2, 3}),

v({2, 3}; b1, 4c) = 2, v({2, 3}; d1, 4e) = 4, v({2, 4};P ) = 2, for every P ∈ Π({1, 3}),

v({1, 3}; b2, 4c) = 2, v({1}; b2, 3, 4c) = 1, v({2}; b1, 3, 4c) = 2,

v(S;P ) = 0, otherwise.

This game is superadditive and Hafalir convex. But, it does not satisfy Inequal-

ity (5). For instance, if we take (S;P ) = ({1, 2}; b3, 4c), (T ;Q) = ({2, 3}; d1, 4e),

then (S;P ) ∨ (T ;Q) = ({1, 2, 3}; {4}), (S;P ) ∧ (T ;Q) = ({2}; {{1, 4}, {3}}), and

v({1, 2, 3}; {4})+v({2}; {{1, 4}, {3}}) = 7+0 < 4+4 = v({1, 2}; b3, 4c)+v({2, 3}; d1, 4e).

Example 5.7. Our notion of superadditivity (see Definition 3.1) does not imply

Hafalir’s definition of convexity.

To see this we can modify Example 5.6 above as follows:

v({1, 2, 3}; {4}) = 5, v({2, 3}; b1, 4c) = 4.

This game is still superadditive according to Definition 3.1 but it is not Hafalir

convex because

v({1, 2, 3}; {4})+v({2}; b1, 3, 4c) = 5+2 < 4+4 = v({1, 2}; b3, 4c)+v({2, 3}; b1, 4c).

Proof of Lemma 3.1. Let (S;P ), (S;M) ∈ ECN , such that (S;P ) v (S;M)

and (S;P ) 6= (S;M). If S ∈ {∅, N} or P = M , v(S;P ) = v(S;M) and the

result follows immediately. Then, suppose that S /∈ {∅, N} and P 6= M . Since

(S;P ) v (S;M) 6= (N ; ∅) and (S;P ) 6= (S;M), M ≺ P holds. Take a chain

M = Q0 ≺ Q1 ≺ · · · ≺ Qk = P . Then, Qr covers Qr−1, for every r = 1, . . . , k.

Take the family of embedded coalitions {(∅; bSc ∪ Qr) : r = 0, . . . , k}. Let r ∈
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{0, . . . , k−1}. Then, bSc∪Qr+1 covers bSc∪Qr and (∅; bSc∪Qr) v (S;Qr) 6= (N ; ∅).

Applying Inequality (7) to (∅; bSc∪Qr) v (S;Qr), bSc∪Qr+1, and Qr+1, we obtain

v(S;Qr)− v(S;Qr+1) ≥ v(∅; bSc ∪Qr)− v(∅; bSc ∪Qr+1). Since v(∅; bSc ∪Qr+1) =

v(∅; bSc ∪Qr) = 0, we get v(S;Qr) ≥ v(S;Qr+1). Thus,

v(S;M) = v(S;Q0) ≥ v(S;Q1) ≥ · · · ≥ v(S;Qk−1) ≥ v(S;Qk) = v(S;P ).

�

Proof of Lemma 3.2. Take (T ;P ), (T ;Q) ∈ ECN . If T ∈ {N, ∅} ∪ {N \ i :

i ∈ N} or (T ;P ) v (T ;Q), Inequality (8) follows immediately. Let us assume that

(T ;P ) and (T ;Q) are not comparable, 0 < |T | < n − 1, and w.l.o.g. we assume

h(T ;Q) ≥ h(T ;P ). Then, |Q| ≥ |P | and P
∨
Q 6∈ {P,Q}. Let P

∧
Q = P0 ≺

P1 ≺ . . . ≺ Pk ≺ Pk+1 = P , with k ≥ 1, be a chain that joins P
∧
Q and P , and

P
∧
Q = Q0 ≺ Q1 ≺ . . . ≺ Qr ≺ Qr+1 = Q, with r ≥ 1, be a chain that joins

P
∧
Q and Q. Notice that Pj and Ql are not comparable for every j = 1, . . . , k+ 1,

l = 1, . . . , r + 1. We distinguish four cases.

1. h(T ;P
∧
Q)− h(T ;P ) = 1, h(T ;P

∧
Q)− h(T ;Q) = 1. That means both P

and Q cover P
∧
Q. Figure 2 illustrates the situation.

(T ;P
∧

Q)

(T ;Q)(T ;P )

(T ;P
∨

Q)

Figure 2: Case 1. solid line: one link.

Since Π(N \ T ) is semimodular, P
∨
Q covers both P and Q. Then, (T ;P ) ∨

(T ;Q) = (T ;P
∧
Q) covers both (T ;P ) and (T ;Q). Since (ECN ,v) is lower semi-

modular, then (T ;P ) and (T ;Q) both cover (T ;P )∧ (T ;Q) = (T ;P
∨
Q). Applying
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Inequality (7) to (T ;P ), (T ;P
∧
Q), (T ;P

∨
Q), and (T ;Q) we get Inequality (8).

2. h(T ;P
∧
Q) − h(T ;Q) = 1, but h(T ;P

∧
Q) − h(T ;P ) > 1. Using Proposi-

tion 2.3 and the fact that (T ;P ) and (T ;Q) are not comparable, h(T ;P )−h(T ;P
∨
Q) =

1. Then, P
∨
Q covers P , Q covers P

∧
Q, but P does not cover P

∧
Q and

P 6= P
∧
Q. Figure 3 illustrates the situation.

(T ;P1)

(T ;P1
∨

Q)

(T ;P
∧

Q)

(T ;Q)

(T ;P )

(T ;P
∨

Q)

Figure 3: Case 2. solid line: one link; dashed line: more than one link.

Take a chain P
∧
Q = P0 ≺ P1 ≺ . . . ≺ Pk ≺ Pk+1 = P , with k ≥ 1. Notice that

Q ≺ Q
∨
P1 ≺ . . . ≺ Q

∨
Pk ≺ Q

∨
Pk+1 = Q

∨
P , with k ≥ 1 is a chain from Q

to P
∨
Q. Let j ∈ {0, . . . , k}. Then, Pj

∧
Q = P

∧
Q and using Proposition 2.3 we

have

1 = h
(
T ;P

∧
Q
)
−h(T ;Q) = h

(
T ;Pj

∧
Q
)
−h(T ;Q) ≥ h(T ;Pj)−h

(
T ;Pj

∨
Q
)
.

Since Pj 6= Pj
∨
Q, h(T ;Pj) − h(T ;Pj

∨
Q) = 1. Besides, (Pj

∨
Q)
∧
Pj+1 = Pj .

Using that (Π(N),�) is semimodular, (Pj
∨
Q)
∨
Pj+1 = Pj+1

∨
Q covers both

Pj
∨
Q and Pj+1. Then, using Item 1, we have

v(T ;Pj) + v
(
T ;Pj+1

∨
Q
)
≥ v(T ;Pj+1) + v

(
T ;Pj

∨
Q
)
.
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Summing up the inequalities given above, we get

k∑
j=0

[
v(T ;Pj) + v

(
T ;Pj+1

∨
Q
)]
≥

k∑
j=0

[
v(T ;Pj+1) + v

(
T ;Pj

∨
Q
)]
.

Rearranging this inequality, we obtain Inequality (8).

3. h(T ;P )−h(T ;P
∨
Q) = 1, but h(T ;P

∧
Q)−h(T ;Q) > 1. This means P

∨
Q

covers P , but Q does not cover P
∧
Q. Figure 4 illustrates the situation.

(T ;P1)

(T ;P1
∨

Q1)
(T ;Q)

(T ;P1
∨

Q)

(T ;P
∧

Q)

(T ;Q1)

(T ;P )

(T ;P
∨

Q)

Figure 4: Case 3. solid line: one link; dashed line: one or more links.

Since h(T ;Q) ≥ h(T ;P ) and h(T ;P
∧
Q)− h(T ;Q) > 1, we have h(T ;P

∧
Q)−

h(T ;P ) > 1. Take P
∧
Q = P0 ≺ Q1 ≺ . . . ≺ Qr ≺ Qr+1 = Q, with r ≥ 1, a chain

that joins P
∧
Q and Q. By the choice of Q1, we have

• (T ;Q1) v (T ;P
∧
Q), (T ;P ) v (T ;P

∧
Q), h(T ;P

∧
Q)− h(T ;Q1) = 1 , and

the fact that (T ;P ) and (T ;Q1) are not comparable imply that (T ;P
∧
Q) =

(T ;P
∧
Q1).

• (T ;P
∨
Q) v (T ;P

∨
Q1) v (T ;P ) and h(T ;P ) − h(T ;P

∨
Q) = 1. Then,

P = P
∨
Q1 or P

∨
Q1 = P

∨
Q. If P = P

∨
Q1 we have Q1 � P and

(T ;P ) v (T ;Q1), but this fact contradicts that (T ;P ) and (T ;Q1) are not

comparable. Then, (T ;P
∨
Q) = (T ;P

∨
Q1).
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As a consequence of all this, applying Item 2 to (T ;P ) and (T ;Q1), we obtain

v
(
T ;P

∧
Q
)

+ v
(
T ;P

∨
Q
)
≥ v(T ;P ) + v(T ;Q1) (13)

Since v satisfies Inequality (7) and Q1 ≺ Q, using Lemma 3.1, we get v(T ;Q1) ≥

v(T ;Q) and

v
(
T ;P

∧
Q
)

+ v
(
T ;P

∨
Q
)
≥ v(T ;P ) + v(T ;Q),

concluding the proof of this item.

4. h(T ;P )−h(T ;P
∨
Q) > 1 and h(T ;P

∧
Q)−h(T ;Q) > 1. Then, h(T ;P

∧
Q)−

h(T ;P ) ≥ h(T ;P
∧
Q)−h(T ;Q) > 1. That means P

∨
Q does not cover P nor does

Q cover P
∧
Q. Figure 5 illustrates the situation.

(T ;P1)

(T ;P1
∨

Q1)

(T ;Q)

(T ;P1
∨

Q)

(T ;P
∧

Q)

(T ;Q1)

(T ;P )

(T ;P
∨

Q1)

(T ;P
∨

Q)

(T ;P1
∨

Q) ∨ (T ;P
∨

Q1)

Figure 5: Case 4. solid line: one link; dashed line: more than one link.

We proceed by induction on h(T ;P )−h(T ;P
∨
Q). The case h(T ;P )−h(T ;P

∨
Q) =

1 corresponds to Item 3. Let us assume that the result holds if 1 ≤ h(T ;P ) −

h(T ;P
∨
Q) < l. Take (T ;Q) and (T ;P ) with h(T ;P ) − h(T ;P

∨
Q) = l. Take
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P
∧
Q = P0 ≺ P1 ≺ . . . ≺ Pk ≺ Pk+1 = P , with k ≥ 1, a chain that joins

P
∧
Q and P and P

∧
Q = Q0 ≺ Q1 ≺ . . . ≺ Qr ≺ Qr+1 = Q, with r ≥ 1,

a chain that joins P
∧
Q and Q. Applying Item 1 to (T ;P1)) and (T ;Q1) because

(T ;P1)∨(T ;Q1) = (T ;P
∧
Q), h(T ;P

∧
Q)−h(T ;P1) = 1 = h(T ;P

∧
Q)−h(T ;Q1),

we get

v
(
T ;P

∧
Q
)

+ v
(
T ;P1

∨
Q1

)
≥ v(T ;P1) + v(T ;Q1) (14)

Due to the choice of P1 and Q1, we have (T ;Q)∨ (T ;P1
∨
Q1) = (T ;Q1), h(T ;Q1)−

h(T ;P1
∨
Q1) = 1, and h(T ;Q1)−h(T ;Q) ≥ 1. Then, applying Item 1 if h(T ;Q1)−

h(T ;Q) = 1 and applying Item 2 if h(T ;Q1)− h(T ;Q) > 1 we get

v(T ;Q1) + v
(
T ;P1

∨
Q
)
≥ v(T ;Q) + v

(
T ;P1

∨
Q1

)
. (15)

In a similar way if we take (T ;P ) and (T ;P1
∨
Q1), we get

v(T ;P1) + v
(
T ;P

∨
Q1

)
≥ v(T ;P ) + v

(
T ;P1

∨
Q1

)
. (16)

Finally, we take (T ;P1
∨
Q) and (T ;P

∨
Q1). Then, (T ;P1

∨
Q) ∧ (T ;P

∨
Q1) =

(T ;P
∨
Q) and (T ;P

∨
Q1) ∨ (T ;P1

∨
Q) v (T ;P1

∨
Q1). Besides, h(T ;P

∨
Q1) −

h(T ;P
∨
Q) = l − 1 < l. We apply the induction hypothesis and obtain

v
((
T ;P

∨
Q1

)
∨
(
T ;P1

∨
Q
))

+v
(
T ;P

∨
Q
)
≥ v

(
T ;P

∨
Q1

)
+v
(
T ;P1

∨
Q
)
.

(17)

Adding up Inequalities (14), (15), (16), and (17), and using Lemma 3.1 applied to

(T ;P
∨
Q1) ∨ (T ;P1

∨
Q) v (T ;P1

∨
Q1), we obtain

v
(
T ;P

∧
Q
)

+ v
(
T ;P

∨
Q
)
≥ v(T ;P ) + v(T ;Q),

concluding the proof. �

Proof of Lemma 3.3. Take S ⊆ T , P,Q ∈ Π(N \ T ) with Q � P . We proceed
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by induction on |T \ S|. If |T \ S| = 0, Inequality (9) follows immediately. Let us

assume that |T \ S| = 1, i.e., T \ S = {i} for some i ∈ N . Then, (S; {i} ∪ P ) v

(S; {i} ∪Q). Applying Inequality (6) to i, (S; {i} ∪ P ), and (S; {i} ∪Q) we get

v(S ∪ i;Q)− v(S; {i} ∪Q) ≥ v(S ∪ i;P )− v(S; {i} ∪ P ).

Now, let us assume that the result holds for every S ⊆ T , P,Q ∈ Π(N \ T ) with

Q � P and |T \ S| < k. Take S ⊆ T , P,Q ∈ Π(N \ T ) with Q � P and |T \ S| = k.

Take i ∈ T \ S, (T \ i; {i} ∪ P ), and (T \ i; {i} ∪ Q). It is clear that T \ {i} ⊆ T ,

{i} ∪Q � {i} ∪ P and |T \ (T \ {i})| = 1. As we have just seen

v(T ;Q)− v(T \ i; {i} ∪Q) ≥ v(T ;P )− v(T \ i; {i} ∪ P ). (18)

Notice that S ⊆ T \ i. Take P ′ = {i} ∪ P , and Q′ = {i} ∪Q. Since |T \ (S ∪ i)| =

k − 1 < k, {i} ∈ P ′, and Q′ � P ′, applying the induction hypothesis we get

v(T \ i;Q′)− v(S; bT \ Sc ∪Q) ≥ v(T \ i;P ′)− v(S; bT \ Sc ∪ P ). (19)

Adding up Inequalities (18) and (19) we get the result. �

Proof of Lemma 3.4. Let S, T ⊆ N , P ∈ Π(N \ (S ∪ T )). If S ∈ {∅, N}

or T = ∅, Inequality (10) follows immediately. Let us assume that both S and T

are proper non-empty subsets of N . If S ⊆ T , Inequality (10) follows immediately.

Then, let us assume that S and T are not comparable and S \ T = {i1, . . . , ir}. Let

A0 = S ∩ T and B0 = T . For each j = 1, . . . , r, take

• (Aj ;P
′
j) ∈ ECN given by Aj = Aj−1 ∪ {ij}, P ′j = P ∪ bT \ Sc ∪ bS \Ajc, and

• (Bj ;Q
′
j) ∈ ECN given by Bj = Bj−1 ∪ {ij}, Q′j = P ∪ bS \Bjc.

For every j = 0, . . . , r, we have (Aj ;P
′
j) v (Bj ;Q

′
j). Thus, for every j = 0, . . . , r−1,

applying Inequality (6) to ij+1, (Aj ;P
′
j) and (Bj ;Q

′
j), we obtain v(Bj∪{ij+1};Q′j+1)−
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v(Bj ;Q
′
j) ≥ v(Aj ∪ {ij+1};P ′j+1)− v(Aj ;P

′
j). Adding up these r inequalities, we get

r−1∑
j=0

[v(Bj ∪ {ij+1};Q′j+1)− v(Bj ;Q
′
j)] ≥

r−1∑
j=0

[v(Aj ∪ {ij+1};P ′j+1)− v(Aj ;P
′
j)].

Hence,

v(S ∪T ;P )− v(T ; bS \T c∪P ) ≥ v(S; bT \Sc∪P )− v(S ∩T ; bT \Sc∪ bS \T c∪P ),

concluding the proof. �

Proof of Theorem 3.1. First, we proof that i) implies ii). Let v ∈ GN .

Let us assume that v is a convex game. Take (S;P ), (T ;Q) ∈ ECN such that

(S;P ) v (T ;Q) 6= (N ; ∅) and (T ;Q) covers (S;P ). If there is {i} ∈ P , then

{i} ∈ Q since (S;P ) v (T ;Q). Notice that (T ;Q)
∨

(S ∪ i;P−i) = (T ∪ i;Q−i) and

(T ;Q)
∧

(S∪ i;P−i) = (S;P ). Applying Inequality (5) to (T ;Q) and (S∪ i;P−i) and

rearranging terms, we obtain

v (T ∪ i;Q−i)− v(T ;Q) ≥ v (S ∪ i;P−i)− v(S;P ).

Let us take P ′ ∈ Π(N \ S), Q′ ∈ Π(N \ T ) such that P ′ covers P , Q′ covers Q,

and (T ;Q′) covers (S;P ′). Then, (S;P ) covers (S;P ′) and (T ;Q) covers (T ;Q′).

Besides, (S;P )
∨

(T ;Q′) = (T ;Q) and (S;P )
∧

(T ;Q′) = (S;P ′). Then, applying

Inequality (5) to (S;P ) and (T ;Q′) and rearranging terms, we obtain

v(T ;Q)− v
(
T ;Q′

)
≥ v(S;P )− v

(
S;P ′

)
.

Second, we prove that ii) implies iii). Let (S;P ), (T ;Q) ∈ ECN with (S;P ) v

(T ;Q) 6= (N ; ∅). If h(T ;Q) − h(S;P ) = 0, then Inequalities (6) and (7) hold

immediately because (S;P ) = (T ;Q). If h(T ;Q) − h(S;P ) = 1, Inequalities (6)

and (7) hold because v satisfies Inequalities (11) and (12). In the following, we

assume that h(T ;Q) − h(S;P ) > 1. We divide the proof in two parts, the first to
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check Inequality (6) and the second to check Inequality (7). Figure 6 illustrates the

scheme of the proof of the first part.

(S; bT \ Sc ∪ Q)

(
S ∪ i; bT \ Sc ∪ Q−i

)

(T ;Q)

(
T ∪ i;Q−i

)

(
S ∪ i;P−i

)

(S;P )

Figure 6: Inequality (6). Solid line: one link; dashed line: one or more links.

Let us assume that h(T ;Q) − h(S;P ) = k > 1. If there is some {i} ∈ P , then

{i} ∈ Q. Take a chain bT \ Sc ∪ Q = Q0 ≺ Q1 ≺ . . . ≺ Qm = P with m > 1 in

the lattice of partitions (Π(N),�). Notice that {i} ∈ Qj , for every j = 0, . . . ,m.

Note also that for every j = 0, . . . ,m − 1, (S;Qj) covers (S;Qj+1). Then, we can

apply Inequality (11) to (S;Qj+1) and (S;Qj) to get v (S ∪ i; (Qj)−i)− v(S;Qj) ≥

v (S ∪ i; (Qj+1)−i)− v(S;Qj+1), for every j = 0, . . . ,m− 1. Thus,

m−1∑
j=0

[v (S ∪ i; (Qj)−i)− v(S;Qj)] ≥
m−1∑
j=0

[v (S ∪ i; (Qj+1)−i)− v(S;Qj+1)] ,

which yields

v (S ∪ i; bT \ Sc ∪Q−i)− v(S; bT \ Sc ∪Q) ≥ v (S ∪ i;P−i)− v(S;P ). (20)

If T \S = ∅, Inequality (20) is Inequality (6) and the proof is finished. If T \S 6= ∅, let

us assume that T \S = {i1, . . . , ir} and take Rj = {i1, . . . , ij}, for every j = 1, . . . , r

andR0 = ∅. Now, for every j ∈ {0, . . . , r−1}, (S ∪Rj ∪ i; bT \ (S ∪Rj)c ∪Q−i) cov-
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ers (S ∪Rj ; bT \ (S ∪Rj)c ∪Q) . We apply Inequality (11) to (S ∪Rj ; bT \ (S ∪Rj)c ∪Q) v

(S ∪Rj ∪ i; bT \ (S ∪Rj)c ∪Q−i) and ij+1 ∈ T \ S, obtaining

v(S ∪Rj+1 ∪ i; bT \ (S ∪Rj+1)c ∪Q−i)− v(S ∪Rj ∪ i; bT \ (S ∪Rj)c ∪Q−i)

≥ v(S ∪Rj+1; bT \ (S ∪Rj+1)c ∪Q)− v(S ∪Rj ; bT \ (S ∪Rj)c ∪Q).

Adding up these r inequalities, we get

v(T ∪ i;Q−i)− v(S ∪ i; bT \ Sc ∪Q−i) ≥ v(T ;Q)− v(S; bT \ Sc ∪Q). (21)

Adding up Inequalities (20) and (21), and rearranging terms, we obtain

v(T ∪ i;Q−i)− v(T ;Q) ≥ v(S ∪ i;P−i)− v(S;P ).

Then, Inequality (6) holds.

We check that Inequality (7) also holds. Figure 7 illustrates the scheme of the

proof.

(
S; bT \ Sc ∪ Q′

)

(S; bT \ Sc ∪ Q)

(
T ;Q′

)
(T ;Q)

(S;P )

(
S;P ′

)

Figure 7: Inequality (7). Solid line: one link; dashed line: one or more links.

Let P ′ be a partition that covers P in (Π(N \ S),�), Q′ be a partition that

covers Q in (Π(N \ T ),�), such that (S;P ′) v (T ;Q′). Take a pair of chains Q0 =
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bT \Sc ∪Q ≺ Q1 ≺ . . . ≺ Qm = P and Q′0 = bT \Sc ∪Q′ ≺ Q′1 ≺ . . . ≺ Q′m = P ′ in

the lattice of partitions (Π(N),�), such that Q′j covers Qj , for every j = 0, . . . ,m

with m > 1. Notice that both chains have the same length because P ′ covers P , Q′

covers Q, Q ≺ P−T , and Q′ ≺ P ′−T . For every j = 0, . . . ,m, (S;Qj) covers (S;Q′j).

Then we apply Inequality (12) to (S;Qj+1) v (S;Qj), Q
′
j+1, and Q′j , obtaining

v(S;Qj) − v(S;Q′j) ≥ v(S;Qj+1) − v(S;Q′j+1), for every j = 0, . . . ,m − 1. Adding

up these m inequalities, we get

v(S; bT \ Sc ∪Q)− v(S; bT \ Sc ∪Q′) ≥ v(S;P )− v(S;P ′). (22)

If T \S = ∅, we finish the proof. If T \S 6= ∅, we proceed as we did above in order to

obtain Inequality (21) with (S; bT \ Sc ∪Q′) v (S; bT \ Sc ∪Q) until we get (T ;Q′)

and (T ;Q). Hence,

v(T ;Q)− v(S; bT \ Sc ∪Q) ≥ v(T ;Q′)− v(S; bT \ Sc ∪Q′) (23)

Adding up Inequalities (22) and (23), we get v(T ;Q)−v(T ;Q′) ≥ v(S;P )−v(S;P ′),

concluding this part of the proof.

Finally, we check that iii) implies i) using Lemma 3.3, Lemma 3.4, and Lemma 3.2.

Let (S;P ), (T ;Q) ∈ ECN . If (S;P ) v (T ;Q) it is trivial to check Inequality (5).

Let us assume (S;P ) and (T ;Q) are not comparable. We prove Inequality (5) using

the disaggregation of the Hasse diagram among (S;P ), (T ;Q), (S;P ) ∧ (T ;Q), and

(S;P ) ∨ (T ;Q) depicted in Figure 8. Label I corresponds to a situation analized in

Lemma 3.3, label II corresponds to a situation analized in Lemma 3.2, and label

III corresponds to a situation analized in Lemma 3.4.

I.1 Apply Lemma 3.3 to S∩T ⊆ S, bT \Sc∪(P−T
∨
Q−S), and P

∨
(bT \Sc∪Q−S)

because bT \ Sc ∪ (P−T
∨
Q−S) � P

∨
(bT \ Sc ∪Q−S). Then,

v(S; bT \ Sc ∪ (P−T
∨
Q−S)) + v(S ∩ T ; bS \ T c ∪ (P

∨
(Q−S ∪ bT \ Sc)) ≥

v(S;P
∨

(bT \ Sc ∪Q−S)) + v(S ∩ T ; bS \ T c ∪ bT \ Sc ∪ (P−T
∨
Q−S)).

(24)

34



II.1

II.4

II.2 II.3

I.3 I.4

I.1 I.2

III

(
S ∪ T;P−T

∧
Q−S

)

(S ∪ T ;Q−S)
(S ∪ T ;P−T )

(S ∪ T ;P−T
∨

Q−S)
(T ; bS \ Tc ∪ Q−S)

(S; bT \ Sc ∪ P−T )

(T ; bS \ Tc ∪ (P−T
∨

Q−S))(S; bT \ Sc ∪ (P−T
∨

Q−S))

(T;Q)
(S;P)

(T ;Q
∨
(bS \ Tc ∪ P−T ))

(S;P
∨
(bT \ Sc ∪ Q−S))

(S ∩ T ; bT \ Sc ∪ bS \ Tc ∪ (P−T
∨

Q−S))

(S ∩ T ; bT \ Sc ∪ (Q
∨
(bS \ Tc ∪ P−T )))

(S ∩ T ; bS \ Tc ∪ (P
∨
(bT \ Sc ∪ Q−S)))

(S ∩ T; (bS \ Tc ∪ P)
∨
(bT \ Sc ∪ Q))

Figure 8: The structure of the proof.

I.2 Apply Lemma 3.3 to S∩T ⊆ T , bS\T c∪(P−T
∨
Q−S), and Q

∨
(bS\T c∪P−T )

because bS \ T c ∪ (P−T
∨
Q−S) � Q

∨
(bS \ T c ∪ P−T ). Then,

v(T ; bS \ T c ∪ (P−T
∨
Q−S)) + v(S ∩ T ; bT \ Sc ∪ (Q

∨
(P−T ∪ bS \ T c)) ≥

v(T ;Q
∨

(bS \ T c ∪ P−T )) + v(S ∩ T ; bS \ T c ∪ bT \ Sc ∪ (P−T
∨
Q−S)).

(25)

I.3 Apply Lemma 3.3 to S ⊆ S ∪ T , P−T , and P−T
∨
Q−S because P−T �

P−T
∨
Q−S . Then,

v(S∪T ;P−T )+v(S; bT\Sc∪(P−T
∨
Q−S)) ≥ v(S∪T ;P−T

∨
Q−S)+v(S; bT\Sc∪P−T ).

(26)

I.4 Apply Lemma 3.3 to T ⊆ S ∪ T , Q−S , and P−T
∨
Q−S because Q−S �
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P−T
∨
Q−S . Then,

v(S∪T ;Q−S)+v(T ; bS\T c∪(P−T
∨
Q−S)) ≥ v(S∪T ;P−T

∨
Q−S)+v(T ; bS\T c∪Q−S).

(27)

II.1 Apply Lemma 3.2 to (S ∪ T ;P−T ) and (S ∪ T ;Q−S). Then,

v(S∪T ;P−T
∧
Q−S)+v(S∪T ;P−T

∨
Q−S) ≥ v(S∪T ;P−T )+v(S∪T ;Q−S).

(28)

II.2 Apply Lemma 3.2 to (S;P ) and (S; bT \ Sc ∪ (P−T
∨
Q−S)). Then,

v(S; bT\Sc∪P−T )+v(S;P
∨

(bT\Sc∪Q−S)) ≥ v(S;P )+v(S; bT\Sc∪(P−T
∨
Q−S)).

(29)

II.3 Apply Lemma 3.2 to (T ;Q) and (T ; bS \ T c ∪ (P−T
∨
Q−S)). Then,

v(T ; bS\T c∪Q−S)+v(T ;Q
∨

(bS\T c∪P−T )) ≥ v(T ;Q)+v(T ; bS\T c∪(P−T
∨
Q−S)).

(30)

II.4 Apply Lemma 3.2 to (S ∩ T ; bT \ Sc ∪ (Q
∨

(P−T ∪ bS \ T c)) and (S ∩ T ; bS \

T c ∪ (P
∨

(Q−S ∪ bT \ Sc)). Then,

v(S ∩ T ; bS \ T c ∪ bT \ Sc ∪ (P−T
∨
Q−S)) + v(S ∩ T ; (bS \ T c ∪ P )

∨
(bT \ Sc ∪Q)) ≥

v(S ∩ T ; bT \ Sc ∪ (Q
∨

(P−T ∪ bS \ T c)) + v(S ∩ T ; bS \ T c ∪ (P
∨

(Q−S ∪ bT \ Sc)).
(31)

III Apply Lemma 3.4 to S, T , and P−T
∨
Q−S . Then,

v(S ∪ T ;P−T
∨
Q−S) + v(S ∩ T ; (bS \ T c ∪ bT \ Sc) ∪ (P−T

∨
Q−S)) ≥

v(S; bT \ Sc ∪ (P−T
∨
Q−S)) + v (T ; bS \ T c ∪ (P−T

∨
Q−S)) .

(32)

Adding up Inequalities (26), (28), and (29), we obtain

v(S ∪T ;P−T
∧
Q−S) + v(S;P

∨
(bT \Sc∪Q−S)) ≥ v(S ∪T ;Q−S) + v(S;P ). (33)
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Adding up Inequalities (24), (27), and (32), we obtain

v(S ∪ T ;Q−S) + v(S ∩ T ; bS \ T c ∪ (P
∨

(Q−S ∪ bT \ Sc)) ≥

v(T ; bS \ T c ∪Q−S) + v(S;P
∨

(bT \ Sc ∪Q−S)).
(34)

Adding up Inequalities (25), (30), and (31), we obtain

v(T ; bS \ T c ∪Q−S) + v(S ∩ T ; (bS \ T c ∪ P )
∨

(bT \ Sc ∪Q))

≥ v(T ;Q) + v(S ∩ T ; bS \ T c ∪ (P
∨

(Q−S ∪ bT \ Sc)).
(35)

Finally, adding up Inequalities (33), (34), and (35), we obtain

v
(
S ∪ T ;P−T

∧
Q−S

)
+v
(
S ∩ T ; (bS \ T c ∪ P )

∨
(bT \ Sc ∪Q)

)
≥ v(S;P )+v(T ;Q).

Summarizing all the previous results, we have the characterization of convexity

for games with externalities given in Theorem 3.1. �

Proof of Proposition 4.1. Let x ∈ Core(vmax) and P ∈ Π(N). Then,

∑
i∈N

xi = v(N ; ∅) = vP (N).

For every S ⊆ N , ∑
i∈S

xi ≥ vmax(S) ≥ vP (S).

Then, x ∈ Core
(
vP
)
. Let x ∈

⋂
P∈Π(N)

Core
(
vP
)
. Let (S,Q) ∈ ECN be such that

vmax(S) = v(S;Q). Take, for instance, P = Q ∪ dSe. It is clear that P−S = Q and

vP (S) = v(S;Q) = vmax(S). Since x ∈ Core
(
vP
)
, we have

∑
i∈S

xi ≥ vP (S) = v(S;Q) = vmax(S).

Thus, x ∈ Core(vmax). �
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Proof of Theorem 4.1. Let v ∈ GN be a convex game.

1. Let P,Q ∈ Π(N) such that Q � P . Recall that, vP (N) = vQ(N). Let

x ∈ Core
(
vQ
)
, then

xS =
∑
i∈S

xi ≥ v(S;Q−S) ≥ v(S;P−S),

where the first inequality follows because x ∈ Core(vQ) and the second inequal-

ity because (S;P−S) v (S;Q−S) and Lemma 3.1 holds. Then, x ∈ Core(vP ).

2. Let S ⊆ N . Since v is convex and according to Lemma 3.1, we have v(S;Q) ≥

v(S;P ), for every (S;P ), (S;Q) ∈ ECN with (S;P ) v (S;Q). Notice that

(S; dN \ Se) v (S;Q) v (S; bN \ Sc), for every (S;Q) ∈ ECN and there is no

(S;M) ∈ ECN such that (S;M) @ (S; dN \ Se) v (S;Q) nor (S;M ′) ∈ ECN

with (S;Q) v (S; bN \Sc) @ (S;M ′). As a consequence of all this, vmax(S) =

max
{
vQ(S) : Q ∈ Π(N)

}
= vbNc(S) and vmin(S) = min

{
vQ(S) : Q ∈ Π(N)

}
=

vdNe(S).

3. First, we see that vmax = vbNc is a convex game. Let i ∈ N , S ⊆ T ⊆ N \ i.

We prove that

vbNc(T ∪ i)− vbNc(T ) ≥ vbNc(S ∪ i)− vbNc(S). (36)

Notice that {i} ∈ bNc−S and (S; bN \Sc) v (T ; bN \T c) 6= (N ; ∅). According

to Item iii.1) in Theorem 3.1, we have v (T ∪ i; bN \ (T ∪ i)c)−v(T ; bN \T c) ≥

v(S ∪ i; bN \ (S ∪ i)c)− v(S; bN \Sc), or equivalently, vbNc(T ∪ i)− vbNc(T ) ≥

vbNc(S ∪ i)− vbNc(S). Thus, Inequality (36) holds and vbNc is a convex game.

�

Example 5.8. There are convex games whose associated pessimistic game is not a

classic convex game.

38



We revisit the game used in the Proof of Proposition 5.5. In this case, we have

vmin(N) = 15, vmin(S) = 10, for every S ⊂ N with |S| = 2, and

vmin(S) = 4, for every S ⊂ N with |S| = 1.

This classic game is not convex. For instance, if we take S = {1} ⊆ T = {1, 2} and

i = 3, we have

vmin(N)− vmin(T ) = 15− 10 = 5 < 6 = 10− 4 = vmin(S ∪ i)− vmin(S).

39


	Introduction
	A lattice of embedded coalitions
	Superadditiviy and convexity
	Convexity and the core
	Conclusion

