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The nonexponential relaxation occurring in complex dynamics manifested in a wide variety of systems is
analyzed through a simple model of diffusion in phase space. It is found that the inability of the system to find
its equilibrium state in any time scale becomes apparent in an effective temperature field, which leads to a
hierarchy of relaxation times responsible for the slow relaxation phenomena.
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Complex dynamics is the object of active research due to
its implications in the technology of materials and in several
fields of scientific knowledge. At the physicochemical and
biological level, complex dynamics is observed in glass-
forming liquids; mechanical, dielectric, and magnetic relax-
ation; amorphous semiconductors; pinned density wave; pro-
tein dynamics; protein folding; and population dynamics
among others. The mechanisms underlying slow relaxation
in complex dynamics still lack a clear and definitive elucida-
tion. In the case of supercooled liquids and glasses, several
experiments and computer simulations have been done
which support the explanation of these relaxation phenomena
in the framework of the energy landscape paradigm as the
result of activated diffusion through a rough energy land-
scape of valleys and peaks[1–4].

To understand what these mechanisms are, we propose
here a simple model to show a possible origin of nonexpo-
nential relaxation based on the idea of the energy landscape
and nontrivial energy barriers. This model, which consists of
the diffusion in phase space, provides a direct link between
the phase-space dynamics and the slow relaxation of the
functions of the configuration of the system in the corre-
sponding energy landscape. The slowing down of the dynam-
ics clearly appears as a consequence of the freezing of some
degrees of freedom, which takes the system out of equilib-
rium. This fact is indicated by the presence of an effective
temperature field incorporating the information of the sup-
pressed degrees of freedom and depending on the equilib-
rium temperature at the moment the quench was applied.

Hence, we model the relaxation in the liquid as the
Brownian motion of a test particle of unit mass in a potential.
As is well known, that physical situation is described by the
Klein-Kramers equation, which for simplicity we write in
one dimension,
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where r̂sx,u,td is the probability density,x and u are the
position and velocity of the test particle,g its friction coef-
ficient, andb−1=kBT0, with kB being the Boltzmann constant
and T0 the bath temperature. Here,Vsxd is a nonperiodic
potential constituting a schematic representation of a rough
energy landscape. The local equilibrium solution for the

Kramers problem (1) is the Boltzmann distribution
r̂leqsx,ud,exph−bf1/2u2+Vsxdgj. Thus, inherent to Eq.(1)
is the existence of local equilibrium in phase spacesx,ud
[5,6], and the approach to this state occurs at the bath tem-
perature. Therefore, one concludes that at high temperatures
the system possesses a large amount of energy to move
through the whole phase space.

We assume that a quench of the system freezes the trans-
lational degrees of freedom taking the system away from
equilibrium. Thus, this leads us to think of the partial decou-
pling of the probability densityr̂sx,u,td

r̂sx,u,td = fxsu,t;T0drsx,td, s2d

where the conditional probabilityfxsu,t ;T0d describes a
state of quasiequilibrium[7,8] in which the system, unable to
equilibrate at the bath temperature, remains hanging. Here,
unlike for a soft potential, a wide distribution of barriers with
very different sizes can be present. Therefore, it follows that
the amplitudefxsu,t ;T0d of the probability densityr̂ might
depend on time and position. In fact, after quenching, the
kinetic energy may be enough to overcome a small barrier
but not a high-energy barrier in a different position, giving
rise to an anomalous diffusion. Assuming thatu is the fast
variable, one concludes that the dynamical processes in the
system are associated to configurational changes related tox,
which constitutes the slow variable whose probability den-
sity is rsx,td=er̂du. Hence, by integration of Eq.(1) the
time derivative ofr is obtained,
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which defines the currentJsx,td=eur̂du. This current
evolves according to
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which has been obtained from Eq.(1). Then, after partial
integration of Eq.(4) and using the decoupling approxima-
tion (2), for timest@g−1 we obtain
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Jsx,td = − tHrsx,td
]

] x
Vsxd + kB
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] x
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wheret=g−1 andTsx,t ;T0d=eu2fxsu,t ;T0ddu is the second
moment of the conditional distributionfxsu,t ;T0d, which
plays the role of an effective temperature which contains
information on the frozen degrees of freedom. After defining
the effective potentialFsx,td=Vsxd+kBTsx,t ;T0d, Eq. (5)
can be rewritten as

Jsx,td = − Dsx,t;T0d
]

] x
rsx,td − trsx,td

]

] x
Fsx,td, s6d

whereDsx,t ;T0d=tkBTsx,t ;T0d is the generalized diffusion
coefficient. Thus, by substituting Eq.(6) into Eq. (3) and
taking t=1 (i.e., rescaling the timet), this becomes the gen-
eralized diffusion equation
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Note that the temperature fieldTsx,t ;T0d introduces thermal
barriers(or in others words nontrivial activation energies) in
the system[3]. This effective temperature can be computed
from Eq. (7) by using the fluctuation-dissipation theorem in
the framework of linear-response theory; this was shown in
two earlier papers[8,9]. The presence of these thermal bar-
riers is a nonequilibrium effect that disappears when the sys-
tem is in equilibrium. In addition, as a consequence of the
elimination of degrees of freedom, the dynamics becomes
non-Markovian and depends on the equilibrium temperature
T0 at the time of quench. By introducing the Massieu func-
tion

Qsx,td = ln rsx,td +E 1

kBTsx,t;T0d
]

] x
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the probability current Eq.(6) can be rewritten as

Jsx,td = − Dsx,t;T0drlqesx,td
]

] x
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where

rlqesx,td , expH−E 1

kBTsx,td
]

] x
Fsx,tddxJ

is the local quasiequilibrium probability density for which
Jsx,td=0 or equivalentlyQsx,td=const.

If in a point x2 there is a sink wherersx2,td=0 and a
source atx1 so that a quasi-stationary currentJstd can be
established in the system, then integration of Eq.(9) gives us
the quasistationary probability density

rsx,td = Jstdrlqesx,tdE
x

x2 dy

Dsy,t;T0drlqesy,td
. s10d

On the other hand, a second integration leads to

Jstd = nstdSE
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s11d

with nstd=ex1

xb rsx,tddx being the population at the left of the
barrier. Thus, we can formulate the following rate equation:

d
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is the rate constant andxb is the position of the barrier be-
tween x1 and x2. The relaxation equation(12) admits the
solution

nstd = nst0dexpH−E
t0

t

Kst8;xbddt8J ; nst0dexph− fstdj

s14d

or

n̂std = n̂st0dexph− fst/tdj, s15d

where n̂std=nst /td and the initial timet0 is known in the
literature as the waiting time. Both Eqs.(14) and (15) con-
stitute our main result in the sense that we obtain a hierarchy
of relaxation times starting from a Markovian equation, the
Klein-Kramers equation describing Brownian motion in a
field of force. Here, the functionfst /td might be interpreted
as an algebraic functionst /tdb obtaining a stretched expo-
nential behavior[10] or as a logarithmic function −a ln At
which leads to a powerlaw behavior[11] that characterizes
anomalous diffusion[12]. In addition, another reading of our
result is possible since assuming the form offst /td is equiva-
lent to assuming the form of the distribution of residence
times cstd;−sd/dtdnstd [13]. Thus, an in-depth analysis of
the implications of the supposition of a nonexponential dis-
tribution of residence times usually performed in continuous-
time random-walk models reveals that this hypothesis might
also be rooted in the nonequilibrium character of the dynam-
ics inherent to the energy landscape picture as we have
shown.

Our previous discussion applies to fragile glasses. In the
case of strong glassy systems, the potential is almost peri-
odic. Thus, when the temperature is lowered, any configura-
tional change is preceded by an equilibration in momentum
space given by a local Maxwellian. Hence, the activation
energies are independent of the temperature but with a cer-
tain random spatial distribution. Averaging over this distribu-
tion of energy barrier gives one the corresponding relaxation
[4,14,15]. In the literature there are other types of models
undergoing nonexponential relaxation, such as, for example,
disorder models[16].
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We want to emphasize that the precise inputs of our
model theory are the potential and the friction, which de-
pends on the temperature. After a quench, the viscosity of the
system increases dramatically and hence so does the friction.
This leads to a freezing of the translational degrees of free-
dom, which are adiabatically eliminated.

We conclude that despite its simplicity, the model we

study contains the main features observed in the dynamical
slowing down observed in a wide variety of complex sys-
tems. Hence, we think this work will contribute to the under-
standing of some aspects of complex dynamics.
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