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Abstract: Over the last two decades electronic nose research has produced thousands of 
research works. Many of them were describing the ability of the e-nose technology to solve 
diverse applications in domains ranging from food technology, to safety, security or health. It is 
in fact, in the biomedical field where e-nose technology is finding a research niche in the last 
years. While few success stories exist, most described applications never found the road to 
industrial or clinical exploitation. Most described methodologies were not reliable and were 
plagued by numerous problems that prevented practical application beyond the lab. This work 
emphasizes the need of external validation in machine olfaction. I describe some statistical and 
methodological pitfalls of the e-nose practice and I give some best practice recommendations 
for researchers in the field.  
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I. Introduction 
 

In the last decade the use of electronic noses for health applications has been advocated by 
many different groups reporting good results for the detection of a number of diseases due to 
volatiles emitted by a variety of biomedical fluids. Electronic noses have been often used for 
the analysis of breath1-13, but also for the analysis of body odours14, wound infections14, 
urine15, stools16, etc.  While most of the reported results are encouraging, we have to keep a 
healthy skeptical attitude due to the potential statistical and methodological artifacts arising in 
small sample studies. In fact, electronic noses have a very good record of successful lab 
applications that never reached equivalent good results in real-life settings.  

On the other hand, sets of partially selective sensors should necessarily rely on signal and data 
processing to overcome the inherent difficulties of low selectivity17,18. Today’s chemical 
instrumentation including electronic noses is based on embedded (Figure 1) or desktop 
computers that control the operation of the instrument and additionally can be used for on-
line data evaluation. In fact, signal processing and data analysis are of increasing importance 
not only for machine olfaction but for advanced chemical instrumentation (chemometrics) and 
–omics data analysis (bioinformatics).  It is well-known that current instrumentation offers 
enormous capabilities for signal recording and storage, while the signal/data analysis and 
interpretation is the bottleneck of the process.  

On the other hand, it is true that the biological sense of olfaction has remarkable capacities 
from a chemical instrumentation point of view relying on sets of receptors with partial and 
overlapped sensitivities. This astonishing system is still the main inspiration for machine 
olfaction19,20. However, we are still far today from understanding olfaction from a 
measurement science perspective, and even further away to be able to mimic this important 
physiological function.  

In Machine Olfaction, but also in other instrumental techniques (Gas Chromatography-Mass 
Spectrometry (CG-MS), Near Infrared Spectroscopy (NIR), Fourier Transform Infrared 
Spectroscopy (FT-IR), Ion Mobility Spectrometry (IMS), etc), signal and data processing is 
required for a large variety of needs, namely (list not exhaustive): 

i) Quantificationyof components in simple chemical mixtures 
ii) Identification of y chemical products by a chemical fingerprint 
iii) Monitoring chemical / biochemical processes from volatile emissions patterns 
iv) Self-diagnosis for instrument mal-functioning.  
v) Error correction 
vi) Signal compression 
vii) Drift counteraction 
viii) Rejection of cross-sensitivities to environmental parameters or background changes.  
ix) Design of experiments and design of method validation 
x) Noise reduction 
xi) Baseline removal 



Since insight on raw signals is provided by complex and sometimes even obscure algorithms (in 
the sense that their interpretation is not easy (e.g multilayer perceptrons)), it is important that 
the researcher behind predictive algorithm development, in addition of being well versed in 
terms of data analysis theory and the intricacies of the measurement protocol, keeps an 
healthy skepticism attitude towards the obtained results.  

Several authors have been critical towards the intensive use of advanced statistical and 
machine learning tools particularly for health applications in the domain of –omic data 
analysis21,22. It is a fact that complex algorithms sometimes give researchers a false sense of 
safety concerning their results.  This safety feeling heavily contrasts with the difficulties in 
replication of results by other groupsfor results replication by other groups. In fact, complex 
techniques reporting overoptimistic results that were never confirmed has lead to a mistrust 
about complex algorithms by electronic nose practitioners.  

While today we have a large set of tools for the analysis and processing of sensor arrays 
signals17,18 we have to be aware that most methods require optimization and the optimum 
parameters are data dependent. Application with fixed parameters may provide sub-optimal 
resultsinfra-optimal results. It is not easy, and it is not recommended, to use most of the 
methods as black-box systems. The user has to understand their principles and limitations. 
However, it is difficult to demand that a regular chemist or application engineer has the 
advanced knowledge that state of the art techniques arising from statistics, machine learning 
and chemometrics require for proper (or optimum use). The use of sophisticated techniques is 
made easier because of the availability of many routines in the public domain for different 
programming languages as MATLAB, R or Python. Additionally there are many commercial 
software products with attractive graphical user interfaces (GUI) that let anyone to play easily 
with the algorithms and their parameters. Misuse of these tools is common in the literature23.  

In this framework, we have to admit that electronic noses are considered unreliable 
instruments by practitioners in several sectors. Robustness improvement is a must to enlarge 
enose market penetration.  E-noses suffer from poor time stability (figure 2) and a number of 
data processing solutions have been proposed to counteract instrument drift24-30. Knobloch et 
al.31 report that temperature and mass flow variations can lead to serious stability problems in 
headspace analysis of liquid samples (figure 3).  In the same study (see figure 4), Knobloch 
reports on the lack of reproducible responses across identical instruments (from a constructive 
point of view). This variability hinders transferring calibration models from a master 
instrument to slave instruments and leads to individual e-nose calibration and higher added 
costs. Kuske et al.33,34, when studying the detection of moulds growing on building materials, 
found that the substrate had a large effect on the sensor array response (figure 5). In other 
words, the application of classification models built with some materials sets, leads to 
degraded responses when applied to other building materials. In other words, when trying to 
detect volatile metabolites produced by fungi we should be aware that changes in the 
background other can lead to problems for detection problems. Similarly Adam et al.34, when 
monitoring an anaerobic digester with an electronic nose, noticed that the sensor array 
pattern was clearly dependent on the materials used for feeding the digester. That is, digester 
normal operation control models have to be dependent on the feeding regime. Changes on the 
feeding materials provide larger background variability leading to less specific models.  



In this sense, it is important to remark the definition of robustness by the World Health 
Organization35: “Robustness (or Ruggedness) is the ability of the procedure to provide 
analytical results of acceptable accuracy and precision under a variety of conditions: The 
results from separate samples are influenced by changes in operational or environmental 
conditions”. It is also important to remark that in the context of intelligent instruments the 
robustness evaluation has to consider the full analytical procedure: from the sampling  method 
to the e-nose response, but also the full set of signal and data processing blocks that use 
sensor outputs to produce a predictive response either qualitative  (label prediction) or 
quantitative( e.g. concentration prediction). For instance, it is well-known that with exactly the 
same sensors, some algorithms can make the instrument more resilient to drift, or to the 
scarcity of calibration samples17.   

For other instrumental techniques, and mostly in health applications, it has been long 
recognized that prediction models perform better on the data used to build the model than on 
fresh data. This effect is particularly clear when the number of samples is much smaller than 
the dimensionality of the data.  In this context, we would like to emphasize the importance of 
strict validation methods for ultimate performance assessment of the proposed instrumental 
method and subsequent data evaluation for qualitative or quantitative prediction.  While in 
early 90s there were many publications reporting only basic exploratory data analysis (the ever 
present score plot from principal component analysis) today most journals require some 
method validation to be reported and discussed. However, in many occasions only internal 
validation methods are reported.  

While the potential of the instruments is not in dispute, it is absolutely clear that research 
needs to shift towards methodology improvement at the procedure level, but also at the level 
of instrumental design. This road has been followed by competitive technologies (e.g. Ion 
Mobility Spectrometry) or other technologies initially suffering from similar problems (e.g. 
NIR). As an example, e-nose instruments are plagued with memory effects. That is the output 
pattern when testing a certain sample, is influenced by remnants from previous analysis. While 
this is a pretty obvious problem, few efforts have been devoted to reduce analyte absorption 
for instance by temperature control of the sensor chamber and associated tubing, or by the 
design of proper washing cycles in the sequence of analysis by the instrument.  

In this paper we will discuss the importance of external validation and the need to include this 
requirement for archival journal publication in the area of machine olfaction.  This review is 
organized as follows. Section II will elaborate on the robustness problems in enoses. Section III 
will cover the basics of validation methods including performance estimation methods. Section 
IV will discuss the need to develop predictive models and escape from simple exploratory 
methods that avoid any validation of the findings. Section V will review the main problems 
found in the development of classification models. Section VI discusses the relationships 
between the statistical concept of ‘bias’ and the analytical concept of robustness. Section VII 
introduces the considerations we should have in mind when designing validation 
methodologies to avoid major problems previously presented. I end the review with a 
summary.  



II. Robustness 
 

As I have mentioned in the introduction, robustness improvement is a pending objective in 
electronic nose research.  For robustness improvement, many different factors may obviously 
contribute, namely: sensor technology improvements and better instrument design including 
sampling methodology. However, for the purpose of this paper we will focus on the 
importance of proper validation as a sanity check to ensure a good performance of the method 
in the operation phase (beyond method development).  

The reasons for the lack of robustness in electronic noses are many: 

1) Due to lack of selectivity, the instrument calibration degrades fast when new chemicals 
appear in the sample under analysis, that is, components not present in the calibration 
phase.  In a similar setting, the calibration degrades when the background mixture 
changes to a composition beyond those encountered in the calibration phase36. 

2) Most sensor technologies are sensitive to humidity. Since humidity values can change 
drastically in many different scenarios (e.g. in open air sampling conditions), rejection 
of humidity cross-sensitivity is a must37,38.  

3) Sensor technologies are also temperature dependent. In industrial and environmental 
applications (open air conditions), temperature could depart strongly from the typical 
indoor lab conditions38, 39  

4) Chemical sensors are prone to drift. This drift is typically a mixture of a systematic drift 
and a random component.  An example of sensor drift can be seen in figure 2. An array 
of conducting polymer sensors drift when exposed to reference chemicals. This drift 
makes calibration models obsolete soon.  For instance, in a classification problem, 
difficult cases due to class proximity or colinearity requiring complex classifiers are also 
the most sensitive to drift. 

5) Identical sensor components typically have large tolerances: not only regarding the 
base value (response to pure air), but also regarding sensitivities. This fact, makes 
calibration transfer and sensor replacement particularly challenging40.  

6) Many different research works, propose the use of dynamical sensor signal features 
when the sensors are switched from a reference gas (typically purified air) to target 
stream41-45. These dynamic features could be sensitive to instabilities in the flow. 

In addition to the traditional sources of perturbations considered in the usual definition of 
robustness, the e-nose practitioner could be interested in learning about the robustness of the 
technique to other factors. Because of the high cost of calibration samples, the user would like 
to learn about the robustness of the system when decreasing the size of the training set25. In 
this particular case, it is clear that simple calibration models could be more robust against a 
shortage of calibration samples. Similarly, it could be that the more accurate models just after 
calibration are the ones that degrade the faster in time (figure 6). 

 



III. Basics of Validation 

III.a. Main concepts 
 

Validation is a basic component of any method development in the areas of chemometrics, 
pattern recognition and regression.  Validation is motivated to address two fundamental 
issues: complexity control (also known as model selection) and performance estimation. Every 
class of predictors for the analysis of instrumental data (including electronic nose data) 
requires some kind of complexity control. For instance, (i) in a Partial Least Squares 
Discriminant Analysis approach we should decide on the number of latent variables, (ii) in a 
Multilayer Perceptron we should decide on the number of neurons in the hidden layer, (iii) in a 
k- Nearest Neighbour classifier the number of neighbors k should be optimized. In regression 
problems, the complexity control may take the form of a regularization parameter (that is the 
case of Ridge Regression). A similar case is the choice of the hyper-parameters in a support 
vector machine. Even in univariate regression with a polynomial basis the maximum order of 
the polynomial has to be selected. In figure 7, the typical evolution of prediction errors, in the 
training set and in the internal validation dataset, against the model complexity is illustrated. 
Note that typically when the ratio number of samples to dimensionality is low, optimum 
models tend to be of lower complexity with larger errors. 

In this sense, the calibration set should be divided in two parts: one of them used for 
parameter estimation and the other one for complexity control. The dataset for this second 
task is known as the internal validation dataset. We choose as the best model complexity the 
one that provides the best performance in the internal validation set.  Taking this performance 
estimation as the one characterizing the model provides usually over-optimistic results, since 
this data has been used for model building and in consequence the model is biased to this 
particular dataset. Instead, strict model validation requires the presence of an external 
validation dataset composed of ‘fresh’ or ‘blind’ samples that have not used at all during the 
model building process.  In summary, the recommended practice is to have a dataset for 
calibration or model building, and another one for external validation. The calibration dataset 
is however further divided to have this internal validation that provides model complexity 
control and initial (but overoptimistic) performance estimation. Despite this is common 
knowledge, internal validation is only reported in many research papers on the basis that data 
scarcity precludes to have a separate dataset with blind samples for external validation.  

Sometimes the terminology training dataset and test or validation dataset is used. While there 
is nothing wrong with this, sometimes leads to confusion arising from the fact that this 
terminology does not explicitly differentiate between internal and external validation. In this 
paper we will refer to calibration dataset (all data used during the model building process) and 
the external validation dataset. In our view, the data used for internal validation belongs to the 
calibration dataset. For us, the training set (it could be named also estimation set), is the part 
of the calibration set that is typically used to fit the model once the complexity has been 
selected. In some cases, after complexity selection the whole calibration set is used to 
estimate the optimum parameters. 



For internal validation many diverse techniques have been proposed for an effective use of the 
available data. Among them we should mention leave-one-out (LOO), k-fold cross-validation, 
random subsampling and bootstrap. Leave-one-out is sometimes advised when the total 
availability of samples is limited, which unfortunately is the case in many preliminary studies in 
the health domain. LOO has been accused to provide overoptimistic results. It has been even 
proved that in the worst-case the estimation of the performance of LOO can as biased as the 
direct estimation over the training set46. Beyond these results, there are settings where the 
overoptimistic behavior of LOO becomes clear. We may find cases where a 1-NN classifier is 
used and performance estimation is done by LOO. If the dataset contains several replicas of 
the same experimental condition, it is clear that by LOO there would be always a replica in the 
training dataset, geometrically very close in feature space (assuming some reproducibility in 
the measurement) to the sample to be evaluated. In consequence, under this conditions LOO 
may suggest that the predictor is performing extremely well, and this is just an artifact.  

Among the internal validation techniques bootstrapping is typically recommended (see 
comparison by Steryerberg et al.47), since it has been shown that provides almost unbiased 
estimates of predictive accuracy with low variance. However, only pure sampling variability is 
considered in bootstrap and other potential changes in the samples under analysis is not 
considered. In consequence, even the more strict internal validation methodology is not 
sufficient and indicative of the model performance in future samples.  

For internal validation in machine olfaction data, we advocate the use of what we call leave 
one block out (LOBO).  Most studies in electronic nose research use lab set-ups that permit to 
control the conditions of the experiment. In such cases, the experiment is parameterized 
according a number of parameters, namely: analyte concentrations, temperatures, humidity 
levels, levels of interferent analytes, etc. Typically and in order to have sufficient statistics, 
several replicas of the same conditions are available, although it is recommended that those 
replicas are not consecutive in time. Proper randomization of the sequence of conditions is a 
basic requirement in the design of experiments, despite leading to longer and more expensive 
experiments. In LOBO internal validation, a full set of conditions is set aside for validation 
purposes and consequently it is not present in the training set. The underlying intention is to 
understand if the system will be able to predict accurately the sample label (or concentration 
in quantitative analysis) in conditions not present in the training set (never seen before). In 
fact this is the case in the real operation. For instance, figure 8 shows a potential internal 
validation method when trying to avoid the simultaneous presence of samples from the same 
measurement day in the training and in the internal validation set.  

Typically, the operation conditions in the real case will never be exactly the same as those in 
the calibration set. It may be argued that if the space of operation parameters is densely 
sampled there will be always some operation condition in the training set close to the 
validation set. However, since for practical and economical reasons the calibration set must 
have a minimal size, typically the sampling of the space of parameters defining the experiment 
is necessarily sparse.  Otherwise, when exactly the same operations are present in the training 
and the internal validation set, then the validation conditions are inherently weak, since a 
minimal repeatability is sufficient to ensure that a sample in the training set will be sufficiently 
close to the validation sample.  



 

 

  

III.b Performance estimation 
 

Once the validation methodology has been decided, a final step consists in performance 
estimation in an external (or internal) validation set.  In order to be concise, but illustrative of 
the main issues in performance estimation I will focus on performance estimation for binary 
classifiers. Binary classifiers are particularly important due to the prevalence of this problem in 
scientific research and particularly on biomedical applications. In most biomedical settings the 
problem can be set in a binary decision scenario: condition vs control, treatment vs placebo, 
etc. A similar discussion could be done regarding performance estimation for quantitative 
models but this would make the paper unnecessarily long.  

Before going deep into the matter, I would like to remind that in the case of a binary classifier, 
we need a single discriminant function and a threshold. The discriminant function is G: Rn → R, 
where we are assuming that the sample to be analyzed is characterized by n features.  At this 
point, we do not enter in the discussion relative to feature extraction and selection. The 
decision rule is: 

Assign x to class 1 if g(x)> threshold, otherwise assign x to class 0. 

For a probabilistic interpretation it is desired that 0≤g(x)≤1. In many settings class 0 will be 
considered either normal or control conditions, while class 1 is considered an alarm or a 
condition detection.  

Binary classifiers are typically evaluated using a Confusion Matrix.  

 
Decided Normal  Decided  

Alarm  

Real Normal  True-negatives (TN)  False positive (FP)  

Real Alarm  False negative (FN)  True-positives (TP)  

 

Where TN, FN, FP, and TP are the numbers of true-negatives, false-negatives, false positives 
and true-positives respectively. A number of associated figures of merit can be computed from 
this table. A not exhaustive list follows: 

Accuracy= (TP+TN)/(TP+TN+FP+FN) 

Sensitivity (Recall)=TP/(TP+FN) 



Specificity=TN/(TN+FP) 

Positive Predictive Power=TP/(TP+FP) 

Negative Predictive Power=TN/(TN+FN) 

What I want to remark is that all of them are estimated with a finite sample size. 
Consequently, we have only an estimator of those quantities.  This estimator should be 
considered as a random variable, and it is a good practice to report not only the estimated 
value but also the associated confidence limits.  

Let us consider a classification scenario, where we want to estimate the overall accuracy of the 
classifier. We have a blind dataset of n samples, where ng are correctly classified and n-ng are 
not. We assume the proportion to follow a binomial distribution. The estimated accuracy and 
the estimated error rate are: 

  

 

 

Under the condition that: 

 

 

We can assume that the estimator is normally distributed:  

In such a case the standard deviation is estimated as:  

 

Let us put some numbers. Imagine that we have a validation set of 120 samples, and our 
method provides correct classification for 110 of them. In those conditions we can report the 
estimated classification rate as: 

 

Since proportion’s variance is inversely proportional to the square root of the sample count, in 
small samples conditions the confidence interval of the estimator grows and in many cases 
encloses the random choice performance (0.5 for two classes with the same prior probability). 
In other words, under small sample conditions it could be the case that we cannot have 
sufficient statistical power to claim the classifier is performing significantly better than a 
random label selection. 
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I believe that a when reporting results, we must test if the developed method has a predictive 
power beyond random choice.  An interesting way to pose this problem is by the use of 
permutation tests48-51. In those tests the distribution of the null hypothesis is obtained by 
shuffling the object labels a large number of times and applying the predictive method 
developed. Then we test if the predictive accuracy obtained could have been obtained from 
the distribution of the null hypothesis. This leads to a p-value for the obtained classifier 
accuracy. An advantage of permutation test is that they are exact even if the observations are 
not normally distributed. 

In electronic nose research is common to report on the comparison of several methods, either 
from a pure data evaluation point of view, or even different sampling conditions or instrument 
operation conditions. Rigorous claiming that a method A performs better than a method B, 
necessarily requires a hypothesis test. Hypothesis test for this kind of research should be 
required by editors and reviewers in the area. Unfortunately this is not the standard practice in 
published research. Practitioners have to be also aware that because of a statistical version of 
the law of diminishing returns claiming to beat a method whose performance is already close 
the limit (e.g 97%) could require a number of validation samples that in many cases is not 
available for practical reasons.  It is also important to realize that the binomial distribution 
losses Gaussian character close to the upper and lower classification limits. In such cases, 
proper calculations of the confidence limits should be carried out using the binomial 
distribution.  

When testing binary classifiers, confusion matrix is fully dependent on the position of the 
threshold52. There is a trade-off between sensitivity and specificity. By moving the threshold up 
and down, we can exchange sensitivity by specificity or vice versa. Receiver Operating Curves 
(ROC) curves display the probability of detection (sensitivity) against the probability of false 
alarms (1-Specificity) (see figure 9), when scanning the threshold in the discriminant function. 
In this representation, the trade-off between the probability of detection and the probability 
of false alarms is clearly depicted for all possible values of the threshold. The closer the curve 
to the upper left corner (maximum probability of detection and minimum probability of false 
alarms), the better the classifier is. 

The selection of the optimum threshold is typically application dependant. The final user is 
most suited to take this decision. Miss-classification costs and prior probabilities of each class 
should be known for a good selection of the best threshold. Unfortunately enough, in many 
occasions those numbers are subject to large uncertainties, making this approach difficult to 
apply. In those cases, it is better to rely on Receiver Operating Characteristic Curves.  

When using ROC curves, a new figure of merit appears: the Area Under the Curve (AUC) takes 
a value of 1 for the perfect binary classifier and a value of 0.5 for the random choice in 
balanced clases.  ROC curves can be estimated using parametric probability density models for 
the condition and control classes or empirically using histogram approximations of the 
probability density functions. However, in this later case a large number of test cases are 
necessary in order to avoid excessive granularity in the estimation of the curve. A review on 
the use of ROC curves can be found in Fawcett et al. 52 and Lasko et al.53.  



IV. Hypothesis test vs. Predictive models: the need for model 
validation 

 

In the biomedical literature, it is quite usual to characterize the goodness of a certain indicator 
in terms of its p-value under a certain test of hypothesis. In the last two decades there has 
been an abuse of the hypothesis testing approach in the quest for statistical significance in 
medical journals. This approach leads to “binary thinking”: the null hypothesis is either 
accepted or rejected. In fact, it is usually more informative to think about the size of the effect 
(observed difference between the control and the condition), and its uncertainty due to the 
sample size54. In fact, the abuse of p-values has been pointed by Bayesian statisticians55. 
According to them, the p-value creates an illusion that knowledge can be summarized in a 
single number, without further information external to the experiment. Goodman points 
several examples from the biomedical literature where the p-value alone does not make much 
sense. Only by incorporation of prior knowledge the interpretation of the experiment can be 
done correctly. Goodman proposes instead the use of Bayes factors56. In its simpler form, 
Bayes factors are a measure of how the models explain the observed data. In this formalism, 
both hypothesis (null and alternative) are considered as probabilistic models that can generate 
the observed data. Bayes factors are also called the weight of the evidence and they tell us 
how the ratio of the probabilities for both hypotheses change after observing the data. While 
it has a strong foundation on Bayesian statistics, however in the biomedical use of electronic 
noses this formalism has never been used as far as I know. The theory behind Bayes factors is 
beyond the scope of this review. An in depth introduction is found in the review paper by 
Kass57.  

Additionally, it is very important to realize that p-value differs from predictive power. This is 
clear with a simple example from univariate statistics. Let us consider that we have a human 
population and we take height as an indicator to predict gender. It is clear that even with a 
moderate sample size, the null hypothesis (both genders have the same height) will be clearly 
rejected with a very small p-value. However, if we build a predictive model only on the basis of 
this single indicator (height), the accuracy of this predictor will be rather poor. In other terms, 
it is possible to have indicators with small p-values and very moderate predictive powers. Take 
note of the next example taken from Broadhurst58 (see figure 10): Both ANOVA and t-test 
produce p-values on the order of 10-4. In the usual medical practice this would be considered 
as a clear sign of the statistical significance of the indicator. However, the indicator delivers a 
moderate Area under the curve AUC=0.68 (AUC-see section III.b).  We have to take into 
account which hypothesis are we testing.  For example, when using the t-test, we are 
evaluating if the mean of two populations differ. If we have enough number of examples the 
power of the test is such that even with populations generated by probability density functions 
with a large overlap, the test will see that the means are different. We can also argue that ROC 
curves, and related figures of merit like the AUC, are more sensitive to the full shape of the 
involved probability density functions, while some hypothesis test (e.g. ANOVA) are only based 
in variance estimates.  

In a second example, also cited by Broadhurst58 but originally from Kenny et al.59 , a binary 
classifier working with 286 univariate features and 174 samples is tested. Every individual 



feature is tested according the Area Under the Curve measurement but also the p-value of the 
t-test. Figure 11 shows that feature with non-significant p-values at the usual risk levels are 
able to provide very good AUCs. We have to take into account that p-values can be very 
sensitive to the sample size and to the adequacy of the underlying hypothesis of the test.   

In fact, the larger the sample size, the smaller has to be the difference (relative to the standard 
deviation) to have enough statistical power. It is well-known that the power of a t-test to 
observe differences in the mean of both populations increases with the sample size, so larger 
samples give smaller p-values. However, this does not automatically translate to a better 
accuracy on a predictive binary classifier. For a 1-D problem with two normal classes, 
characterized by the same variance and different mean, a larger sample size brings better 
accuracy in the estimation of the means and the variance, but the asymptotic Bayesian error is 
fixed, and a larger sample size would not bring any decrease in the classification error rate 
beyond this point. In this context it is important to recall the statement by Gardner and 
Altman54:“ Small differences of no real interest can be statistically significant with large sample 
sizes, whereas clinically important effects maybe statistically non-significant only because of 
the number of subjects studied was small”. 

V. Main errors in the development of predictive classifier models 
 

In this section, I will review the main errors artificial olfaction researchers fall in, when building 
classification models. While the description is mostly based on binary classifiers the arguments 
can be easily generalized to a larger number of classes.  

1) Overfitting: the research work fails to use independent/blind samples which are held 
back from model optimization and used only to test the robustness of the prediction.  
In many occasions, only the cross-validation error is given. In other words, model 
performance is estimated with the same samples that have been used to decide on the 
optimum model complexity. This leads to overfitting and to report over-optimistic 
model performance.  Despite this being a well-known error, it still appears frequently 
due to small sample datasets. A related error that appears frequently is the use of 
sample replicas to increase the sample count for the study. However, since most 
methods assume that the samples are identically and independently sampled from a 
larger population, the use of replicas breaks the assumption of independence. In 
consequence, reported results (using an apparently bigger dataset) may be 
overoptimistic.  

2) Confusing statistical significance with predictive accuracy: A number of features can 
be providing very small p-values and still provide low predictive accuracy. This 
misinterpretation of the meaning of the p-value mostly appears in the biomedical 
literature. This has been already discussed in the previous section. 

3) Ignoring the prior probabilities of the classes. Classifiers are built with balanced 
classes (to avoid unbalanced datasets that pose problems to many classification 
algorithms), but they are later applied ignoring the prior probabilities. This error 
mostly appears in circumstances where the estimation of the prior probabilities is 
difficult or maybe it is not possible.  



4) Bias.  This is the most important cause of error and it has multiple origins. We refer to 
bias when a feature is differentially distributed between the classes but it happens to 
be correlated with another uncontrolled variable that truly underlies the variance of 
the feature.  In the biomedical literature, this confounding variables may originate 
from the patient (smoking status, gender, diet….) but in many other occasions it can be 
also of instrumental origin (different time, different location, different operator, 
different instrument, different environmental variables, sampling differences, etc). I 
will review this issue later on in section VI.  

According to Ransohoff60 “Bias is the most important threat to validity”. In fact, a healthy 
skeptical view in Machine Olfaction results is a recommended best practice.  Among the 
potential confounding factors leading to bias two different cases should be considered: (i) 
Potential confounding factors that have been identified, (ii) Confounding factors ignored by 
the researcher.  

In the first case, the researcher is advised to investigate the potential exploratory power of 
those factors. If the approach is based on test of hypothesis, we recommend using techniques 
able to deal with multiple factors whenever possible (e.g. Multi-way ANOVA).  If a predictive 
model is built, try to use techniques based on orthogonal projections, such that the 
confounding factor is approximately rejected.   

Among the many sources of confounding factors, I would like to remark instrumental shifts or 
system drifts as potential confounding factor.  It is very important, to block those potential 
confounding factors during the phase of experimental design.  An example of a bad 
experimental design would be as follows. Imagine that we are using an electronic nose to 
investigate the potential of breath analysis for lung cancer diagnostics. If we test 10 lung 
cancer subjects in month 1, and month 3 we test 10 control subjects, unless further evidences 
are shown it is impossible to attribute the observed differences to different time or to 
different condition.  The obvious correct design involves testing 5 cancer plus 5 controls in 
each month. While this is an extreme case, presented only for illustrative purposes, it is clear 
that unbalanced distribution may easily appear: e.g 8 cancer and 2 controls in month 1, and 7 
controls and 3 cancer in month 3. Even in this later case, time can be a clear source of the 
observed variance between cancer and control groups.  

A famous case in the area of proteomics is controversial report in ovarian cancer screening 
using serum proteomics published in 2002 claiming excellent sensitivity and specificiy61. Those 
excellent results were proven later to be caused by bias, and that the method had no real 
discrimination power. In this study, spurious classification performance is obtained by storage 
artifacts when samples were stored at -20ºC. A particular mass m/z=6638.41, was apparently a 
cancer biomarker, however it was correlated with sample storage time. Since healthy samples 
were collected first and ill-patients later, the storage time was a confounding factor that in this 
particular case was correctly identified62. However, in the general case the possibility of hidden 
confounding factors requires skepticism and strict validation.  

 



VI. The relationship between Bias and Robustness. 
 

In the introduction the very important concept of Robustness (or Ruggedness) has been 
already presented.  The importance of robustness assessment in method validation has been 
already pointed out by Vander-Heyden63 and Zaiter64,65. 

Gas sensor arrays suffer from the consideration ofare generally considered  unreliable 
instruments. While literature reports a large number of successful applications, probably they 
are very sensitive to experimental conditions since translation to the industry or to the clinic is 
a daunting task. 

Gas sensor arrays based instruments are particularly sensitive to many factors.  For this reason 
we have to be careful in our analysis.  We can encounter two diverse situations, namely: 

(i) Some ignored factors are the ultimate reason for the observed differences between 
the classes and a success is reported. In this case we talk about biased 
experiments.  

(ii) Correct experimental design and extreme care, makes external factors constant in lab 
conditions and then the observed differences are exactly due to the investigated 
condition. However, in real settings (industrial or clinical) those factors cannot be 
conveniently controlled leading to the practical impossibility to apply the proposed 
method. In this case we talk about lack of robustness. That is, the method fails to 
properly work beyond the limits of the analysis.   

If we want to avoid both problems, the most important recommendation is to identify 
potential sources of variance beforehand in the experimental design. At this point, we should 
be fully aware of the expected working conditions of the instrument in the potential 
application targeted. This is relevant, since it could be the case that some of those external 
factors could be appropriately controlled, but others maybe not because of practical or 
economical reasons. Incorporation of the potential sources of variance in our analysis leads to 
a much richer discussion. Only when including those sources of variance in the experiment we 
would be able to understand their relevance and the inform the reader of the research report 
about: (i) the applicability limits of the proposed solution and consequently the need to control 
important factors during the application of the method, (ii) the need to devise methods to 
algorithmically counteract them.  

VII. Discussion: strategies for model validation and prediction 
reliability estimation 

 

Assessment of prediction reliability is a main objective for model evaluation. This is specially 
challenging when the number of available samples is small.  In order to make an efficient use 
of the available samples a number of validation methodologies have been proposed in the 
literature66 . A basic concept in model validation is to differentiate between internal validation 
and external validation. While most papers describe and use classical internal validation 
procedures such as leave one out (LOO), k-fold cross-validation and bootstrapping, we 



emphasize in this paper that external validation by an external test set is a must67. External 
validation refers to use samples that were not used in the model estimation. Those samples 
are external samples, to differentiate from internal validation samples.  It is important to note, 
that internal validation samples belong to the calibration set and are used basically for 
algorithmic complexity control and model optimization and in consequence the model is tuned 
to the samples used for the training set. In many biomedical studies, portioning the available 
data in training, internal validation and external validation sets leads to a very low cardinality 
for this last set. In those conditions, performance assessment with external validation suffers 
from a high variance. To solve this issue the repeated double cross-validation procedure has 
been proposed68 . Repeated double cross-validation uses two nested loops. The outer loop is 
the division between calibration set and external validation set and it is used to estimate the 
prediction performance. The inner loop uses the calibration set for model selection and 
parameter optimization, using classical cross-validation procedures (CV), that is dividing this in 
training and internal validation sets. The strategies for data partitioning in the outer loop are 
similar to the CV procedures. In principle, this method allows to use all the available data for 
performance estimation, largely decreasing the variance problems mentioned above. It has to 
be taken into account that this procedure leads to a multiplicity of optimal models (N) 
corresponding to different calibration sets in each outer loop. The stability of those models in 
terms of errors but also in terms of architecture and parameters can give further insight on the 
sensitivity of the model to the training data. If this sensitivity is assessed as too high, extra 
caution has to be taken concerning the final results.  

Care has to be taken with the strict definition of external validation. In many occasions, and in 
particular in the repeated cross-validation procedure just described, the external validation set 
is only a random selection of points from the experimental dataset. While it is true that those 
samples are not used for building the model, we have to consider that: (i) in a random division 
between the calibration and the external validation, it is possible that there is always one 
sample in the calibration set that is very close to the sample to be predicted in feature space. 
In this case, prediction models based on local information can overfit easily. (ii) This external 
validation procedure is weak in the sense that the calibration set and the external validation 
set will contain samples taken in the same operational conditions, with the same operator, 
with the same environmental parameters. In random selection, this will happen even if the 
original dataset spans a diversity of operational conditions. In consequence, since conditions 
appear simultaneously in both sets, this validation method is not able to prove that the model 
will generalize conveniently under a change in those operational conditions.  

I believe that it must be a recommended practice to state in the description of the model a 
definition of the application domain. This application domain is directly related to the 
operation conditions spanned by the training set.  Unfortunately, many research works in 
machine olfaction are not concerned with these issues when developing applications and the 
application limits of the models remain unknown.  

We should emphasize that we cannot expect that models produce reliable predictions in the 
entire universe of operation conditions. It is a good practice to project the measurement 
sample in the input space and check if this sample can be considered an outlier. Methods for 
outlier detection can range from T2 and Q2 measures derived from principal component 



analysis to more sophisticated methods69.  In any case, extrapolation is always dangerous and 
prediction should be treated with caution. 

In fact, from a multivariate calibration and pattern recognition point of view, predictive models 
fail because the final application the conditions at real-world application are different from the 
conditions of predictive model buildingin which we use the instrument differ from the 
condition in which the predictive models where built. It is our point that external validation 
should consider all the expected conditions in which the instrument should operate. Only in 
those cases, the estimated predictive power could be considered as realistic. Here I reconsider 
restate the main points that are typically ignored in basic validation.  

(i) Drift (Instrumental Shifts):  Predictive models can be very sensitive to the time elapsed 
since last calibration.  Periodic re-calibration is the ultimate solution, however, 
since the calibration of electronic noses is costly and time consuming, full 
recalibration is not a desired option.  The issue of re-calibration with a minimum 
number of experimental conditions has received insufficient attention in the 
literature.  

(ii) Change in the operation conditions:  A clear example is the influence of the sampling 
conditions. Many AO Machine Olfaction systems explore the headspace of a 
certain material. In those cases, the temperature of the material and the flow 
sweeping the headspace are clear sources of problems. They have to be under 
control to avoid undesired results. 

(iii) Humidity changes:  Most chemical sensors are also sensitive to humidity. Humidity 
control is not desired in many settings. In those cases, independent measurement 
of humidity and their compensation is a must.  

(iv) Background or Matrix Effect: It could be easily the case, that we are able to have a 
controlled background in the lab so we are able to see differences in the sensor 
signals due to the target condition. However, the effect of a change in the 
background can be much larger than the difference that we have identified, 
making predictive models unusable. Background changes can strongly shift our 
pattern response, but not only due to cross-sensitivities due to the background 
components in an additive manner. Non-linearities (due in some cases to 
competitive effects among analytes) can also change the sensitivity to the target 
analyte. In some cases, high concentrations of a particular component can 
decrease orf fully inhibit the response to key analytes in the target condition that 
has to be detected.  

(v) Sensor replacement: This is a very practical case, but not less important. Sensor 
components degrade and ultimately fail for diverse reasons. It is also well-known 
that sensor tolerances, both in baseline values but also in sensitivity are large. 
Replacement of even a single sensor can make predictive models obsolete.  

(vi) Calibration transfer:  Independent calibration of each instrument for the targeted 
application can be burdensome. Extensive calibration can be carried out in a single 
(or a few) instrument. The performance of the models in equivalent instruments 
from a constructive point of view needs investigation. The issue of calibration 
transfer in the e-nose literature has received insufficient attention.  



External validation could be used to explore the limits of the model application domain. We 
have mentioned just before the main reasons that can cause model failure.  Now some 
recommendations are given to assess those limits by means of a more strict external validation 
policy. Let us revise them briefly. 

(i) Drift. The robustness of the method in time needs to be checkedtested. For this 
several considerations are in order. (1) First it is a must that there is an external 
validation test in the future of the calibration data. It is obvious that this is the 
condition of any real application. The use of the predictive model is always in the 
future of the calibration. In other words: first the instrument is calibrated (the 
predictive model is built) and the instrument is applied to new samples.  This is not 
the case in most cross-validation strategies (with the exception of hold-out), 
where the label of external validation sample is predicted taking into account 
samples measured before and after this particular sample. calibration set contains 
samples in the future of the sample in the external validation set. Leave-one out, 
random subsampling, k-fold methods, and even bootstrap ignore that the 
instrument could be a time-varying system. My recommendation is that they can 
be used for complexity control (model selection), but never for final estimation of 
performance, since those methods ignore the basic fact that in the real case the 
samples under analysis are in the future of the calibration.  Any research work that 
reports only validation on those conditions should be presumed of being 
overoptimistic. This is also the case for random division in calibration and external 
validation, and it is also the case for weak external validation methods as the 
repeated double cross-validation. In this setting, again there will be calibration 
samples in the future of validation samples.  
The research report would be even richer if the issue of model life time is 
addressed. The estimation of the life-time of a predictive model is a complex issue 
since diverse conditions of operation can lead to different lifetimes. Few papers 
have reported methodologies for the user to detect when the predictive model is 
becoming obsolete. Blind application of the predictive model could lead to errors. 
A basic sanity check is that the new measurement, the new obtained pattern is 
within the limits of the calibration data. If the new measurement could be 
considered as an outlier falling outside the range of the calibration data, the 
measurement and the outcome of the predictive model has to be marked for 
further investigation.  

(ii) Change of the operation conditions (including temperature/humidity).  It is 
recommended that operation conditions suspicious to have a big influence in the 
system output have to be included in the experimental design, particularly if they 
cannot be easily controlled in the final application.  That is the calibration set data 
should contain also a variation of those factors (could be systematic or random). 
Other less recommended option is to check for sensitivity to those parameters 
after building the predictive model. The obvious drawback of this later approach is 
that if the results prove the parameter to have a large influence on the pattern 
distribution, we will be forced to repeat the calibration experiments taking into 
account this additional parameter. 



(iii) Background changes: Background variations are a clear problem for applications that 
should operate in field conditions. At the lab, it is in many occasions difficult to 
replicate the complexity of the backgrounds that the instrument can encounter in 
real, field conditions. In this case, the clear recommendation is that the predictive 
model has to be built with samples obtained in field conditions and taking care 
that a sufficient coverage of the potential changes of the background is obtained.  

(iv) Sensor Replacement and Calibration transfer: In many occasions this could be a 
limiting factor for the real applicability of the method and the instrument. I invite 
(challenge) researchers in the area to test if their models are robust enough to 
keep accuracy when they change an instrument component (e.g. sensor in a 
sensor array) or when they apply the same prediction model to a new “identical” 
instrument.  

VIII. Conclusions 
 

Electronic Noses are very sensitive instruments and rather unspecific. Research in the e-nose 
domain has been dominated during decades by sensor technology developers trying to show 
how good their sensors were to solve numerous applications in diverse fields. However, it is 
clear today, that some of those studies were at least naive. The weakness of those studies was 
in most cases obscured by poor validation strategies, and generalization claims beyond the 
actual experimental evidences brought by the research work. In fact, the main conclusion of 
the present paper is that the validation methodologies in electronic noses research should be 
necessarily more strict and rigorous. We propose that any e-nose application study should 
support their findings by using external validation datasets or the so-called blind samples. This 
external validation samples have to be in the future of the training (calibration) dataset. 
Additionally, the design of the external validation has to address potential pitfalls of the 
analysis the authors could identify. A much restricted validation set, possibly indicates that the 
method is inherently weak. Authors should be forced to prove the robustness of their 
proposed method beyond current standards. The time stability of the results, background 
shifts, environmental parameters and other disturbance factors should be included in the 
study for maximum credibility and potential of future translation to real applications beyond 
the lab. External validation should help authors to identify the limits of applicability of the 
developed predictive models. 
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Figure 1: Block diagram of an electronic nose featuring an embedded pc for on-board signal and 
data processing.  
 
Figure 2. Left) Response of a conducting polymer sensor to three reference chemicals in a 300 
days time span. Right) Principal Components score plot of a 17 Conducting Polymer Sensor 
Array. Arrows show the time evolution of the patterns in time. (after Padilla et al.25) 
 
Figure 3. When sampling the headspace of a liquid, the sensor array response becomes heavily 
dependent on the flow over the headspace (after Knobloch, et al.31) 
 
Figure 4. Response patterns for identical instruments in the same conditions  have been found to 
largelly differ (after Knocloch et al.31) 
 
Figure 5. Scoreplot of a MOX sensor array for indoor fungi detection. The sensor patterns are 
heavily dependent on the material where the fungi could grow (after Kuske et al.33). 
 
Figure 6: The evaluation of the robustness of the method should include from sampling, to the 
instrument operation but also the predictive model. With the same sampling method and 
instrument, different algorithms could behave differently concerning time stability or regarding the 
scarcity of data in the calibration set.  
 
Figure 7. Evolution of the errors (in training and in external validation) depending on the model 
complexity for two case of the ratio between sample number and dimensionality.  
 
Figure 8. Example of the internal validation methodology to explore the effect of the measurement 
day. The training set does not contain measurements from the day used for internal validation. 
For a better use of the available data for internal validation, this scheme (leave one day out) is 
repeated for all measurement days. 
 
Figure 9, Evolution of the Receiver Operating Characteristic plot for two normal populations of the 
same variance and increasing means difference. 
 
Figure 10: Synthetic example that features very small p-values and only a moderate AUC (from 
Broadhurst58) 
 
Figure 11. Binary classifier with 286 features and 174 samples. Univariate tests of individual 
features vs. Area Under the Curve in an independent test set (from Broadhurst58).  
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