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Simple model for nonexponential relaxation in complex dynamics
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The nonexponential relaxation occurring in complex dynamics manifested in a wide variety of systems is
analyzed through a simple model of diffusion in phase space. It is found that the inability of the system to find
its equilibrium state in any time scale becomes apparent in an effective temperature field, which leads to a
hierarchy of relaxation times responsible for the slow relaxation phenomena.
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Complex dynamics is the object of active research due t&Kramers problem (1) is the Boltzmann distribution
its implications in the technology of materials and in severalp(x,u) ~exp{-A[1/2u?+V(x)]}. Thus, inherent to Ec(1)
fields of scientific knowledge. At the physicochemical andis the existence of local equilibrium in phase spdgeu)
biological level, complex dynamics is observed in glass-[5,6], and the approach to this state occurs at the bath tem-
forming liquids; mechanical, dielectric, and magnetic relax-perature. Therefore, one concludes that at high temperatures
ation; amorphous semiconductors; pinned density wave; prahe system possesses a large amount of energy to move
tein dynamics; protein folding; and population dynamicsthrough the whole phase space.
among others. The mechanisms underlying slow relaxation \We assume that a quench of the system freezes the trans-
in complex dynamics still lack a clear and definitive elucida-|ational degrees of freedom taking the system away from
tion. In the case of supercooled liquids and glasses, severghuilibrium. Thus, this leads us to think of the partial decou-
experiments and computer simulations have been dongling of the probability density(x,u,t)
which support the explanation of these relaxation phenomena

in the framework of the energy landscape paradigm as the pX,u,t) = ¢y (U,t; To) p(X, 1), (2
result of activated diffusion through a rough energy land-
scape of valleys and peaks—4]. where the conditional probabilitys,(u,t;T,) describes a

To understand what these mechanisms are, we propostate of quasiequilibriurfi7,8] in which the system, unable to
here a simple model to show a possible origin of nonexpoequilibrate at the bath temperature, remains hanging. Here,
nential relaxation based on the idea of the energy landscapalike for a soft potential, a wide distribution of barriers with
and nontrivial energy barriers. This model, which consists ofvery different sizes can be present. Therefore, it follows that
the diffusion in phase space, provides a direct link betweethe amplitudeg,(u,t; Ty) of the probability densityp might
the phase-space dynamics and the slow relaxation of théepend on time and position. In fact, after quenching, the
functions of the configuration of the system in the corre-kinetic energy may be enough to overcome a small barrier
sponding energy landscape. The slowing down of the dynambut not a high-energy barrier in a different position, giving
ics clearly appears as a consequence of the freezing of somige to an anomalous diffusion. Assuming thats the fast
degrees of freedom, which takes the system out of equilibvariable, one concludes that the dynamical processes in the
rium. This fact is indicated by the presence of an effectivesystem are associated to configurational changes related to
temperature field incorporating the information of the sup-which constitutes the slow variable whose probability den-
pressed degrees of freedom and depending on the equilikity is p(x,t)=fpdu. Hence, by integration of Eq.l) the
rium temperature at the moment the quench was applied. time derivative ofp is obtained,

Hence, we model the relaxation in the liquid as the

Brownian motion of a test particle of unit mass in a potential. J 4 .
As is well known, that physical situation is described by the 1P T 5 ) updu (3
Klein-Kramers equation, which for simplicity we write in
one dimension, which defines the currentl(x,t)=Jfupdu. This current

a. iUA+iAiV(X)+ i<ﬁ—1i+u)A evolves according to

at? ™ ax P gl ax Y au au_ )P P afz P f(;

—J=-— | updu+—V | u—pdu
(1) at ax PR ax au”

where p(x,u,t) is the probability densityx and u are the a( 49 -
position and velocity of the test particle,its friction coef- Ty uau B Ju *uJpdu, )

ficient, andB 1=kgT,, with kg being the Boltzmann constant

and Ty the bath temperature. Her¥(x) is a nonperiodic which has been obtained from E@l). Then, after partial
potential constituting a schematic representation of a rougimtegration of Eq.(4) and using the decoupling approxima-
energy landscape. The local equilibrium solution for thetion (2), for timest> y™! we obtain
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X Xo d -1
J(x,t) = - T{P(X,t);—XV(X) + kB;—XP(X,t)T(X,t;To)}, (5) J(t) = n(t)( le dXpige(X,1) fx Wi’mﬁ’ﬁ) ,

where =yt and T(x,t; To) = fu?¢,(u,t; To)du is the second (11)

moment of the conditional_distributioaﬁx(u,t;To)_, which _with n(t) =2 p(x,t)dx being the population at the left of the
plays the role of an effective temperature which contain 1

information on the frozen degrees of freedom. After definingoamer' Thus, we can formulate the following rate equation:

the effective potentialP(x,t)=V(x)+kgT(x,t;Tp), Eq. (5) d
can be rewritten as an(t) = - K(t;x,)n(v), (12)

Jx,t) = - D(x,t;To);—Xp(x,t) - Tp(X,t);—XCD(X,t), (6) Where

Xp Xo dy -1
where D(x,t; To)=kgT(x,t;T) is the generalized diffusion K(tixp) = (L pr'qe(X't)Jx D(y,t: To)p, e(y,t))
coefficient. Thus, by substituting E@6) into Eg. (3) and ' a
taking 7=1 (i.e., rescaling the time#), this becomes the gen-
eralized diffusion equation

(13

is the rate constant ang, is the position of the barrier be-
3 tween x; and X,. The relaxation equatiol2) admits the

J d J .
Pl = ;({ D(x,t;To)g(p(x,t) + p(X,t);((D(X,t)} . (7)  solution

t
Note that the temperature fiekix, t; To) introduces thermal n(t) = n(to)exp{—f K(t';Xb)dt'} = n(toexp{- f(t)}
barriers(or in others words nontrivial activation energiés o
the systen(3]. This effective temperature can be computed (14
from Eq. (7) by using the fluctuation-dissipation theorem in
the framework of linear-response theory; this was shown irP"
two earlier paper$8,9]. The presence of these thermal bar- A
riers is a nonequilibrium effect that disappears when the sys- A(t) = R(to)expl - f(t/)}, (15)
tem is in equilibrium. In addition, as a consequence of th‘?/vhere A =n(t/7) and the initial timet, is known in the
elimination 9f degrees of freedom, the _Qynamics become terature as the waiting time. Both Eqd.4) and (15) con-
non—MaerV|an and depends on the gqumbnum temperaturgy te our main result in the sense that we obtain a hierarchy
To at the time of quench. By introducing the Massieu func-o¢ yo|axation times starting from a Markovian equation, the
tion Klein-Kramers equation describing Brownian motion in a
1 P field of force. Here, the functiof(t/ 7) might be interpreted
O(x,t) =In p(x,t) +J ———————d(x,t)dx, (8) as an algebraic functioft/ 7)? obtaining a stretched expo-
keT(x,t;To) 9x nential behavio{10] or as a logarithmic function e In At
which leads to a powerlaw behaviftl] that characterizes
anomalous diffusiofil2]. In addition, another reading of our
3 result is possible since assuming the fornf@f 7) is equiva-
J(X,t) = = D(X,t; To)pige(X, ) ——exp O(x, 1), (9) lent to assuming the form of the distribution of residence
Ix times y(t)=—(d/dt)n(t) [13]. Thus, an in-depth analysis of
the implications of the supposition of a nonexponential dis-
tribution of residence times usually performed in continuous-

1 9 time random-walk models reveals that this hypothesis might
Pige(X, 1) ~ ex —f —®(x,t)dx

the probability current Eq6) can be rewritten as

where

also be rooted in the nonequilibrium character of the dynam-
kgT(X,t) 9 ics inherent to the energy landscape picture as we have
) . . ) .. shown.
is the local qua_5|equn|br|um probability density for which Our previous discussion applies to fragile glasses. In the
J(x,t)=0 or equivalently®(x,t)=const. _ case of strong glassy systems, the potential is almost peri-
If in a point x, there is a sink wherg(x;,1)=0 and a  qgjic Thus, when the temperature is lowered, any configura-
source atx; so that a quasi-stationary curredit) can be  tiona| change is preceded by an equilibration in momentum
established in the system, then integration of @jgives us  space given by a local Maxwellian. Hence, the activation

the quasistationary probability density energies are independent of the temperature but with a cer-
y tain random spatial distribution. Averaging over this distribu-
_ 2 dy 1 tion of energy barrier gives one the corresponding relaxation
p(xt) = J(t)PIqe(X1t) D I . (10 .
x DY, t;To)pigely,t) [4,14,15. In the literature there are other types of models
undergoing nonexponential relaxation, such as, for example,
On the other hand, a second integration leads to disorder model$16].

062102-2



BRIEF REPORTS PHYSICAL REVIEW B9, 062102(2004)

We want to emphasize that the precise inputs of oustudy contains the main features observed in the dynamical
model theory are the potential and the friction, which de-slowing down observed in a wide variety of complex sys-
pends on the temperature. After a quench, the viscosity of thiems. Hence, we think this work will contribute to the under-
system increases dramatically and hence so does the frictiostanding of some aspects of complex dynamics.

This leads to a freezing of the translational degrees of free-
dom, which are adiabatically eliminated.
We conclude that despite its simplicity, the model we
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