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A general scheme for devising efficient cluster dynamics proposed in a previoud Pagsr Rev. Lett72,
1541(1994] is extensively discussed. In particular, the strong connection among equilibrium properties of
clusters and dynamic properties as the correlation time for magnetization is emphasized. The general scheme
is applied to a number of frustrated spin models and the results disciS4€%63-651X96)08406-1
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[. INTRODUCTION which dramatically reduce the critical slowing down.
The aim of this paper is to illustrate in more details the

The cluster formalism introduced by Kasteleyn and For-criterion proposed in Ref.20] and apply our method to a
tuin (KF) [1] and later developed by Coniglio and Klein number of frustrated spin models. In Secs. Il and Il we
(CK) [2] for the ferromagnetic Ising model has greatly en-discuss the extension of the cluster formalism to frustrated
hanced the understanding of critical phenomena in terms ¢fPin models. We stress that for the unfrustrated spin model
geometrical concept. Moreover, based on such a formalistie clusters percolate at a temperaflijethat coincides with
Swendsen and Wan@W) [3] have introduced a cluster dy- the critical temperaturd&,, while for the frustrated models
namics which drastically reduces the critical slowing downTp is larger thanT.. In Sec. IV following the approach of
in Monte Carlo(MC) simulation of ferromagnetic spin mod- Kandel et al. [14] we introduce a large variety of cluster
els. In the SW dynamics spins belonging to the same clustedefinitions which qontains as a particular case the KF-CK
are flipped in one step as opposed to the single spin dynanglusters. We then illustrate a procedure to approach system-
ics, where spins are flipped one at time. The efficiency of thetically, in successive order of approximations, a cluster defi-
SW dynamics stems from the fact that in the KF-CK formal-Nition for which the percolation temperatufig, becomes
ism the clusters represent correlated spins; therefore if onloser and closer to the critical temperatufe. In Secs.
spin in a cluster is flipped all the other spins in that clusterV—VIlI we check our procedure by comparing percolation
will successively tend to flip coherently. Consequently byguantities21,22 and thermodynamic quantities on a variety
flipping in one move all the spins in the same cluster result§f frustrated models using MC simulations. For a number of
in a much faster dynamics. The SW algorithm has been extrustrated models without disorder we find to second order
tended and applied efficiently to several unfrustrated spifhat the clusters percolate at a temperaflifenumerically
models[4—8§]. indistinguishable from the critical temperatufg. For dis-

Unfortunately, the SW dynamics based on the direct exordered frustrated models like spin glas¥G) the conver-
tension of the KF-CK cluster formalism to frustrated spingence ofT, towards the SG critical temperatuifeg is very
systems does not show any reduction of the relaxation timeslow. In Sec. VIl we implement a cluster MC dynamics
[9-11]. The reason for that is due to the fact that now thebased on the novel cluster definition. We show that the dy-
KF-CK clusters no longer represent correlated spis13.  hamics is very efficient with drastic reduction of the relax-
Recently Kandel, Ben-Av, and Domany have introduced zation time for those frustrated systems, introduced in Secs.
type of MC cluster algorithm for the particular case of the V-VII, for which the cluster definition leads t@,=T,. In
fully frustrated Ising modef14] which is able to reduce the the Appendix we show that the cluster dynamics fulfills de-
critical slowing down. Attempts to use their algorithm to tailed balance and briefly discuss the ergodicity problem.
other frustrated models has been satisfactory in few cases
[15,16 and discouraging in othefd7,18. A different ap-
proach based on the definition of quasifrozen clusters in spin
glasses looks very promising, but the implementation of a It is well known that the partition function of a ferromag-
related cluster dynamics has not been explored [§8].  netic Ising model can be written in terms of the clusters of an
More recently, based on the approach of Kanelehl, we  equivalent percolation mod¢lL,2]. A similar result can be
have proposed a general criterion and a systematic proceduséso obtained for Ising systems where frustration is present
to define clusters and related efficient cluster dynamics fof12]. The aim of this section is to recall and discuss those
frustrated spin modelf20]. In particular, we have applied results which will be useful in the following.
our general criterion to a class of fully frustrated Ising spin  Let us consider the Ising Hamiltonian
models on square lattices where the relative strength between
the interactions can be varied. For any value of the relative
strength, without invokingad hocalgorithms for each case, T{SH=-> J(€;SS—1), (1)
the same general criterion generate a Monte Carlo dynamics {0y

Il. CLUSTER APPROACH IN FRUSTRATED SYSTEMS
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where e;;=*x1 is the sign of the quenched interaction and
J=0 the interaction modulus. The interaction configuration
{&ij} can be a deterministic periodic structure or a disordered
one. Hamiltonian(1) is said to contain frustration if at least
one closed path” exists such thall; ;. v€;=—1.

Within the CK approaci2,12,13 we introduce “bonds”
between nearest neighb@iN) spins satisfying the interac-
tion probability p=1—e 2. The weight for each given
configuration of spi{S;} and bondC is given by

Wek({S},C)=plCl(1—p)A ‘ H Sss
(i.j)eCg

x I1 (1-8ss), vl

(i.j)eCa

whereCg (C,) is the subset oC which covers ferromag-

netic (antiferromagnetic bonds, i.e., bonds withe;;=1 FIG. 1. A schematic example of two spin and bond configura-
(e5=—1), andp= 1—e~?". The product takes into ac- tions. The spin at site 1 belongs to the infinite cluster in both con-
count the fact that bonds can link only spins which satisfyfigurations(a,b with different orientations. While both configura-
the interaction. The clusters are defined as maximal sets abns give positive contributions to the percolation probabikty
spins connected by bonds. It can be shd8] that in this  they give opposite configurations to the magnetizatigg). Simi-
case the partition function becomes larly the spins at sites 1 and 4 are connected in both configurations
(714=1). However, they are paralleél;)'mzl) in (@) and antiparallel
Z=2 * p‘c|(1— p)‘A|2N(C)’ 3) (?’MM:_ 1) in (b). Therefore both configgrations give a positivg con-
= tribution to the pair connectness functipg, but opposite contribu-
tion to the pair correlation functio(S;Sy).
whereX g means that the sum is over the bond configurations
which do not contain frustration. Furthermore, the presence [(SSPI=(Vijdex - ©)
of positive and negative interaction implies that the follow-

) X Examples of models without frustration for which Egs.
ing relations can be proved

(8) and(9) are satisfied are the antiferromagnetic Ising model

(S)=(v"ex— (7)) (4) ~©On a square lattice and an Ising model with interaction
Yir/ekmAYiL/cK Jij=Jojo;, where o;=*1 are quenched variables. It is
and easy to realize that for any fixed configuration @f, al-
though the interactions may be positive and negative, all the
<SiSj>:<')’=‘j>CK_<'yrj>CKa (5) loops are unfrustrated.

From(4) and(7) it follows that unlikely the ferromagnetic
wherey{; (i) is 1 if the spini is up(down) and belongs to  case the critical temperature does not coincide with the per-
an infinite cluster, otherwise it is 0, an,d‘j (7{1.) is 1if the colation temperature. In fact, defining the critical tempera-
spinsi and j belong to the same cluster and are parallefture T, as the temperature at which the Edwards-Anderson
(antiparalle), otherwise it is 0, and wheré--) is the usual [24] order parametegea=1/N=(S)? vanishes and the per-
thermodynamic average for a fixed configuration of interac-colation temperatur&, as the temperature at which the per-
tion {Je;;} and (---)ck is the average over spin and bond colation probabilityp..= 1/N=;P; vanishes, from Eq4) fol-
configurations weighted wit2). The percolation quantities lows thatT.<T, [12]. (In the definition ofge, the bar stands

are instead given by of the average over the configurations of interacde;; }
and N is the number of spin§25].) This result has been
Pi=(¥")ek=(vi) ekt (¥ ek, (6)  verified numerically for a number of different systems as
two-dimensional(2D) and 3D spin glas$9,10], fully frus-
PijE(yij>CK=<V'i'j>c»<+<7f1;>cr<, (7)  trated mode([10], and frustratedY model[11].

| . . Similarly from Eq.(5) correlation and connectivity do not
wherey;"=y{;+vi, andy;;=v;;+ vj;, andP; is the prob-  coincide any more. In fact, two spins instead of being in the

ability that the spin at site belongs to the- cluster and®;  same cluster may be parallel in one configuration and anti-
is the probability that the spins at sit@ndj are in the same parallel in anothefsee Fig. 1. Although these two configu-
cluster. rations will both contribute to the connectivity they will in-

It is clear that without frustration the relations valid in the terfere and strongly reduce correlations. ThereforeTtorT

ferromagnetic case are recovered with only trivial differ- definingg;;=(S;S;) it follows from (5) and (7) |gij|<p_ij_
ences; in fact, in this case, Eqd) and(5) become

[(SH=(¥")cx (8) _ _ o
The main result of the preceding section is that when
and frustration is present the KF-CK clusters do not represent

Ill. GENERALIZATION OF THE CLUSTER APPROACH
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FIG. 2. Examples of possible elementary units partitioning a —e
square lattice. The unmodified KF-CK clustésee text are con- I I
structed starting from elementary ufiy). The clusters discussed in ——o
Secs. V, VI, and VIl make use of elementary uul. —> o=7 =8 a=9 a=10

Q—I [ J ®
correlated spins anymore. As a consequence the percolation L O—I I—o I .

temperatureT, is higher than the thermodynamic critical a=11 ‘(1:12 o=13 a=14
temperaturdl .. We will generalize now the KF approagh] —
in order to define clusters which represent correlated spins oo R |

even in the frustrated case. The clusters will reduce to the
usual KF-CK clusters in the unfrustrated case.

We will achieve this goal in two steps. First, in this sec-
tion, following the approach introduced by Ben /Aot al.
[14,26 (BKD), we will consider a large class of clusters
which contain as a particular case the KF-CK clusters. Sec- Fig. 4. The possible bond configurations on the square
ond, in the following section, we will give a criterion to pjaquette: full lines are infinite interactions or present bonds, while
choose systematically the “right” clusters in successive 0Or-zero interactions are not marked. The laheis the index of con-
der approximations in such a way that pair connectness anurationc,, and of the corresponding statistical weight . As an
pair correlation functions tend to coincide. We will consider example the configuration=0 has no bond present.
an approximation good enough when the percolation tem-

peratureT, has approached the critical temperatiite its own bond probability. Within each elementary unit or

Let us consider a square lattice with ferromagnetic anchjaquette each bond configuration probability is independent
antiferromagnetic interactiori27] and let us focus our at- of each other, and thus, it is not given, as in the CK formal-
tention on a single isolated plagquette. This can be either unsm, by the product of bond probabilities of single pairs of
frustrated or frustrate28]. Following Ref.[14], it is pos- spins.
sible to generalize the KF procedure by assigning globally to  we consider, to begin with a specific case, a checkerboard
each bond configuration on a given plaquette or even oRartition of the square latticesee Fig. 3and we take one of
larger spin blocks taken as “elementary unit&ee Fig. 2 the two sets of plaquettdthe shaded or the unshaded ones
as the set of “elementary units” on which we make our
independent choices. We proceed further by generalizing the
KF approach. Consequently we “dilute” the couplings on
the plaquette, replacing them with a set of new interaction
configurations which contain only’— or J’'=0 interac-
tions[23]. We consider the generic Hamiltoni&h). In Secs.
V-VII we will consider specific examples. The possible in-
teraction configurations are shown in Fig. 4. We assign a
bond weightw,, to the interaction configuratioty, of the first
row (no bondy, we assign the same weight
w,=w,=---=w, to all the configurations of bonds,
Cq,...,C4 in the second row, and so on. The symmetry of the
plaquette allows us to choose the same weight for symmetric
configurations, i.e., members of the same row in Fig. 4.

The requirement of the equality between the partition
function of the original model and that of the diluted model
gives

Q
1l
wn

M
| [T ePeass-v=> w, [[ efsSsS—b,
| . (i,j)eplag. a=0 (ij)ec,
(10)

FIG. 3. A checkerboard partition of a square lattice. To cover allwhere the sum is over all the possible interaction configura-
the lattice, we can choose the shaded plaquettes, or the unshadiéans on the plaquettéM = 15 for the example in the Fig)4
ones, as set of elementary units. With (i,j)ec, we mean the NN spins connected by in-
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teractions inc, and with(i,j) eplag. the NN spins on the
plaquette. The previous relation can be rewritten as

M
2 w,e” BZplag({Sit:Ca) = e B‘”plaq.{a},
a=0

(1)

where
%plaq.({a},c@:—(iywi%J'(eij&sj—1> (12

and
Tea({SH== 2 JeSS-1) (13

(i,j)eplag.
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(1=dss),
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whereC, andC, are defined like in Eq(2).
Let us observe that

M

H Wo)dis}.c= 1;[0 (W)™ i) ¢ (20)

wheren (C) is the number of elementary units on which we
have chosen theth configuration(with «=0,...,M) in the
given interaction configurationC [with X ,n,(C)=/",
where./", is the number of elementary unijts

Therefore, from Eqs(17), (18), and(20), we obtain

M M
are the energy of the plaquette viewed as “elementary unit Z=; CL[O (Wa)na@)%} 5{3},C:; *CLIO (w,)"a(C)N(C)

in the new interaction configuration, and in the original
system.

(21)

Of course such procedure can be repeated for every . ) _ )
Hamiltonian that can be written as sum of elementary unitvhereZ¢ stands for the sum over all the interaction configu-

energies, i.e.,
t%({sa}):El TH(4SD, (14)

whose blockl we dilute and obtain the stochastic Hamil-
tonian

%({Si},C):}I: T4(SHean) (15)

W|th C= U|Ca(|) .

The equivalence between the original model and the di-

luted one is obtained imposingf. Eq. (11)],

2 Wa(|)e_ﬁ;//|({si}’ca(|)):e—ﬁ%,({si})’ (16)

a(l)

where thew,,;, is weight with which the configuratioa,,,
on thelth elementary unit occurs.

Furthermore, the partition function can be written as

S I e #nsi=S 11 e—B;ﬁ({Sﬁ},Cau))Wa(l)_

{st | {Shc 1
17

7=

rations that are compatible with at least one of the possible
spin configurationgi.e., all the unfrustrated graphsEqua-
tion (21) is the generalization of E¢3) which can be recov-
ered considering a pair of NN spins as elementary unit.
Equation(21) can be also obtained following the CK ap-
proach where the clusters are defined in the original system
introducing fictitious bonds between spins satisfying the in-
teraction. Given a spin configuratidi$;}, the probability to
realize a configuration of bonds,, on each unit is given

by

Wa()9(s},c,0q)

o BAST (22

P(Ca(|)|{si}) =

wherew,, satisfy Eq.(16). Due to(16) and(18) these prob-
abilities are normalized for any spin configuration
2,0 P(cyyl{Si}) =1. The Kronecker delta assures that the
bonds are thrown only between spins satisfying the interac-
tion. For the entire system the weight for a given configura-
tion of spins{S} and bond configuratiorC=U,c,, is
given by

W({SHC) =11 Pleal{She #7SV

=11 Wa() (s 1. (23

| a)’

Spins that are connected by infinite strength interaction
are frozen while the others do not interact. Thus the diIutiothere(14) have been taken into account. Finally fra9)
of the original Hamiltonian is also called a freezing and de'and (20) we have '
leting operation. Of course we have

M
e AAS)C0) = w({s},0)=IT (wo)™ 5 c. (24)

S }.Cay? (18)

where §(s, . is 1 or 0 depending whether or not the spin Symming over the spin and bond configurations we re-
configurations satisfy all thee strength interactions in the cover Eq.(21). The advantage of this approach is to make
interaction configuratiorc,(I) of the Ith plaquette. Two clear that both spins and bonds can be defined in the original
spins connected by an infinite strength interaction will besystem where the clusters are defined as maximal sets of
frozen in the configuration which satisfy the interaction. Onspins connected by bonds. To calculate the statistics of the
the entire lattice we can define CK clusters we have to generate equilibrium spin configura-
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tions first. Then, for each equilibrium configuration we can  To find the solution 0f16) and(28) may still be compli-

assign a bond configuration on each unikith probability = cated due to the large number of unkno@", wheren is

given by (24). the number of edges in the unit gellechnically the prob-
Summarizing, following the approach of BKD, we have lem can be simplified if we make use of E@5) which is

defined a vast class of generalized percolation modelalways valid if Eqs.(16) are satisfied.

equivalent to our original spin model E@l). When one Equation(28) together with Eq(25) implies for each pair

reduces the elementary unit to a single spin pair one recovei$ in the elementary unit

KF-CK solution and that for larger units it is always possible

to find a solution in the form of product of KF probability (yfj)|=0 if (SS;)>0,

p=1—e 2" or, generally, solutions that are factorization

of probabilities for a subpartition of the elementary units. (7‘;])':0 if (SS;)1<0, (29
The generalization discussed does not solve automatically

our problem of recovering the identity between cluster con- (yi)=0 if (§S)=0.

nectivity and spin correlation function, E), when frustra- ) )

tion is present. However, the great freedom given by(6). If (29) and (16) are satisfied, fron§25) follows that also

still gives hope to find solutions faw,, in such away to  (2g) is satisfied. As we will show in the next section in a
achieve the equa|lt99) at least in an apprOXImate way. Then Specific examp|e it is easier to |mposm) and (29) than to
it is crucial to find a criterion to select among the manyjmpose the equivalent conditiori$6) and (28).

different possibilities offered by E16), those for which9) It is clear that the larger the unit the better H@) is
holds. This is the second step needed to achieve our aim arg@isfied. It also clear that there is no guarantee on how good
will be discussed in the next section. the different approximations are and how fast F3).is ap-
proached by increasing the unit size. However, this proce-
IV. CONDITIONS BETWEEN CORRELATION dure, by increasing the size of the unit, allows a systematic
AND CONNECTIVITY way to improve the approximation.

Equations(16) and (28) introduce a set of independent

For each percolation model defined in the preceding secconditions whose number depends on the size and the sym-
tion [satisfying Eq.(16)], it is straightforward to generalize metry of the chosen elementary unit. In general we are not
the relations(4) and(5) provided that now the average over gple to know if the conditions introduced g6) and (28)
the spin and bond configurations has to be computed withaye a solution and if it is unique. Of course only solutions
weights given in Eq(24). In particular relation(5) is also  such thaw,,>0 are acceptable and these conditions intro-
valid when we consider a subsystem made of a singlelunit quce further restriction.
namely, In general, there are two possibilities. The first possibility

is that there are no solutions which satisfy E28). In this
(SSH=M— (Vi (25  case we can relax E428) by imposing

for eachi andj on the unitl. Here
: 2 rinh=2 rikS Sl k=0.12...ku. (30
Ea’{sl}...p(CaHSi})e*ﬁ-%({Si})
(o= S~ e PAUSD : (26)  wherer;; is the distance between sgirandj. Choosingky,
(S} in an appropriate way it is possible to reduce the number of
conditions until a solution is found. Ky =2 we believe that

where the sum is over all possible spin and cluster configuthe solution is rather reasonable since the conditions of Sec.

rations on the unit andP(c,|{S}) is given by(22). When || are satisfied on the unit.
the quantity to average is function only of the spin variables  The second possibility is that the solution is not unique. In
like (s;s;);, due to Eq.(22), Eq.(26) simplifies to this case we expect only small differences among different
. solutions.
E{SI}"‘efﬁ'//'({S}) To show how this scheme works, in the following sec-
(= E{Si}e—/}]/'({si}) : (27)  tions we will analyze a number of frustrated systems. In all

cases we are always able to satisfy conditith® and(28).

Our aim is to find among the large class of solutions of
Eg. (16) a solution forw,,y in such a way that the equality
(9) is satisfied. In this way the percolation temperatilite In order to check our approach we have considered a
would coincide withT and the clusters so identified will be decorated Ising model with frustration. Starting with an Ising
characterized by percolation critical exponents equal to thermodel on a square lattice we introduce between each pair of
modynamical critical exponents. Since this is not a trivialNN spinsS,, S; on the square lattice two extra spifis, S
task, we seek solutions which fulfill approximately H) (see Fig. 5 modifying the interaction from
by imposing the condition on a subsystem made of a single
unit, namely, 7(S,S)=—-3(SS—-1) (3

V. DECORATED ISING MODEL

(SiSHl={vijh - (28 to



180 V. CATAUDELLA et al. 54

o=0{ * ,*
J
Lan ®
S; SJ-

FIG. 5. The decorated Ising model described in the text: each o=3
pair of interacting spir§;, S; in a square lattice is decorated by
spinsS,, S . Full lines are ferromagnetic interactions, dashed lines

are antiferromagnetic interactions. " o o "o
L L ]
o=
I(S,9,5,9)=-ISS+SS+SS+55-55-3); e e s
(32
this generic set of four spins will be the elementary unit FIG. 6. The bond configurations of the decorated Ising model
For simplicity in Egs.(31) and(32) and in the following of ~ (Sec. VJ whose weights are different from zef&q. (57)]. We
this section we omit the labél assign the same weight to all the elements belonging to the same
The partition function of this model is reducible to the 9roup. In the figure each group is identified by a curly bracket. The
Ising one via a “decimation” on spins S, conventional representation of interactions is the same as in Fig. 5.
S:3g, .58 #7E S X HN=AJ)e PSS, The critical
9| W0+ Wjy= U4
temperature can therefore be calculated exactly '
T.=2.24... . Monte Carlo estimation of the percolation 3
temperature for the unmodified KF-CK clusters on such a Wo+ Wi +wWyu=u7,
system givesT,—T.=0.2 (here and in the following tem- (36)
perature are expressed in units Ikg). As expected the Wo+Wy+ 3w,=u?,

presence of frustration prevents the coincidence of percola-
tion and thermodynamic properties for the unmodified
KF-CK clusters.

We have to solve Eq916) and (29) for the unknown
weightsw, where a labels the bond configurations in the
elementary unifFig. 5. The average in Eq29) is over all
spin and bond configurations with probability given (26)
where. 7 is given by(32).

The spin correlations can be easily calculated fri@w) 4 3 ) 5
since they does not require the knowledge ofithe We can Wo=u", wy=u(1-u), w=u(1-u?),
immediately find(Fig. 5) (37

wz=u(1—u—u?+u®, w,=0.

Wg+ W+ Wsy+ws+ 3w,=u,
whereu=e" 2. The structure of such an equation system
still allows us to chose one unknown arbitrary; in particular
we have imposedv,=0 because it provides;=0VT.

Then the solution is

($5)>0, (33 .
In order to calculate the percolation temperature of the

clusters defined by E37), T,, we proceed in the following
(SSN=(SS)=—(55)=(SS)>0, (34  way. Given a spin configuratiofS} we assign to each
plaguette | a bond configuration with the probability
P(c,[{S}) provided by Eqs(22) and(37). Then we obtain
clusters defined in the entire lattice as maximal sets of spins
which are connected by bon@SK-like cluster definition. It

We can disregard bond configurations by inspection. Fois then possible to measure percolation quantities.

example, the weight of a bond configuration which connects We have estimated, via a data collapsing of the prob-
i andj through sitel must be zero. In fact this bond con- ability P(T,L) of having a percolating cluster at temperature
figuration would correspond 6 andS; antiparallel result- T in a system of size. (Fig. 7). We have simulated the
ing in (y?j),>0 contrary to Eq.(29). By imposing Egs. model with both standard spin-fliMC dynamics and the
(29—(35) we reduce the number of possible bond configu-clusterMC dynamics which we will discuss in Sec. VIII A
rations to 12. Furthermore, three of them have the same comwbtaining indistinguishable results within our numerical pre-
nectivity propertieqi.e., they connect the same sites the cision. In Fig. 7 we have reported the results obtained with
configurationa=3 (Fig. 6). Therefore they can be disre- the latter dynamics. Using the scaling “ansatz” that near the
garded reducing the number of weights different from zero tgercolation point P(T,L)= f([T—Tp]L”Vp), where the
9. Equation(16) now reads functional shape off is unknown, we have found that

(SSNH=0. (39
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v,=1 T,=2.25 a=1 (1) a=2(3) =3 (1)
0 o o . ° o
110 0O A0 &1y I :
[ e o ° o ¢
O
08 |- O =10 a=4 (1) a=5(1) a=6 (2)
b 1D L.
I % —e °
0.6 I /A L=20
I a=7(2) a=8 (1) a=9 (3)
i e 9 o —e
- O : E
0.4 ap L=30 )
0.2 B @ FIG. 8. Bond configurations for the AFF mod@ec. V). The
-l O 15 possible bond configurations are grouped, by symmetry, in 9
groups. To each element of a group is assigned the same wejght
| Oﬁ‘c [cf. Egs.(59) and(60)]. In the figure we show only one element for
0 each group; the other elements can be obtained trivially conserving
_‘20 _'15 _'10 ' *_'5-- : CI) . ' e '1' - 15 20 the number of ferromagnetic and antiferromagnetic bonds. In the

(1/,/) brackets it is shown the number of bond configurations belonging to
(T T )l_ the specific group. Fulldashedllines are bonds between ferromag-
netically (antiferromagneticallyinteracting spins.

FIG. 7. Decorated Ising model in two dimensiaisgee Sec. ¥
data collapsing for the probabilit(T,L) of having a percolating
cluster at temperaturEin a system of siz& =10, 20, 30(for each
size the number of system spins ix62). The data have been
obtained by using the cluster dynamics discussed in Sec. VIII A.

tivity representing as better as possible the spin correlation,
as discussed in Sec. IV, we can impose either conditi®8s

or more simply Eq(29). For pedagogical reasons we choose
here Eq.(28). These are three independent equations

. . . 2We+ 2W,+ Wg+ 3wg=|u*+ud—u—u?t¥|,
T,=2.25 andv,=1 consistent with the critical temperature 57 27 Wt Sw=| |
T.=2.24 and with the critical exponemt=1 of a ferromag- AW, + 2W,+ 2We+ 2W5 + Wg+ 3wg= |uX— ud+u—u?*X],

netic Ising model.

(39)
VI. ASYMMETRIC FULLY FRUSTRATED (AFF) MODEL 4wz + 2w+ 3wy +Wg+ 3w, = |uX—u3—3u+3u?*X|.
Let us consider a less trivial model, the frustrated Ising Equations(38) and(39) have the solutiofi29]
model on a square lattice with periodic boundary conditions 5 0 X
where each plaquette contains three equal ferromagnetic in- wi=u’,  wa=u(ut—u), (40
teractions J and one antiferromagnetic interaction ) i1
—XJ(0=<X=1). This model interpolates between the fully wi=u(l+u=2u"""), (41)
frustrated(FF) model X=1) and the diluted ferromagnetic ) X ) .
Ising model K=0) [29]. o u(3+u%)—ui(1+3u%), u>u 42
If we takew, according to the definition given in Fig. 8 5o, u<<u*,
Egs.(16) specified to this case give
, u(1—u?(u*=u), u>u*
wy+Wwg=U>, Wg= 2w, u<u*, (43
Wt Wp =T, {O, u>u* )
= 44
Wy + 2W,+ W3+ Wi+ Wg+ W7+ W= U, (39 8 |u*—ud-3u+3uX*2, u<u*, (

andw;=w;=wgy= 0. Equation$38) and(39) do not provide

a unique solution. In fact a general solution can be found
choosingwy as a free parameter. However, the further re-
quirementw =0 leads towvy=0. The solution changes form

whereu=e~?#_ The number of unknowns is larger than the for a temperaturd™* such thatu* =e~2/¥s™" satisfies the
number of equations. The percolation temperatures assoakquation (#3u?)u*—=u®-3u=0. This is due to the fact
ated to these solutions will be, in general, higher than théhat atT=T* the correlation between spins linked by the
thermodynamic critical temperature. In order to have thesénteraction—XJ (let us call themS, and S,) changes sign
two temperature as close as possible and the cluster conndeading to different possible bond configurations. For ex-

W1+ 2W2+W3+W4+ 2W7+W9=U,

W1+ 3W,+ Wy + 2wWe+ wg=UX,
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FIG. 9. The data collapsing for mean cluster sizef AFF models for systems witk=0.5, 0.75, 1.0 and number of sizes The data
have been obtained by using the cluster dynamics discussed in Sec. VIl B.

ample, the configuration associated to the weightwhich  spin-flip standard MC dynamics and the cluster MC dynam-

links antiferromagneticallyS; and S, vanishes when iCS. which we will di.SCL.JSS in Sec. V_||| B obtaining indi$tin-

($,S,)>0 [30]. guishable results within our numerical precision. In Figs. 9
It is interesting to specify the general solution for the and 10 we have reported the results obtained with the latter

diluted ferromagnetic Ising modeX&0) and the FF model gﬂf;rdéﬁggggﬁga%eée}gggfgt least over 80" MC sweeps

(X=1). In Fig. 9 we show the data collapsing for the mean cluster
In the first case X=0) it resultsu<u* for any tempera-  sjze defined a$==n.s? wheren, is the number of clus-
ture and we get the following nonzero weights ters of sizes and the sum is over finite clusters for three

g o, o ) values ofX (X=0.5,X=0.75,X=1). For comparison in Fig.
Wi=U%, Wo=u(1-u), ws=wg=u(l-u)*, 10 we show, for the sam¥ values, the data collapsing for
x=({M?—(]M|)?) where M is the magnetization. From
wg=(1-u)®. (45 those data we extract the percolation temperailigeX), the

. o ] critical temperaturd ((X) and the critical exponentg,(X),
These weights reproduce the original KF-CK solution for a;, (x), y(X), and »(X) for any X value. Summarizing we
plaquette; in fact they are in the form of productswand fi,‘-),d

1—u which are the KF-CK weights for a single spin pair.

Since forX=0 the model reduces to a ferromagnetic Ising Tp(0.5=1.24, T;(0.79=0.97, T,(1)<0.1, (47

model where some interactions have been set equal to zero,

the original KF-CK solutions reproduces the right clusters. ¥p(0.5=1.75, y,(0.79=1.75, y,(1)=2.0, (48
In the caseX=1 it resultsu>u* for any temperature and

one obtains the following nonzero weights vp(0.5=1.0, v,(0.79=1.0, v,(1)=1.0, (49

wi=ud, wy=ws=u(1—u?), (46)  for the percolation quantities, and

which are in agreement with the cluster structure used in Ref. T.(0.5=1.24, T.(0.79=0.972, T,(1)=0, (50

[31]. It is worthwhile to note that in this limit all the bond

configurations which connect spins on opposite corners have v(0.5=1.75, y(0.79=1.75, y(1)=1.51, (5))

weights equal to zero preventing the four spins of the

plaquette to belong to the same cluster evefa0. v(0.5=1.0, v(0.79=1.0, v(1)=1.0 (52

In order to check if the percolation model we have defined
has the expected properties, i.e.Tif=T., we have studied for the thermodynamic quantities. We note that
the percolation and spin properties of the system with botfl ,(X)=T(X) within the estimated numerical precision.
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FIG. 10. The data collapsing for susceptibility for the AFF model, with the same valuésaofiL as in Fig. 9.

Furthermore the same critical exponents control the diverfill up the entire system. It is interesting to note that if the
gence of percolation and spin propertigs(X)=y(X) and  approximation could be improved such that the condit@n
vp(X) =v(X) for all X values buX=1. In theX=1 case we would be exactly satisfied we would obtajr= y,=7/4 and
find »(1)#v,(1)=1.0 and y(1)# yp(1)=2.0. This result v=w,=1. In the plausible event that the exact clusters are
arises from the fact that the conditif5;S;)|=(y;;) is sat-  still self-avoiding chains the fractal dimension would be
isfied only approximately36]. The value ofT (X), y(X), D =7/4 identical to the fractal dimension of a self-avoiding
and »(X) are in agreement with the exact solution whichrandom walk at the point [37].
givesT.(0.5)=1.239..,T,(0.75)=0.972.., T,(1)=0 [32],
v=1 andy=7/4 for X#1, v=1 andy=3/2 for X=1. It is VII. ISING SPIN GLASS
worth noting that different choices of the clusters which do ) ] .
not satisfy Eq.(28) as the unmodified FK-CK clusters sys- 1he most complex and interesting model in the class of
tematically giveT,>T, and percolation critical exponents SPin systems described by the Hamiltonidj corresponds
consistent with those obtained in the random percolatiof© the case in whicl;; is a random variable: this introduces
[21,22. guenched disorder together with frustration. We have studied
the =J Ising spin glass, in the case of a square lattice with
the probability distributionp(:s”-)=/<5Eij 1+t (1—«) 55”,1
where k is the concentration of antiferromagnetic interac-
We have analyzed the cluster structure TatT(X) tions. The phase diagram of such system was described by
=T.(X) [20,35. For X+1 we have found that a typical Ozeki[38] and exhibits at low temperature a paramagnetic-
configuration of critical clusters is a fractal made of a back-ferromagnetic transition if the concentration of antiferromag-
bone and dangling bonds. The backbone is made of links angetic interactionsc is enough dilutedi.e., if 0<k=<«g, with
blobs as found in the ferromagnetic Ising mofi¢d] where  x,~0.1), otherwise there is a spin-glass transition at zero
the fractal dimension of the entire cluster was found to baemperaturdi.e., if x;<«<0.5). The casec=1/2 correspond
equal toD=1/2(y/v+d) which for dimensiond=2 gives to the Edwards and AndersdBA) model[24].
D=15/8 and the fractal dimension of the links or red bonds As in the AFF case, we partition the lattice in square
was found equal t® = 13/24. plaquettes of four spins. The system is then characterized by
For the symmetric fully frustrated mod¥l=1 the struc- two kind of plaquettes: frustrated and unfrustrated. Frus-
ture changes drastically. In fact all the clusters are made dfated plaquettes are those with one or three antiferromag-
self-avoiding chains with fractal dimension given by the netic interaction$28]. We have analyzed such cases in Sec.
scaling relatiorD = 1/2(y,/ v,+2). Using the numerical re- VI where we have obtained the probabilitiegc,|{S;}) for
sult y,=2.0 andv,=2.0 we find numericallfp=2 in agree- the bond configuration¢,, given a configuration of spin
ment with the result of Ref. BADK, Coddington, Kerler that {S;} [see Eqs(22) and(46)]. We note that the weights given
for T=0 predicts two percolating self-avoiding chains whichin Eq. (46) for a frustrated plaquette containing three ferro-

A. Fractal structure
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FIG. 12. The critical temperatur€.(«), the percolation tem-
FIG. 11. The data collapsing for mean cluster SAer EA spin peratureT gl)(x), for unmodified FK-CK clusters, and the percola-
glass model for systems with site=48, 64, 80, 100. Critical ex- tion temperatureT (?)(«), for the clusters discussed in Sec. VII,
ponents and temperature are also reported. versus the antiferromagnetic interactions concentrakofor an
Ising model with variable antiferromagnetic interaction concentra-

magnetic and one antiferromagnetic interactions only depenfP": The arrows show the valueslot-0.5. The data reported have

on the interactions satisfied. Therefore the same weights cafzen eXtracted by data collapsing of mean cluster Sizand sus-
be used for the frustrated plaquette containing an odd nu ceptibility x (see text The cluster dynamics used is described in

ber of antiferromagnetic interactions. We have used the ur;éec' vire.

. pe _ . — _ _ZJB
modified KF-CK weightsp=1-e for the unfrustrated From this analysis it comes out that neither the unmodi-

ones[Eg. (45)]. . : fied KF-CK clusters nor our clusters are able to correctly
In order to compare the results obtained using the ; : . :
. . X ; fepresent spin correlations in spin glass systems. However,

plaquette of four spins as a urtite call this choice second-

order approximationwith those obtained by using the single since rt]he percolat|or_1 tgmperatuTé, )<TE’ ; on% rmghdt ?)I(
pair of spins as unit(first-order approximationwe have plectt at a systematic mgrovgment can be obtained If larger
simulated the model with both standard spin-flip MC dynam-e ementary units are useig. 2).

ics and the cluster MC dynamics which we will discuss in

Sec. VIII C. The percolation quantities which we have mea-Y!ll.  MONTE ~ CARLO ~ DYNAMICS ~ ASSOCIATED
sured,T,, v,, andv,, do not depend, within our numerical TO PERCOLATION MODELS

accuracy, on the dynamics used. It is possible to apply the general definition of cluster
In the case of EA (rzn)ode(lx=0_.5), we have found a per-  given above, to develop general MC cluster dynamics. The
colation temperaturg ;”’=1.40 higher than the critical tem- ¢|,sters are constructed assigning to each elementary unit
peratureT=0, but lower than trggt obtained with the un- gne of the possible bond configurations according to the
modified KF-CK clusters wher@ ;’=1.80[10]. We have  ronapility given in Eq(22). Then the usual SW algorithm
also estimated the percolation critical exponenfsand y,  can be applied to the clusters described above. Following

via a data collapsingsee Fig. 1], obtaining the values Ref [14] it can also be proven that detailed balance holds
v,=1.33 andy,=2.36, which are consistent with the ran- (see Appendix

dom bond percolation valueg,=4/3 andy,=43/18.

We have also studied the region of lowwhere T, is
finite and the transition is ferromagnefi88]. In Fig. 12 we
showT {P(k), T@(«), andT(«) for 0<«=<0.1 andx=0.5. We partition the original square lattice in plaquettes as
The values have been obtained after a data collapsing for thdescribed in Sec. V, and use the clusters defined there. With
mean cluster siz& [Eq. (19)] and susceptibilityy, respec- that cluster definition we have implemented the SW general-
tively. It is clear from Fig. 12 that the percolation tempera-ized cluster dynamics.
ture T{?)(«) is again lower than the one obtained for un- We have estimated the percolation temperafyje-2.25
modified KF-CK C|USte|’ST§)1)(K), and higher than the and the percolation critical exponenjg=1.77 andv,=1.
critical temperatureT («); for values k=0.1 percolation The values obtained are indistinguishable from those ob-
temperatures slowly decrease reaching #w0.5 value: tained by using spin-flip MC dynamics reported in Sec. V.
T (M(0.5)=1.8 andT (?(0.5)=1.4, while T, abruptly goesto  We have also estimated the corresponding thermodynamic
zero[38]. guantitiesT,=2.24, y=1.78, andv=1.05 which are consis-

A. Decorated Ising model
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tent with a ferromagnetic Ising critical point within our nu- 1 cer—
merical accuracy. > AT e
In order to study the relaxation times we have computed & 09 ¢

the time dependent magnetization correlations

(MM =(IM(t")])?
(M)A —=(MEH)H*

0.8 |

d(t)= (53 07t
0.6 |
where M (t) is the magnetization at time Using the new i

cluster dynamic we find a dramatic reduction of the slowing 05T =16
down which is present for the standard SW dynamics. The L
new dynamics has critical autocorrelation times of about 10 .
MCS (Monte Carlo step per spinwhose order of magnitude 0.3 |
is comparable to those of the standard SW dynamics for a ;
ferromagnet of the same size at criticality. On the contrary 02 ¢
standard SW algorithm on the decorated Ising model shows B
: . : 0.1
very large correlation times af. (see Fig. 13 Our ap- :
proach, then, reduces the critical slowing down in this sys- 0 Bt
tem when compared to standard SW and local spin flip dy- & 7 & 9 10
namics. t(MCS>
B. AFF model FIG. 13. Correlation functiong(t), as a function of timgMC

We partition the original lattice in elementary units as steps per spinfor the decorgted Ising model introduc_ed in Sec. V at
described in Sec. VI and use bond configurations and thé = 1-6 and for a system size=32. Two MC dynamics are com-
associated probabilities introduced there to define clusterg]are‘j' unmodified FK-CK cluster dynami¢sashed lingand the
With such cluster definition we have then implemented a swruster dynamics introduced in Sec. Vil @ull line).
generalized cluster dynamics. We have estimated percolation
quantitiesT(X), y,(X), and v,(X) for X=0.5, 0.75, 1.0 In order to study the relaxation times of our SW general-
obtaining values indistinguishable from those calculated byzed cluster dynamics we have calculated the magnetization
using spin-flip MC dynamics. We have also computed thecorrelation function(53) versus Monte Carlo sweeps at the
critical temperaturel .(X) and critical exponenty(X) and  critical temperaturd .(X). It shows a dramatic reduction for

v(X). all the X values which we have studieX€&0.5, 0.75, 1.0)
X=0.5 X=0.75
o7z 09 [ °
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FIG. 14. The relaxation time versus system size for the AFF model(Sec. V) with X=0.5, 0.75. Assuming a power law scaling
7=KkL? the estimated values afx) arez(0.5)=0.30 andz(0.75)=0.46. Logarithms are in base 10.
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with respect to SW unmodified CK-KF cluster and local MC [Egs. (46) and (22)], while for unfrustrated plaquettes we
dynamics. For a quantitative analysis of the critical dynamichave used unmodified KF-CK clustdigs. (45) and(22)].
exponentz(X) at T.(X), we have calculated the integrated To check our simulation, we measured thermodynamic
autocorrelation timer using the self-consistent procedure functions as energi and specific heat, [40]. They repro-
suggested in Ref[39] with a window equal to 6. This duce known data in literature up to a temperatiite,under
method allows us to calculatefor different system size in ~ which our MC cluster dynamics freezes. We have also esti-
a consistent way. We found a power law scaling of the formmatedT,, y,, and v, obtaining good agreement with the
7=kL? as shown in Fig. 14. The estimated valuesz(X) values obtained by using spin-flip MC dynamics.

for X=0.5,0.75 are(0.5)=0.30 andz(0.75)=0.46. The re- We have already noted that in Ising spin glasses the per-
sult definitely shows a strong systematic reduction of thecolation temperature of unmodified KF-CK clusters,
critical dynamic exponent compared with those of standard E)l)(K), is higher than the percolation temperatt]féz,)(x),

MC dynamics. These results seem to indicate that the criteaf the clusters defined in Sec. VII: we have

rion to let T,(X) as near as possible ©.(X) (we have " @

previously showed the coincidence of these two temperatures T (k)=T (k) =Te(k), (54

for these models allows us to individuate efficient cluster

dynamics. It is worth noting that even in the cage 1 when

Tp=T.=0, v,=v=1, andy,>y the cluster dynamics ex- where T, is the thermodynamical critical temperature. The
hibits a drastic reduction of the critical slowing down. Nev- equality holds only fork=0 and 1(ferromagnetic and anti-
ertheless, our analysis suggests that,Xer1, it is possible ferromagnetic case, respectively

improve further this result considering larger units as starting It is possible to summarize the results in this way:«as

point of the proposed procedure. departs from the ferromagnetic Ising modetO0, relaxation
times for temperature close to the critical temperafiytec)
C. +J Ising SG model get longer, and in the region where ferromagnetic phase dis-

. . ) appearg0.1<=«<0.5), they become extremely long, even if
The panorama is more variegated in the more compleXyays shorter than those of both standard SW cluster dy-
case of Ising spin glass with varying ferromagnetic |nterac—namics(unmodiﬁed KF-CK clustepsand local spin-flip dy-
tions concentrationx. This model exhibits in 2D a pamics.
paramagnetic-ferromagnetic transition fo=@<0.1 and a Along the paramagnetic-ferromagnetic transition [ine.,
spin-glass transition for 0s1«x=<0.5. Analogously to the ;T () with 0<x<0.1] we have estimated the critical au-
other presented cases the cluster dynamic is realized by usiRg.rrelation timer(x), defined as the time to reduce square

the clusters defined in S_gc. VII. For frus.trated plaquettes Wehagnetization correlation to 1/10 of its valuetat0. These
have used the probabilities calculated in Sec. VIXorl  reqits are shown in Fig. 15 for a square lattice of size

L=32.
In the region where the ferromagnetic phase disappears
-~ (0.1=«=<0.5 and the SG transition takes overTajz=0, our

0% simulations get worse. We have studied for the ceas®.

1 imulati We h died for th ©.5

[ =32 o the following relaxation function

I A .
0% o A=y 2 (S(t)S(t+1o) (55

i A

%
A

as a function of timg¢Monte Carlo stepfor systems whose
10 F A size isL=280, 90, 100. Due to very long autocorrelation
i times we were able to perform simulation up Te=0.8.
Averages in Eq(55) were taken ovef1-4)x10* MCS dis-
carding the first X10° MCS. We observed that relaxation
time of our cluster dynamics abovg is at least one order of
1TF magnitude lower than that of a standard spin-flip dynamics
A R S A R (see Fig. 16 and, for comparison, Ref1)).
0 00z 004 006 008 01 In conclusion, in the case of spin glass we see that to a
lowering of the differencéT,—T| corresponds a reduction
of the relaxation times. However, there are indications that

FIG. 15. The relaxation times versus antiferromagnetic inter- SUCh @ reduction exists only far>T. Our results suggest
actions concentratior at T=T9(«) for the Ising model with vari- ~that taking a partition of the lattice made by larger “elemen-
able antiferromagnetic interactions of size=32. T=T(«) is de-  tary” units the procedure we have discussed define clusters
fined as the temperature at which the susceptibility of a system ovhose percolation temperature is closer to the critical tem-
size L=32 gets its maximum. Two MC dynamics are compared:perature of the original spin model. The associated cluster
unmodified FK-CK cluster dynamiosquaresand the cluster dy- dynamics is expected to be characterized by shorter autocor-
namics introduced in Sec. VIII @riangles. relation times. Work is in progress in this direction.
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FIG. 16. The relaxation functiony [see Eq.
1 (79)], for Ising SG model versus tim@C steps
10 r per spin. The temperatures reported are, from the
bottom to the topT=1.4, 1.3, 1.2, 1.1, 1.0, 0.9,
0.8 and the system sizes are=80, 90, 100.
The cluster dynamics used are described in Sec.
VIl C.
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IX. SUMMARY Ref.[14] we show that provided the mapping froh to H

In this paper we have discussed a general scheme f(g§_ee Eq(16)], a MC dynamic which verifies detailed balance

devising efficient MC cluster dynamics for spin models. ThePrinciple for 7¢ verifies it also for7i. In particular after ex-

scheme is based on three main steps. The first one consistsqﬁu“ng a freezing and deleting operatior) on the original spin
choosing a partition of the lattice into “elementary units.” system, we can implement with the built clusters a cluster

Then, using a method first introduced by Kandel, Ben-Av,dynamic based, for example, on random flipping of indepen-
and Domany{14] which is based on independent choices ondent clusters as in SW procedure. This is possible because
each elementary unit, it is possible to define a vast class ¢fuch a dynamics certainly satisfies the detailed balance prin-
cluster models whose free energy is identical to the originafiple and is generally ergodic at finite temperature.

spin model. Finally, among the many cluster models it is To prove that detailed balance is respected, let us make
possible to choose the one which satisfies at the best ttBe following preliminary considerations. We can rewrite the
equality between cluster connectivity and spin correlatiorrelation (16) as
[cf. Egs.(9) and(28)]. This procedure defines clusters which

can be used to implement a MC cluster dynamics. We have

applied this method to a number of 2D frustrated spin mod-

els taking as elementary unit a single plaquette. We show

that every timeT =T, (i.e., the thermodynamic critical ttem- Thjs js the normalization condition for the conditioned prob-

perature of the spin model; is equal to the percolation ability to have the bond configuration

X ; Ly on thelth el-
temperature for the equivalent percolation modee asso-  omentary block, given the spin configurét)i{fB}} on the sys-
ciated MC cluster dynamics is characterized by very smal

. i " ) em, i.e., Eq(Al) expresses the normalization condition for
autocorrelation times and a critical dynamic exponent

much smaller than the one obtained in lo@dktropolis MC the
dynamics. We have also shown that in the more complex
case of a spin glass where disorder is added to frustration the
percolation temperaturg, results larger than spin glass tem-
peratureTgg and the percolation critical exponent are con-
sistent with random bond percolation exponents. HoweverSince the choices on the elementary block are independent,
we see that in this case the percolation temperature can li&e probability of the bond configuratio@ on the whole
decreased up td,=1.4 using a lattice partition based on a system, given the spin configuratidi}, is the product
single plaquette. This result suggests that taking larger eIP(C|{S})=H|P(ca(|)|{si}).
ementary units, like the ones in Figd, T, can be further To obtain detailed balance principle, we must impose the
reduced. Then, we still find a lowering of the autocorrelationfollowing condition:
time for T>T;=0.8, but, this time, there are no indication of
a lowerz compared to standard Metropolis dynamics. e‘ﬁH<{S1}>T({Sﬁ}—>{$’})=e‘BH({Si’})T({SI’}—>{Sﬁ}),

In conclusion our procedure allows for a systematic de-
crease of the autocorrelation times and, therefore, may serve (A3)
as a general framework for the development of efficient MCwhere T({S;}—{S/}) is the transition probability from state
dynamics in frustrated spin models. {S} to state{S'}.

By definition T({S/} —{S;}) may then be written as

Wa(l)efﬁﬁﬂ{si}:%(l))

e~ BH/S} =1

(A1)
a(l)

Wa(l)efﬁﬂﬁ{si}vca(l))
efﬁﬁl{si}

P(c.l{SH= (A2)

APPENDIX

The aim of this appendix is to show that the MC dynam-
ics defined in Sec. VIl satisfies detailed balance. Following

TAS1—{Sh=2 PCHSHTeSI—{Sh, (A9)
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where Tc({S/}—{S;}) is the transition probability associ- and by Eq.(A4) and the definition oP(C[{S}), we get
ated with the dynamic that we use on the dilute system with

the Hamiltonian (for example, this dynamic may be the

simple random flipping of independent clusterGenerally, , efndsh ,
let us suppose that tHB-({S/}—{S;}) respects the detailed T{SI—={Sh= e THS—={S}H.
balance principle, i.e.,

(A9)

~BHUS)OT (IS 1) = BHUS)OT Y
€ Te({S}—{S}=e TeSt={Sh. This expression is EqA3) and therefore the validity of the
(A5)  principle is demonstratefd.4].
Therefore, from Eq(A4) and the definition oP(C|{S;}), Summarizing, the main assumptions underling this proof
we have consist in supposing that we can write the Hamiltonian as
, sum on elementary block§=%,H,, the choices on the el-
TS 1—={S}H ementary blocks are independent from each other and we are
E H wa“)e‘ﬂﬁl({sf}'%“)) using a dynamics for the dilute systeh that respects the
s |

e~ AMIS}

detailed balance principle.

In particular a generalized cluster MC dynamics may be
- implemented with the following steps: individuate the clus-
XTc({S}—={S}), (AB)  ters with “freezing and deleting'(i.e., to mapH into H);
random flip of such cluster@his move certainly verifies de-
tailed balance because clusters are not interactirig)jrand

TS} —={s} lterate. . _
About the ergodicity we can say that the cluster dynamics

that, using Eq(A5), becomes

Wa(l)e_BHl({Si}'Ca(l)) here described is certainly ergodic for every finite tempera-
= ; H “pHiS) ture, because the probability to go from a given spin configu-
€ ' ration to any other is always different from zero for every
X?c({S}*{S'})- (A7) nonzero temperature. In general ergodicity at zero tempera-
ture is difficult to prove: it must be checked specifically in
Now, multiplying and dividing fore™#7{S} | we obtain each particular case. Nevertheless it is possible to guarantee
ergodicity also in such extreme conditions, alternating clus-
T{S}—{ShH ter moves with a dynamics that certainly is ergodic at this
~ temperature, without changing the qualitative features of the
ePHUSH W, e AHS Can) cluster dynamic$§14].
- m = | e AHI(S} In conclusion, we have proven that adopting the proposed

_ mapping of Hamiltonians, and in particular for our general
XTc({S}—{S'}), (A8)  definition of clusters, it is possible to develop MC dynamics
which verify detailed balance principle.
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