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We consider mean-first-passage times and transition rates in bistable systems driven by white

shot noise.

We obtain closed analytical expressions, asymptotic approximations, and numerical

simulations in two cases of interest: (i) jumps sizes exponentially distributed and (ii) jumps of the

same size.
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I. INTRODUCTION

In recent years much attention has been devoted to the
study of mean-first-passage times (MFPT’s) and tran-
sition rates of bistable systems driven by colored noise
[1-4]. In such systems the noise can induce transitions
between the two stable states and the magnitude that
usually characterizes the transitions is the transition rate,
i.e., the frequency at which the transition takes place.
Under fairly general conditions the transition rate is re-
lated to the mean-first-passage time from one stable state
to the other.

There are several techniques available to calculate
MFPT’s depending on the nature of the noise. Among
these the stochastic trajectory analysis technique (STAT)
is particularly useful when the driving noise can only take
on a small number of values, as is the case of dichotomous
noise and shot noise. In two recent papers [3,4] we have
considered bistable systems driven by dichotomous noise
and our aim in this paper is to study bistable systems
driven by white shot noise (WSN). Thus we will con-
sider one-dimensional processes whose dynamical evolu-
tion equation is of the form

X(t)=f(X)+F(t), €Y

where f(z) = —V’/(z) and V(z) is a bistable potential.
F(t) is the random driving process

F(t)=Z7i6(t_Ti)_a7 (2)

where a is a parameter to be adjusted in order to have
a zero-centered noise, i.e., (F(t)) = 0 and {(7;,v:), ¢ =
1,2,3,...} is a sequence of random points in the plane
(7,7) with {~;} independent of {r;}. Therefore, the ran-
dom process F(t) may be viewed as a sequence of pulses
at random times 7y, each pulse having an independent
random weight 7;. The effect of this input noise on the
output of the system (1) is a series of independent ran-
dom jumps in the trajectory—that is, a discontinuous
trajectory with the discontinuities of independent ran-
dom heights occurring at random times.

We will assume that {7;} is a sequence of Poisson
points. In this case the time intervals ¢; = 7; — 7;_; con-
stitute a renewal process with the exponential “switch
distribution”

b(t) = re™" . 3)

We will also assume that the random variables {v,;} are
positive and uncorrelated with a given probability den-
sity function x(v;). We will consider two particular
“jump distributions.” The exponential distribution is
given by

x(v) = %e—*” (s > 0), @)

where v > 0 is the mean size of the jumps, and the delta-
function distribution

x(v:) = 6(vi =) » (5)

i.e., all jumps are of the same size v > 0.
For both jump distributions, the condition that F(t)
is zero centered implies that

a=A\y. (6)

One can easily see from Egs. (1)—(5) that the input noise
is WSN, that is, the shot noise is § correlated

(F()F(t')) =2Ds(t —t') (7)
where
2
2 a
= = — 8
D=7vA=~ (8)
for exponential distributed jumps and
2 2
XA _ et
D==5"=an ©

for jumps of the same size. We also note that WSN
is characterized for having all its cumulants § corre-
lated in time [5]. Moreover, WSN with exponentially
distributed jumps, Markovian dichotomous noise, and
Gaussian white noise are related to each other by means
of suitable limits [6, 7].

In what follows we will assume that the potential V(z)
has two minima at x; and z3 and one maximum at x,.
Thus, in the absence of noise the time evolution of the
system is towards one of the potential wells. The exis-
tence of two stable states £; and z, and one unstable
state x, divides the coordinate space in two regions A
and B. If the initial position zg < z, (i.e., the system is
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FIG. 1. Bistable potential function. The separatrix, at

T = x,, divides the coordinate space in two regions: A and
B.

initially in region A), then X (¢) will evolve towards z,
while if g > z, (i.e., Zo in region B), the system will
evolve towards 3. A and B are the basins of attraction
and z,, is the separatriz (see Fig. 1).

In the presence of noise the system can jump from one
basin of attraction to the other and the system can ex-
perience a noise-induced transition. In order to properly
define transition rates for this case one must assume that
(i) the system stays for a long time in a neighborhood of
one of the stable points and (ii) transitions are suddenly
occurring in times very short compared with the time of
residence in regions A or B. The separation of time scales
implies that the parameter D is small. We note that the
assumption of small D is also needed for any kind of in-
put noise [1]. Moreover, for a transition to exist in both
directions, i.e., from z; to z2 or vice versa, the param-
eter ¢ must be larger than some critical value a.. This
last assumption has been used also in bistable systems
driven by dichotomous noise [3]. We finally observe that
the process is bounded on the left by the value z, defined
by

F(zs) —a=0. (10)

We refer the reader to the Appendix for details.

This paper is organized as follows. The expressions for
the MFPT in the cases of interest are found in Sec. II. For
shot noise with jumps exponentially distributed, transi-
tions rates are calculated in Sec. III, while in Sec. IV
we discuss the MFPT to reach the top of the potential
barrier. In Sec. V, some calculations for shot noise with
jumps of the same size are shown, and conclusions are
drawn in Sec. VI. Finally, in the Appendix we study the
phase diagram of the system.

II. MEAN-FIRST-PASSAGE TIMES

In bistability problems one is interested in the MFPT
to a single critical level, such as a stable or an unstable
state. Using STAT, Masoliver [8] obtained closed ana-
lytical expressions of the MFPT to one critical level, say
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z, for processes driven by noncentered shot noise. In [8]
the MFPT depends on two constants that are found by
means of two ezact boundary conditions: One involving
the critical level z and taking into account the absorb-
ing nature of z and the other one involving the natu-
ral barrier x5 of the process [cf. Eq. (10)]. In previ-
ous works, Van den Broeck and Hénggi [9] obtained the
same differential equation for the MFPT as that of Ma-
soliver, but with different boundary conditions which do
not take into account the absorbing nature of the level
z. Also Hanggi and Talkner [10] and Herndndez-Garcia
et al. [11] used the correct boundary condition, but only
studied the free case, i.e., f(x) = 0. On this point we
mention that the obtention of correct boundary condi-
tions for non-Markovian processes is a difficult task which
only recently has been correctly addressed for some cases
[8,10, 12]. In this section we will apply the results of (8]
to calculate MFPT for centered shot noise.

In order to apply the results of [8] to the centered noise
(2) we have to turn Eq. (1) into an equation with non-
centered shot noise. We introduce Eq. (2) into Eq. (1)
and write

X(t) = f(X)+<@)

where ((¢) is noncentered shot noise given by

¢(t) = Z’Yi5(t )

(11)

and
f(2)

with a the mean value of ((t). We can now apply the

results of Masoliver simply by replacing f(z) by f(z).

=f(z)—a,

A. Jumps sizes exponentially distributed

In the evaluation of the MFPT to z we distinguish two
situations: (i) zo < z and (ii) zo > 2. We call (i) forward
MFPT and (ii) backward MFPT.

1. Forward mean-first-passage time

In this case zg < z and the expressions for the MFPT
are found in Sec. V B of (8] (critical levels at distinct sides
of the fixed point). The MFPT is [cf. Egs. (5.32)—(5.34)
of [8]]

"1; x - z
TF(z0) = / e &2 )/D/ dz'e~2E)/D

+—i\- (1 + 5 /xs dz e”[é(x)'q’(z)]/D> , (12)
where D = ay and a = Ay [cf. Egs. (6) and (8)]. The
effective potential function ®(x) is defined by

_fE&)
= - ! . 13
o =- [ el 42

As a simple application we have the case of the linear
drift f(z) = —z with v = X = 1. We obtain from Eq.
(12)
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1+ xo

To+1 1+ 142

—Ei(1 4+ zo) + Ei(1 + 2) , (14)
where Ei(z) is the exponential integral function. No-
tice that, although z is an absorbing boundary, we have
T.(z) # 0. Equation (14) is shown in Fig. 2 along with
simulations.

TF (20) = ——— (4= —

2. Backward mean-first-passage time

Now zop > z and this case corresponds to Sec. V A of
(8], i.e., critical levels (z, z1) at one side of the fixed point.
Since we are only interested in the MFPT to one critical
level, we make the limit 2; — oo in Egs. (5.5)—(5.7) of
[8] with the result

1 [%o d £ '
8 =L [ [ oo
’Y z oo

f(z)—a
(15)
For the linear case discussed above the result reads
1+ 2z 1 1
TE(z0) =1 -
= (o) n1+z l1+x29 142 (16)

(see Fig. 3). The difference between the MFPT’s (12)
and (15) comes from the consideration that the mech-
anism of level crossing is not equivalent in the forward
and backward cases. In the forward case jumps only are
responsible for the crossing because the ballistic motion
between them takes the system away from z, while in
the backward case it is only the ballistic motion that is
responsible for the crossing, and jumps are not favorable
events for a crossing to occur.

14.0 4

12.0

TFZ(XO)

10.0

8.0

FIG. 2. Exact MFPT for white shot noise with linear drift
f(z) = —z (e =1, D = 1, and z = 2.5). Exponential case
(dashed line), Eq. (14), and jumps of the same size (solid
line), Eq. (20). Circles represent simulation data (the stan-
dard deviation of the data is o = 0.2).
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B. Jumps of the same size

This case is surprisingly much more complicated than
the one with exponentially distributed jumps. Maso-
liver [8] found that MFPT satisfies a differential equa-
tion with deviating arguments, with an initial function
and a boundary condition. When v < z — x, and for the
forward case (zo < z) the equation reads

dimoT(:ro) + f_(ﬁ [T(zo +v) — T(zo))
1
:——f—(—:—a)—)_—a, Ts<To<2Z—7. (17)

This differential equation with delay is to be solved with
the boundary condition

T@gzn%+w+§ (18)

and the initial function
1
T(zo) = 3 (1 + Ce”\p(x")) , 2=y <mp <z (19)

where

p(xo) = /zo f—(;'i)x_—a-

The conditions given by Egs. (18)—(19) are sufficient
to determine a unique solution to the problem by the
method of steps [13]. As an example we consider the so-
lution to the linear case [f(z) = —z] when @ = 1 and
D =1, which implies v = 2 [cf. Eq. (9)]. In this case by
the method of steps the solution is found to be

2(1-}‘\/%), Z—2<.’E0<Z

T(zo) = 4_‘_71%?{“1[ (z+1)(ac+3)]+z+2},
—1l<zog<2z-2 (20)

where
co 2vVz—1 (21)

2—ln(\/z2—1+z)'

We note that Eq. (20) is only valid in the range 1 < z < 3.

This result is also plotted in Fig. 2 together with the
result given by Eq. (14). We also observe that MFPT
(20) has a discontinuity in the first derivative at z =
z —~. This is a common feature of differential equations
with deviating arguments. In fact, at the end of the first
step, the first derivative is continuous while the second
derivative is discontinuous [{13].

Unfortunately the method of steps becomes very com-
plicated when there are more than two steps involved.
The reason-for this difficulty appears in the determina-
tion of the constant C [cf. (19)]. Since the value of C is
obtained from the boundary condition (18) after all the
steps have been carried out and the critical value z; is
reached. The same problem makes difficult the obten-
tion of numerical solutions or even perturbative aproxi-
mations when 4 is small.
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FIG. 3. Backward MFPT for WSN with exponentially

distibuted jumps with linear drift f(z) = —z (e =1, D =1,
and z = —0.5), Eq. (16). Simulation data are represented by
circles (o = 0.02).

III. TRANSITON RATES
FOR EXPONENTIALLY DISTRIBUTED JUMPS

As we have mentioned in Sec. I, when D is small and
a > a. the system stays for a long time in the regions A
or B and the transitions between these regions are sud-
denly occurring during times very short compared with
the residence times in the regions A or B. In such a case
the relationship between the MFPT and the transition
rate from one well to the other of the bistable potential
is [2]

T~

Thot ’ (22)
where Thot = T, (zo) with z = 2 and zo = z; (forward
case) or z = z1 and zo = z2 (backward case).

The statement that D is small needs further clarifica-
tion; it means that D must be small compared with the
height of the effective potential barrier, i.e., D << A
where A = &(z,,) — ®(z0).

A. Forward transition rate

In this case z = z2, To = 1, and Eq. (12) reads

1 /% _dz  e@/p / ? 4z’ e~9@/D
Y Jza f(x) —a T

1 L [® —[®)-3()/D
+<- {1+ pv / dze . (23)
s

F o _
Tbot -

A

If we assume that D is much smaller than the height of
the effective potential barrier, then the integrand in the
double integral in Eq. (23)—as a function of x—achieves
its maximum in the neighborhood of = z, [note that
Z,, is also the maximum of the effective potential ®(z)].
Hence the double integral in Eq. (23) can be split into
the product of two single integrals which can be eval-
uated using Laplace’s method [3]. Moreover, when D
is small, the single integral in Eq. (23) is exponentially

small. Taking all of this into account we finally get the
asymptotic approximation

2
(o ]au])/?

where AF is the height of the effective potential barrier
defined by

AF = &(z,) — ®(x1)

TE, ~ [L+A4;D +0(D)]e2™/P,  (24)

and
_ o ﬁl Qly, ﬂu
Ar= 1o+ 12aa; 122 12aay
562 582 36, 36,
S Tt A s 3 25
+24a§ 2403  4a? + 402’ (25)
where
alu = _fl(wl,u)7
Bru = ' (@1,0), (26)

The forward transition rate is

F (all‘)‘ul)l/2
Yo~ ——
2w

The zeroth-order approximation of this rate is

[1—A;D+0(D»)]e27/P . (21)

rF o~ (allaul)1/2 e—AF/D
2 ’

in agreement with previous results [9].

A case of particular interest is that of a symmetric
potential. In this case f(z) = —z% + z and Eq. (24)
reduces to

(28)

FIG. 4. Ratio of T{,,/T{ for the symmetric potential,
V(z) = x*/4 — 2/2, and exponential WSN with a = 0.5.
Exact result (solid line) obtained by numerical integration of
Eq. (23) and asymptotic expansion (dashed line) as given as
Eq. (29).
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3 1 1
TE, ~V2r [1+ (5*’2&*‘@) D+O(D2)] eA"/D

(29)
We note that in the Gaussian white-noise limit
a— 00, A—> 0o, D= a2/A finite.

Equation (29) yields the known first-order correction to
the Kramers result [14]. We also note that the term

1,1 _ 1\ v
(z+m)’)—(l+a)4

appears because of the non-Gaussian nature (y # 0) of
the WSN.

In Fig. 4 we plot the approximate MFPT (29) com-
pared with the exact result obtained by numerical in-
tegration of Eq. (23). The figure shows the quotient
TE /TE, where T is the zeroth-order approximation
(i.e., the Kramers time) and is given by

(30)

F 27

AF/D .
T = G2

1l

We observe that when -%’: ~ 10 the agreement between

the exact result and the approximation is within 5% of
accuracy. Finally in Fig. 5 we show the exact result, the
approximation (29), and numerical simulations.

B. Backward transition rate

In this case z = x1, o = z2, and Eq. (15) reads

TB _ 1/’”2 4T e()/D /zdx e=2(")/D
bot Y Jz, f(x)_a' [ ’

31)

0 ; . . . :
0.05 0.10
D
FIG. 5. Simulation data (circles) of T, in the exponen-

tial case for different values of D and a = 0.5 (¢ = 1.5).
Numerical integration of Eq. (23) (solid line) and asymptotic
expansion, Eq. (29) (dashed line).
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In the case of D small we follow the procedure outlined
above to obtain
2

TB, ~ — T
P (azlan|)/?

[1+ AyD +O(D?)]e2%/P | (32)

where AP is the height of the effective potential barrier
defined by

AB = &(x,) — ®(x2)
and

A Qa2 B2 Qly, _ Bu

b= 1202 ' 12acs 1202 12aay
503 502 362 | 36y
—Pu 202 4 u 33
+24ag 2403 40?2 402 (33)

where o, (2, and 6, are defined as in Eq. (26) by just
replacing x; by xs.
The backward transition rate is

B _ (o2lay|)/?
ro o~ ———
2

As has been previously noticed [9] AB > AF, which im-
plies 7B < r¥. This is a consequence of the asymmetry
of the noise. Thus the § peaks in the positive direction
make that the MFPT be shorter in the forward case than
in the backward case.

For a symmetric potential corresponding to f(z) =
—z3% + = we have

3 1 1

[1— 4D +0O(D?)]e2"/P . (34)

(35)

This is shown in Fig. 6 along with the numerical inte-

0.5 T 1
0.00 0.25 0.50

D

FIG. 6. Same as Fig. 4 but for the backward case, Eq.
(35), and with T2 = /2re2”/P.
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FIG. 7. Same as Fig. 5 but for the backward case.

gration of the exact result (31). We also show in Fig. 7
the agreement of the aproximate result with numerical
simulations.

IV. MEAN-FIRST-PASSAGE TIME
TO THE TOP OF THE BARRIER

Another case that has been extensively discussed in the
literature is that of the MFPT from one of the minima
to the maximum of the potential [15]. This quantity has
been denoted by Tiop to indicate passage to the “top of
the barrier,” although we should note that in the presence
of noise, x,, is no longer the maximum of any “instanta-
neous potential” experienced by the system. This fact
makes the physical interpretation of Tiop less clear than
that of Tyot and has elicited some discussion in the liter-
ature concerning the merits of calculating Tio, when the
driving noise is not Gaussian white. In spite of this con-
sideration the calculation of Tiop is still interesting. Thus
for Gaussian colored noise there has been some contro-
versy about the order of the corrections of this quantity.
With the method presented above we can calculate ex-
actly the order of these corrections for shot noise.

A. Forward case

We define TS, = TF (z1). Then substituting zo = =,
and z = z, into Eq. (12), assuming the weak-noise ap-
proximation and performing the integrals by Laplace’s
method, we finally obtain (up to second-order approxi-

mation in D'/?)

™

L A—
P (aaaw])?/?

x [1+ B;DY? + 4;D + O(D¥?)] &A7/P |
(36)
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where

12\ ( Bu | 2ou]?
By 5(%> (|au|3/2+ a ) (37)

and Ay is given by Eq. (25). For a symmetric potential
we have

1/2
P 1y 2(2 2y (3,1, 1 \p
Tt°p_ﬂ{1+3a<ﬁ) b+ 2T 12

+O(D3/2)} eA7/D, (38)

il

Another approximation of interest is the so-called
“strong noise approximation,” D > 1 and a finite. In
this case the time interval between jumps and the noise
intensity both grow at the same rate. In this limit we
easily obtain from Eq. (12) the result

1 z,—=x 1
F u s
T‘°PNX+T+O(B>' (39)
We show in Fig. 8 the results given by Eqgs. (38) and (39)
along with the numerical integration of the exact result
(12).

B. Backward case

Now zo = z2. In the weak-noise approximation the
asymptotic evaluation of the integrals appearing in Eq.
(15) yields the result

TtB O N—
P (on|aw)r?
X [1 + ByDY? + AyD + O(D3/2)] eA°/D
(40)
50

(@]
N
[N

FIG. 8. th:p as a function of D for a = 0.5 and the sym-
metric potential. Exact result calculated numerically (solid
line), simulation data (circles) and both aproximations Eq.
(38), small D, and Eq. (39), intense noise (dashed line).
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FIG. 9. Same as in Fig. 8 but for the backward case, Eqgs.

(42) and (43). The horizontal dashed line shows Thal-

where

1/2\"? Bu |aull/2)
(2 _ 41
Bb—3(ﬂ_> ( [au|3/2+ " (41)

and A, is given by Eq. (33). For a symmetric potential
we have

1/2
B . T 1(2 1/2 3_1.. .1 D
il (B) 2 (g

+0(D?¥ 2)] eA%/D, (42)

In this case the strong-noise approximation of Eq. (15)
reads

To 2
TE. ~ iy + 2 / &
top * 2D [eS) f(‘r) —a

([ 75=) | ()
(43

where

_ / v dx
T, @ -a
is the ballistic time to reach the top of the barrier(see
Fig. 9).
We finally note that either in the forward and back-
ward case we have the ratio

Tiop _ 1 1/2
= = +O(DY?). (44)
Tbot 2 ( )

This kind of behavior when D is small has been also
observed for other input noises (3].

V. FORWARD MFPT FOR SHOT NOISE
WITH JUMPS OF THE SAME SIZE

We are now interested in finding transition rates from
one well to the other of a bistable potential when the
system is driven by white shot noise with jumps of the
same size. As we have noticed in Sec. IIB, it is difficult
to find closed expressions for the MFPT for this kind of
shot noise. Moreover, one is not able to clearly define
in which region of the parameter space (a,D) the tran-
sition rates exist because it is not even known which is
the stationary probability density function for this pro-
cess [7]. We have tried, however, to find approximations
when < is small (where the transition rate is assumed
to exist). Nevertheless, either the approximation leads,
when a — o0, to the transition rate of Gaussian white
noise or it does not behave in a correct way. We should
also mention that perturbative solutions to general dif-
ferential equations with delay does not seem to be a well
set topic in mathematics [13].

The idea of the perturbative scheme is to develop
T'(xzo + ) in powers of . In this way we find

1
T(zo+7) = T(z0) = T'(z0)y + 5T"(z0)7* + O(7°).
(45)
If we now substitute Eq. (45) into Eq. (17) we obtain

(to the lower power in ) the equation
DT"(zo) + f(z0)T (z0) = —1 (46)

where D is given by Eq. (9). Equation (46) is the differ-
ential equation satisfied by the MFPT for a system like
(1) with F(t) being Gaussian white noise.

When v is small the expansion of the boundary condi-
tion (18) reads

T (zs) = —é. (47)

Now in the Gaussian white-noise limit

a — 00, v — 0, D=C—l21ﬁnite,

we see from Eq. (10) that 2, — —oco and Eq. (47) yields

T'(—o00) = 0. (48)
On the other hand, it is easily seen from Eq. (19) that the
initial function satisfies the first-order differential equa-
tion

A 1
f(xo)—a f(xo) —a’
where z — v < z¢ < z. If we now develop this equation
to lower orders in v we get

o) = [ _ 1
T'(@) = (55 - 27(0) ) L +0() (49)

(z —v < mo < 2). In the Gaussian white-noise limit we
have £o — z and Eq. (49) yields

T(z) =0, (50)

since T”(xzo) is always finite. Equation (46) with bound-

T'(o) - T(zo) =
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FIG. 10. Tiot and Tiop for WSN with jumps of the same
size when a = 0.5 (solid line). The same results for WSN with
exponentially distributed jumps (for the same values of a and
D) are shown in dashed line. Circles represent simulation
data (o = 0.1).

ary conditions (48) and (50) is the well-known problem of
the MFPT to one critical level for white Gaussian noise
16].

[ I]Jnfortunately, when this perturbative scheme is per-
formed without allowing a — oo, we have not been able
to obtain the correct aproximate boundary condition at
z. In order to show how difficult it is to find an approx-
imation, we have plotted in Fig. 10 the exact solution
for Thot and Tiop (both numerically calculated) when no
mor. than two steps are needed to reach the limit value.
The example is for the symmetric case f(z) = —z3 + .
In this case, the limit values of v are

Y21 —x/2
for Tyt and

7 2 |zs|/2

for Tiop. From the results of Fig. 10 we observe the fol-
lowing (we concentrate on Thot, although the same can
be stated for Tiop)

(i) Thot is discontinuous at D = a|l—z,|/2. The reason
for this discontinuity is that for greater values of D, 7 is
larger than the distance from z; to z. Consequently, the
system crosses with probability 1 in the first shot and
Tbot is1 / A.

(ii) The first derivative of Tyt is discontinuous at D =
a. The reason for this discontinuity is that if D < a,
then Thot is given by the expression of the MFPT after
one step, but if D > a, then Ty is given by the initial
function (19). Both expressions have the same value at
D = a, but the first derivative is discontinuous at this
point.

These observations clearly show how difficult it is to
obtain correct approximations for the case of jumps of
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the same size. This is to be contrasted with the much
smoother behavior of the exponential case (also plotted
in Fig. 10).

VI. CONCLUSIONS

We have obtained the expressions for the MFPT to
one critical level for systems driven by centered WSN by
using previous results for noncentered WSN ([8].

For WSN with exponentially distributed jump sizes,
we have obtained closed expressions for both the forward
and the backward MFPT. For a general bistable system
we have been able to get up to first order in D the transi-
tion rates, related with T},0¢ and compare them with pre-
vious results for WSN [9] and for Gaussian white noise
[14]. Two asymptotic forms have been found for Tiop:
the usual weak-noise aproximation and the intense noise
approach (in this case the intensity of shots grows at the
same rate as the interval between them). The different
behavior of Tiop when D increases is clearly explained by
the asymmetry of the shot noise considered.

For WSN with jumps of the same size, we know the
differential equation and the exact boundary conditions
for MFPT. In this case we recover the well-known result
for Gaussian white noise when a — oo and v — 0 with
D = avy/2 finite. Nevertheless, we have not succeeded
in finding, to lower orders in <, any correction to the
Gaussian white-noise result for the transition rate. The
usual asymptotic methods are very difficult to apply be-
cause of the deviating argument in Eq. (17). Since we
know the exact result we have also calculated numeri-
cally the solution for a particular case just to show the
difficulties that arise out of the nonsmooth behavior of
the MFPT when jumps are of the same size.

APPENDIX: PHASE DIAGRAM
FOR BISTABLE SYSTEMS DRIVEN
BY EXPONENTIALLY DISTRIBUTED
SHOT NOISE

The stationary probability density ps(x) for the ran-
dom process (1) when F'(t) is white shot noise with an
exponential distribution of jumps is given by [7]

e2@/D g <z < o0,

1
pst(m) X a— f(Z') (Al)
where z;, is defined in Eq. (10) and ®(x) is the effective
potential (13). The interval [z, 00) is the region where
pst(z) is defined positive and it depends on the values of
parameter a = \7y.

Let a. be the value of f(z) at its local maximum. If
a < a. the equation f(z) — a = 0 has three real roots
(1, =5, ). In this case the action of the noise consists in
making the system jump to the right of x5, but once the
system is in that region stays there forever. Therefore, if
a < a. the noise only induces transitions in the forward
direction and bistability is broken. On the other hand, if
a > ac, then f(z) —a = 0 has only one real root z, < x;
and transitions take place in both directions.

The equation that gives the extremes of pg:(x) is
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#(@) + 2 /@) =0 (42)
and depending on the values of D and a the stationary
probability density function will have maxima or minima
in its domain. Moreover, we can also study in great detail
the behavior of ps(z) near z,. With all of these elements:
the domain, the extremes, and the behavior near z, we
can obtain a qualitative portrait of the stationary prob-
ability density function. This portrait, which depends
on the parameters D and a, is called phase diagram and
allows us to know which are the bistability regions of the
system.

For a symmetric potential f(z) = —z3 + =, Eq. (Al)
reads

(z — )21
(22 4+ zzs + 22 — 1)1+a/2

X exp [— (% + ag(:c))] )

2
where ©(z) is the Heaviside step function a = 3%,/_21 and

pst(z) X e(.’L‘ - Is)

(A3)

(z) = _ 3% arctan etz
7= V3zz—4)’

In this case a. = 2/3v/3 and the behavior of ps(z) near
z, is determined by the term (z—z,)*~!. Thus, ifa¢ < 1,
then the stationary density diverges in the neighborhood
of z;. If 1 < a < 2, pst(x) does not diverge, but its
first derivative does. When a > 2 both the density and
its derivative are zero at *x = z,. Finally, the position
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FIG. 11. Different forms of the stationary probability den-

sity (phase diagram) for the system described by Eq. (1) with
f(z) = —2®+z and F(t) WSN with exponentially distributed
jump sizes. The stars represent the parameter values (a, D)
for which different stationary probability density functions are
shown in the diagram.

of the extremes is given by the roots of the equation
—23 — 3yx? + £ 4+ v = 0. The phase diagram is shown in
Fig. 11.

We finally mention that there are no similar calcula-
tions for shot noise with jumps of the same size [7].
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