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Abstract: With the arrival of the third Data Release from the Gaia mission, we receive new
information that can be really helpful to detect new clusters in the Galactic disc. So far, cluster
hunting methods used five parameters, which are position, parallax and proper motions of the stars,
in order to identify clusters. The new release arrives with the mean radial velocity (RV ) measured
for 33 million stars, which can be added as the sixth dimension in order to improve the efficiency of
these methods.
In this work, we implement a six-parameter detection method based on the work developed for
previous releases. The method searches for clusters in a region of the sky with two input hyper-
parameters, the size of the box and the number of neighbour stars considered to form a cluster
(L,minPts). We have run the algorithm for 81 different pairs, to determine which one performs
better through several regions of the sky. The most efficient pair has been (L,minPts) = (13◦, 11),
followed closely by (16◦, 12). Both had near 60% of the clusters found and 70% of correctly clustered
stars while having a low number of field stars clustered, which means the results had lower noise.

I. INTRODUCTION

On 19th December 2013, the European Space Agency
(ESA) launched the Gaia space telescope [1] with
the objective of mapping more than one billion stars
located in the Milky Way, gathering information about
their position, motion, magnitude and several other
parameters. Until this year, we have received different
data releases from the Gaia telescope (Gaia DR1 [2],
Gaia DR2 [3]), and early release EDR3 [4] with stars
described homogeneously by astrometric parameters (α,
δ, ϖ, µα, µδ). The third release (DR3) [5], has been
published in 13th June 2022.

All of this information is key to study and understand
several properties about our Galaxy, for instance stellar
formation. One way to tackle these studies is using
groups of stars with a common origin and formed from
the same material as the main tracers. These groups
of stars are called clusters, concretely open clusters if
we are talking about the those born in the Galactic
disc. Open clusters offer the opportunity to obtain more
reliable astrophysical parameters than the single field
stars, since these parameters are estimated averaging
over the whole cluster stellar population.

With the different Data Releases, researchers have
been able to apply data mining techniques in order to
identify clusters contained in these large data sets (for
instance, the method from Castro-Ginard et al. 2018,
CG18 from now on [6]). CG18 method to detect new
open clusters includes the five astrometric parameters
available (α, δ, ϖ, µα, µδ). One can note that, out of the
six-dimensional space formed by position and velocity,
there is one missing parameter, the radial velocity (RV ).
The DR2 included mean radial velocities for almost 8
million stars [8], being the first time the data collected

by the Radial Velocity Spectrometer was published. But
it is with the Gaia DR3 when we receive more precise
data, among other products, providing the mean radial
velocities for 33 million stars.

In this work we describe the addition of the RV to ex-
isting methodologies to prepare the arrival of the DR3.
We followed the method described in CG18. The algo-
rithm has been developed from scratch in Python pro-
gramming language and using existing Astronomy and
data-mining modules that will be described in the fol-
lowing sections. We have tested how it performs in some
selected regions of the sky, accounting for different den-
sity regions along the Galactic disc. These regions con-
tain field stars simulated by the Gaia Object Generator
(GOG) [7], in which we added simulated open clusters
to check how the algorithm performed given a pair of
hyper-parameters: the size of the square region in which
we search, L, and the minimum number of neighbours
we consider to conform a cluster, minPts.

II. DATA PROCESSING

The first step we perform is the preparation of the
data that is going to be used. This is an essential step in
any data-mining task. We obtained the simulated cluster
data from the GOG. For each cluster, we have informa-
tion for each of their member stars corresponding to:

• Position (x, y, z) in [pc].

• Velocity (u, v, w) in [km/s].

• Visual Magnitude (vMag).

• Colour index (V − I).

• Spectral Type (SpT ).
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This serves us to obtain the data we want in a
more suitable format. Using the Astropy module [9],
we transform the position and velocity to the ICRS
coordinate system, the same system used in the GOG.
After this transformation, we calculate the observational
errors using the PyGaia package [10], in order to recreate
how the Gaia telescope would observe these sources at
the time of the DR3.

Once we have the data from clusters correctly stored,
we download from the GOG a rectangular region in the
ICRS coordinate system, containing the Galactic cen-
ter. We will later add to this region, containing sim-
ulated field stars, the clusters we obtained previously,
and then we will proceed to search clusters in different
sub-regions, storing the results as a function of the input
hyper-parameters. In the next section we give a detailed
description of this method.

III. METHODOLOGY

Following the methodology developed by CG18, we
have used the clustering algorithm DBSCAN [11] to
search for clusters using a dataset where we add the
sixth parameter RV added. DBSCAN has two input
hyper-parameters, minPts and ϵ, and once they are
given it can search for over-densities in the six-parameter
space. The algorithm starts on one source of a (L × L)
region and calculates the euclidean distance in the
six-dimensional space between the source and every
other source. If the distance is less than the value (ϵ),
it considers the two sources neighbours. When the
algorithm ends the computation for a single star, if the
number of neighbours counted is greater or equal than
minPts, the star is considered to be a core member
and all the neighbours will be labeled as members. The
algorithm will jump to one of those neighbours and
run the same process. When the algorithm reaches a
source where it cannot find at least minPts neighbours,
and there is no more unexplored members, it randomly
jumps to another source and searches a new cluster.

Figure 1 shows a sketch of how DBSCAN works in a
two-dimensional space. Core stars are in red, the ones
that verify the minPts condition, considered to be the
core points of the cluster. In yellow, boundary stars that
have been clustered but have less than minPts in their
ϵ-neighbourhood. We consider both core and boundary
as cluster members. Finally, the purple stars are the
outliers, field stars that are not clustered.

Once the neighbours of the last star have been
computed, all the stars are labeled either with -1, which
means they are considered field stars, or with a number
equal or greater than zero, corresponding to each of
the clusters found. In Figure 2, we can see a region of
sky before and after running the DBSCAN algorithm.

FIG. 1: DBSCAN search in a dataset [12]. Red dots are core
points of the cluster, yellow dots are in the neighbourhood of
the cluster but have not enough points to be a core member,
and blue ones are not in the cluster.

FIG. 2: TOPCAT [13] plot of a region of the sky α= (18h00m,
18h40m), δ = (−25◦,−15◦) before and after applying the
clustering algorithm with parameters (L,N) = (10◦, 4). The
algorithm found 16 clusters in total.

In the left plot we can clearly see over-densities in
the darker spots, and these are confirmed in the right
plot with the clusters identified in a different colour.
In Figure 3 we plot the stars corresponding to the
added clusters, the grey ones are the undetected and
in blue the correctly clustered. In addition, there are a
few red dots that show the field stars that were clustered.

To reduce the free hyper-parameters that we need to
give to DBSCAN, we automatically determine which ϵ
value will be chosen for each region for each minPts
value, as done in CG18. We compute the kth Nearest
Neighbour (kNN) for every field star of a region of the
sky first. Then, we do the same, including the simulated
clusters and calculating the distance for their stars too.
We choose the ϵ parameter by averaging the minimum
kth distance from both regions. Once we choose an
input minPts value for the DBSCAN, and knowing that
k = minPts− 1, we can calculate the input ϵ value.

We will run the algorithm for minPts ∈ [4, 12]. For
each value, we will also evaluate different sizes of region,
in order to assess the effect of having different number
of clusters in a region. The values will be L ∈ [8◦, 16◦].
In the following section the processed results obtained by
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FIG. 3: TOPCAT [13] plot of the same region, showing the
stars from simulated clusters in grey if they have not been
detected and in blue if they are correctly clustered. We also
see the field stars that were clustered in red.
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FIG. 4: Matrix plot with a heat map of the percentage of cor-
rectly clustered stars by every pair of parameters (L,minPts).

each pair of parameters (L,minPts) are shown, as well
as a summary of their performance.

IV. RESULTS

Once the analysis has finished, we store our results
and proceed to run post-processing scripts to the data.
First, we will show the performance of this method
depending on the choice of parameters (L,minPts),
and then we will show the properties of a selection of
clusters, the times they were correctly clustered and the
percentage of the stars that were correctly clustered.

In Figure 4, we can see the percentage of stars that
were correctly clustered per each (L,minPts). The
plot shows that increasing the number of neighbours
implies finding more clustered stars, as the radius of the
neighbourhood will increase. We can also see that the
size of the box considered changes its performance. For
smaller sizes, we can study better the inhomogeneity of
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FIG. 5: Matrix plot with a heat map of the percentage of
clusters found by every pair of parameters (L,minPts).
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FIG. 6: Matrix plot with a heat map of noise (the false
positives-true positives ratio in logarithmic scale) captured
by every pair of parameters (L,minPts). The pairs with less
noise are in yellow.

8 10 12 14 16

4

6

8

10

12

L

N

Efficiency

−1.5

−1

−0.5

0

0.5

−ln(fn/tp)

FIG. 7: Matrix plot with a heat map of the efficiency (the
false negatives-true positives ratio in logarithmic scale) of ev-
ery pair of parameters (L,minPts). The pairs with better
efficiency are in yellow.
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Cluster α [deg] δ [deg] ϖ [mas] µα [mas·yr−1] µδ [mas·yr−1] RV [km/s] Stars %Found %Stars

NGC6604 274.50 (0.04) -12.25 (0.04) 0.59 (0.01) -0.36 (0.19) -2.68 (0.2) 9.66 (2.21) 2154 100 99.6

NGC6530 271.11 (0.13) -24.36 (0.12) 0.76 (0.01) 0.58 (0.25) -2.10 (0.25) -6.36 (1.71) 630 100 97.8

vdBergh113 272.21 (0.13) -21.42 (0.12) 0.29 (0.01) -0.26 (0.1) -2.47 (0.1) -16.18 (44.07) 2638 100 88.4

Trumpler27 264.08 (0.07) -33.52 (0.06) 0.83 (0.01) -0.93 (0.27) -0.56 (0.29) -15.77 (5.46) 340 100 87.4

Ruprecht141 277.82 (0.04) -12.32 (0.04) 0.18 (0.01) 1.37 (0.06) -4.67 (0.06) 31.53 (57.25) 746 100 85.8

NGC6242 253.90 (0.11) -39.46 (0.08) 0.89 (0.01) 0.39 (0.33) -0.12 (0.3) 9.77 (5.07) 118 100 77.4

Trumpler26 262.14 (0.04) -29.50 (0.04) 0.36 (0.01) -3.51 (0.12) -0.01 (0.12) 13.30 (32.98) 172 100 76.5

NGC6250 254.48 (0.12) -45.93 (0.1) 1.16 (0.01) -0.18 (0.4) -3.33 (0.4) 10.25 (3.47) 186 100 76

NGC6167 248.63 (0.09) -49.77 (0.06) 0.90 (0.01) -0.84 (0.28) -4.53 (0.3) -35.69 (4.71) 66 100 75.7

NGC6249 254.39 (0.05) -44.82 (0.04) 1.02 (0.01) 2.19 (0.27) -5.06 (0.37) 9.89 (4.97) 56 100 75.2

ASCC88 256.68 (0.69) -35.61 (0.55) 0.53 (0.01) 2.89 (0.18) -2.00 (0.18) 1.73 (17.04) 7934 100 74.8

NGC6475 268.49 (0.81) -34.87 (0.71) 3.33 (0.04) 1.64 (1.14) -3.60 (1.18) -14.84 (1.99) 285 0 0

Alessi9 266.08 (2.12) -47.19 (1.34) 5.12 (0.12) 11.69 (1.76) -9.67 (1.67) -11.64 (2.1) 223 0 0

ASCC94 273.84 (0.27) -15.02 (0.24) 1.18 (0.01) 0.34 (0.36) -0.15 (0.38) -25.92 (2.13) 82 0 0

ASCC90 264.85 (0.48) -34.75 (0.32) 2.00 (0.02) -2.42 (0.62) -3.74 (0.7) 10.02 (1.68) 40 0 0

NGC6514 270.65 (0.23) -23.02 (0.23) 1.23 (0.01) 2.74 (0.4) -0.85 (0.48) -1.60 (2.79) 38 0 0

NGC6613 274.99 (0.04) -17.10 (0.04) 0.77 (0.01) -0.92 (0.29) -1.26 (0.26) -4.28 (7.93) 31 0 0

NGC6546 271.87 (0.15) -23.34 (0.11) 1.06 (0.01) -2.46 (0.4) -0.64 (0.38) -16.37 (2.31) 27 0 0

TABLE I: List of a selected group of clusters with their mean parameters and their standard deviation. The first set of clusters
shows the clusters with the highest percentage of stars found. The second set of clusters shows some clusters that have not
been found.

the sky, allowing less dense cluster to be more noticeable.
This is shown in Figure 5, a matrix plot that shows the
percentage of clusters found out of the total we added.

This does not mean that smaller sizes perform better.
We have to take into consideration the field stars that
were clustered, the false positives. Having low size of
box adds a lot of noise, as we can see in Figure 6. Low
number of neighbours also show an increase of noise,
since a few field stars with similar parameters end up
clustered. Overall, the best performing pairs are around
L = 13◦ and L = 16◦, as we can see in Figure 7, where
the efficiency is computed as the division of the false
negatives rate by the true positives rate. The rate of
false negatives is the percentage of clusters not found
out of the ones added, while the rate of true positives
is the percentage of correctly found clusters out of the
total found. These pairs may not give all the possible
clusters that can be found, but the results given have
less false positives (the percentage of clusters formed
only by field stars out of all the clusters found) while
they still have good levels of clusters and stars found.

To understand these results, we need to take into ac-
count three main factors that can make a cluster go un-
noticed (or less defined):

• The most obvious one, how clustered it is in all of
its 6-parameters. If the cluster has very low disper-
sion in the parameters when compared to the field
stars, it is more likely that it will be found. When
the dispersion of its parameters is high, member
stars end up blending with the ones outside of the
cluster.

• The amount of stars forming it, since more stars
in a cluster mean more potential neighbours. In
some extreme cases, the cluster has less stars than
the minimum required, meaning that it does not
matter how clustered it is, DBSCAN will not find
it. We have discarded these cases, but some small
clusters that barely make the cut are not found and
counted as a false negative.

• The last one is the presence of very dense cluster(s)
in a region. Since the radius of the neighbourhood
is determined as described Section III, if there is
a very dense cluster in a region, the ϵ will be low.
This means we are limited to find the most dense
clusters in the region. We explore several L val-
ues to check the behaviour of the algorithm. A
lower size of the box helps to reduce this effect, be-
ing more probable to isolate the small clusters and
lowering the chance of having dense clusters in the
same box. In exchange, the noise is greater than
for a larger box size, as we show in Figure 6.

In Table I, we can see the average performance in a
subset of clusters. We have chosen the most defined
(the ones with greater % Stars Found) clusters for
the first subset, and the biggest not found clusters for
the second. At first glance we can state that having
small position and proper motion dispersion leads to a
higher rate of detection. Comparing the α and δ dis-
persion of the first and the second subset, its clear that
high dispersion ends up with the cluster not being found.

If we compare the ASCC 88 (the biggest cluster)
with ASCC 94, we can see that while they have similar
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dispersions, the first one is always detected and the
second one never. If we check in the table, we can see
that ASCC 94 (α = 273.84◦, δ = −15.02◦) is very close
to NGC 6604 (α = 274.50◦, δ = −12.25◦), the most
defined cluster. This means that ASCC 94 is eclipsed by
the pressence of a denser cluster in his region, and the
ϵ value computed there is smaller enough to not detect it.

Comparing now ASCC 88 with NGC 6604, the best
defined cluster, we see the effect of the dispersion in
position. We almost find every single star in NGC 6604,
while we leave 25% of ASCC 88 member stars unfound.
For the first one, we can also see a radial velocity
dispersion almost ten times greater than in NGC 6604,
which also reduces the density of the first cluster in the
six-parameter space.

Radial velocity dispersion do not seem to affect
the result as much as the other parameters. We can
compare some clusters that only differ significantly
in RV dispersion to find that the definition of the
cluster is affected by it. For example, if we compare
NGC 6604 with Trumpler 26, we can see a case where
all the positional and proper motion dispersion are
almost equal, but RV dispersion is 15 times bigger in
Trumpler 26 case, leading to a difference in resolution of
almost 25% of the percentage of stars found. Another
example is NGC 6530 vs vdBergh 113, the second one
having equal or less dispersion in all of its parameters
except for RV , where it has more than 20 times the
dispersion of NGC 6530. Despite having much more
stars, the percentage of stars found is almost 10% lower.

V. CONCLUSIONS

We have implemented a method that is capable
of finding clusters using the DBSCAN algorithm. It
has been tested in a Galactic field simulation of a
region of the sky with simulated clusters added. The
algorithm has performed a search in the sub-regions
sized (L× L)◦, calculating the distance between stars in
the six-dimensional space of the parameters (α, δ, ϖ,

µα, µδ, RV ) and clustering them in groups of at least
minPts stars.

The hyper-parameter minPts is the minimum re-
quired neighbours to form a cluster, and also defines the
ϵ radius that is considered to be the neighbourhood of
each star. This radius is obtained by performing the
mean between the distance of the kNN of the smooth
region of the sky and the distance of the kNN of the
region with the clusters added.

We have seen after processing the results how this
design hyper-parameters (L,minPts) affect the per-
formance, obtaining from 45% to 70% of the clusters
correctly identified, and similar percentages of correctly
clustered stars out of the added from the simulation.
We checked how parameter dispersion affected to the
results, in order to understand why there were some
better performing pairs. The best efficiency was ob-
tained for high values of L and minPts, obtaining a
bit worse results in terms of amount of clusters found
but having much less noise than other parameters.
The best pair was (13◦, 11), although several pairs
with similar efficiency should be considered in a real
search in order to account for the limitations of this work.

This work has been developed under some limitations,
mainly computational. Since we only consider a region of
the sky, results may be biased towards similar populated
regions, considering we chose the center and part of the
disc of our Galaxy. This can be improved using more
computational power to cover bigger regions
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