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Abstract. In the past decade, society has experienced notable growth in a varie-

ty of technological areas. However, the Fourth Industrial Revolution has not 

been embraced yet. Industry 4.0 imposes several challenges which include the 

necessity of new architectural models to tackle the uncertainty that open envi-

ronments represent to cyber-physical systems (CPS). Waste Electrical and Elec-

tronic Equipment (WEEE) recycling plants stand for one of such open envi-

ronments. Here, CPSs must work harmoniously in a changing environment, in-

teracting with similar and not so similar CPSs, and adaptively collaborating 

with human workers. In this paper, we support the Distributed Adaptive Control 

(DAC) theory as a suitable Cognitive Architecture for managing a recycling 

plant. Specifically, a recursive implementation of DAC (between both single-

agent and large-scale levels) is proposed to meet the expected demands of the 

European Project HR-Recycler. Additionally, with the aim of having a realistic 

benchmark for future implementations of the recursive DAC, a micro-recycling 

plant prototype is presented. 

Keywords: Cognitive Architecture, Distributed Adaptive Control, Recycling 

Plant, Navigation, Motor Control, Human-Robot Interaction. 

1 Introduction 

Designing a cutting-edge industrial plant in 2020 is a great challenge. Despite the 

notable growth in a variety of technological areas in the past decade, including Cyber-

Physical Systems (CPS), Internet of Things (IoT), cloud computing, embedded sys-

tems, Industrial Integration and Industrial Information Integration, the Fourth Indus-

trial Revolution has not been embraced yet. 

Strategic initiatives such as Industrie 4.0 (Germany, 2013) and Made-in-China 

2025 (China, 2015) represents firm steps toward such a revolution that aims to go 

further in automation, focusing on end-to-end digitisation and integration of digital 

industrial ecosystems [1]. Industry 4.0, which is broadly seen as quasi-synonym of 

Fourth Industrial Revolution, seeks the combination of the following emerging tech-

nologies: a) CPS, representing the natural evolution of embedded systems, going from 

centralised control systems to autonomous machines capable of communicating with 
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each other [2]; b) Cloud computing, that not only provide Industry 4.0 with high-

performance computing and low-cost storage but also allow system orchestration by 

modularisation and sharing resources in a highly distributed way; c) IoT, working as a 

global network infrastructure that fully integrates identities, attributes and personali-

ties of physical and virtual “Things”, thanks to radio-frequency identification and 

wireless sensor networks [3]. 

A predecessor of IoT in a country scale industrial context, the Cybersyn Project, 

can serve us as an example of how important is taking into account the contemporary 

challenges. This project aimed to collect and transmit economic-related data in real-

time to aid Chile’s governmental body to make informed decisions in a more demo-

cratic manner [4]. Cybersyn began in 1971, however, due to technical, financial and 

political circumstances met its end in 1973 with Pinochet’s dictatorship [5]. To avoid 

similar failures, any project aiming to get into the Fourth Industrial Revolution must 

consider contemporary challenges such as: improvement of Information and Commu-

nication Technology infrastructures, solving the scalability problem, development of 

data science and data analytics techniques as well as heterogeneous IoT-related net-

works. In this work, we address one specific barrier that may hinder progress: the 

necessity for new architectural models. CPS (e.g. robots) must lead with uncertainty 

when interacting with the natural world (e.g. industry plant). This uncertainty is due 

to the changing conditions, the variety of possibilities and the complexity that open 

environments offer. To tackle this problem, an architecture approach is essential since 

allows the CPS to be dexterous in different competencies while ensuring safety, secu-

rity, scalability, and reliability [6]. However, current architectures are not capable of 

fulfilling all Industry 4.0 requirements. In this paper, a new version of the Distributed 

Adaptive Control (DAC) architecture is proposed as an ideal candidate to control an 

industrial plant in a recursive fashion. 

Artificial Intelligence approaches have shown promising results when it comes to 

agents performing simple tasks in dynamic but constrained environments. For exam-

ple, logarithmic AI solutions have demonstrated successful results (even exceeding 

human performance levels) in limited domains such as Atari videogames or Go, but 

implementing a solution that solves a simple navigation task is currently not possible. 

Furthermore, they require a large amount of training in comparison to human learning 

[7]. In contrast to board games, industrial plants are highly complex and heterogene-

ous. Robots operating within such a plant need to be equipped with a wide range of 

capabilities (i.e. navigation, motor control, human-robot interaction, etc.). Due to the 

complex behaviour required to these robots, an architectural strategy fits better with 

the necessities. With an appropriately designed architecture able to organise the dif-

ferent plant-specialised modules and information flow, the system should acquire 

robustness while performing various tasks. Indeed, the challenge of creating such an 

architecture opens the question of what design principles must be followed. Although 

control architectures can accomplish the tasks for which they have been designed, in 

many cases their success is constrained to a predictable environment, and their per-

formance is far from the human-level efficiency [8]. In contrast, cognitive architec-

tures aim to build human-level artificial intelligence by modelling the human mind. 

Thus, systems driven by a cognitive architecture could reason about problems across 
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different domains, develop insights, adapt to new situations and reflect on themselves 

[9]. 

 Here, we propose to create a factory operating system in the form of a synthetic 

agent, by taking advantage of the fact that a cognitive architecture could work recur-

sively. The term recursive refers to the double-scale functionality of the system: vari-

ous individual agents that are specialised in different tasks and that are controlled by a 

higher-level entity, the factory itself. Envisioning a recycling plant with a recursive 

architecture resonates with the metaphor “Der Mensch als Industriepalast” (Man as an 

industrial palace) that was proposed by Fritz Kahn. Analogous to a recycling plant, 

the ingestion of food in Fritz’s illustration implies a procedure of treatment, disas-

sembling and classification of the material into different nutrients. For a seamless 

usage of this disassembled material, the control centre (in the representation of the 

brain) works on top of the other related systems such as metabolism, blood circulation 

or respiration. 

 However, Fritz’s illustration depicts a linear process where individual agents are 

not required to perform dynamically and are hence not involved in the implementa-

tion of a cognitive architecture. In contrast, the recycling plant presented here requires 

a cognitive architecture at both single-agent and large-scale levels, since robots per-

forming tasks of navigation, disassembling, classification, etc. need to work autono-

mously in a parallel and context-adaptative fashion. The synergic operation of the 

whole plant depends on the agents’ behaviours, which are monitored, controlled and 

influenced by the large-scale level. 

 In the following sections, we propose the Distributed Adaptive Control theory of 

mind and brain (DAC) as a candidate to control a hybrid human-robot recycling plant 

of Waste Electrical and Electronic Equipment (WEEE) management. Previous work 

on DAC will elucidate how this architecture supports essential robots’ abilities at both 

single-agent and large-scale levels. Finally, we present a micro-recycling plant as a 

functional prototype and a benchmark for the implementation of DAC.  

2 WEEE Recycling Plant 

Recycling awareness is gaining importance, especially since recycling plants have to 

deal with a significant amount of waste per year. The European Union by 2017 recy-

cled and composted 94 Mt (35.2%) of its municipal solid waste [10].  For this reason, 

and as in many other industries, recycling plants have incorporated a variety of ma-

chinery which processes paper, glass, plastics and other materials on a large scale.  

 However, society is consuming a growing number of electrical and electronic de-

vices that, after a few years, become into e-waste. This e-waste, namely Waste Elec-

trical and Electronic Equipment (WEEE), cannot be processed by the machinery de-

signed to handle the raw materials mentioned previously. The challenge in WEEE 

management does not only lie in the correct classification of a device but also its 

disassembly. Each device (such as a TV screen) has a variety of models, and not all 

models include the same disassembly procedure, or each procedure may be executed 

in a different order. Additionally, the handling of sensitive or hazardous material (like 
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mercury lamps) adds an extra level of difficulty in the automation of the processing of 

e-waste. So far, humans seem to be more skilled in performing device disassembly, as 

their robotic counterparts can only perform partial disassembly that is not generalised 

to all types of devices. Nonetheless, this partial performance still represents a relief in 

the arduous task of component disassembling and material. A solution to expedite this 

work is the development of hybrid human-robot recycling plants where experienced 

workers would cooperate with specialised robots. This solution implies splitting the 

disassembling process into subtasks according to the skills of both humans and robots. 

 A clear example of this new paradigm is the European Project HR-Recycler, where 

robotic grippers and mobile robots assist in the recycling process of WEEE. Here, 

robots not only perform repetitive and automated tasks, but they are endowed with 

autonomous behaviour adaptive to a changing context. Thus, HR-Recycler represents 

a step towards Industry 4.0 and an ideal framework to introduce new architecture 

models able to perform the disassembly task even under conditions of uncertainty 

(like a dynamic, open space in a hybrid human-robot recycling plant). We propose an 

enhanced plant where we apply the DAC architecture at both single-agent (robots) 

and large-scale (plant) levels, shaping a multi-scale recursive architecture. 

3 Distributed Adaptive Control 

The Distributed Adaptive Control (DAC) [11] is a theory of the principles underlying 

Mind, Brain and Body Nexus. It is expressed as a robot-based neural architecture that 

accounts for the stability maintained by the brain between an embodied agent and its 

environment through action. DAC assumes that any agent, to act, must continuously 

solve four fundamental questions, the so-called H4W problem [12]: “Why”, reflects 

the motivation in terms of needs, drives and goals; “What”, accounts for the objects in 

the world that actions pertain to; “Where”, represents the location of the object and 

the self; and “When”, serves as a temporal reference of the actions. Additionally, a 

fifth question (Who) was added, referring to the agency [13]. 

 DAC organises the generation of behaviour horizontally across four layers of con-

trol. The Somatic Layer defines the fundamental interface between the embodied 

agent and its environment, including the needs that must be fulfilled to ensure surviv-

al. In a robotic system, this layer accounts for its sensors and actuators and sets its 

predefined needs. The Reactive Layer provides a set of unconditioned responses 

working as reflexes for given unconditioned stimuli. This layer represents the first 

stage of the generation of goals since the behaviours produced follow homeostatic and 

allostatic principles. The Reactive Layer works on top of the Somatic Layer, gather-

ing sensory data and providing reflex responses through the actuators. A clear exam-

ple of these reflexes is the “stop signal” triggered when a human gets close to the 

robot trajectory. The Adaptive Layer frees the system from the restricted reflexive 

system by perceptual and behavioural learning. It follows classical conditioning prin-

ciples since the value of the sensory input is shaped by experience, and its outputs 

could result in anticipation response. Thanks to this layer, the robot can adapt its be-

haviour according to relevant stimuli (i.e. adjusting its security distance depending on 
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the current scenario). Finally, the Contextual Layer allows the generation of behav-

ioural plans or policies based on sequential memory systems. Sequential representa-

tions of states of the environment and the sensory-motor contingencies acquired by 

the agent are stored in the memory systems, allowing behavioural plan recalling by 

sensory matching and internal chaining. Thus, the Contextual Layer shows action-

dependent learning as observed in operant conditioning, allowing abilities such as 

allocentric-based trajectory planning, crucial for the mobile robot’s navigation. In 

addition to this layered horizontal organisation, the architecture is also vertically dis-

tributed across three columns: states of the world obtained by exosensing, states of the 

self obtained by endosensing and their interaction through action. 

 The DAC architecture fulfils both the theoretical and practical criteria that must be 

considered when designing a proper cognitive architecture. On the one hand, at the 

theoretical level, DAC applies: a) biologically-inspired learning rules such as Hebbian 

learning, Oja learning rule or associative competition for different purposes, b) pro-

vides a solution to the fundamental Symbol Grounding Problem by acquiring the state 

space of the agent, based on its interaction with the environment, c) escapes from the 

now by generating behavioural plans or policies based on sensory matching with 

representations of environment and action states (stored in memory systems), and d) 

reverse the Referential Indeterminacy Problem, in which the agent has to extract the 

external concept that was referred, by endowing the system with proactivity to acquire 

knowledge. On the other hand, DAC has been validated in both single-agent (i.e. 

robots) and large-scale levels [14, 15, 16, 17]. These implementations have supported 

the adequacy of DAC, from a pragmatic point of view, to perform a diverse set of 

tasks including foraging, object manipulation or Human-Robot Interaction (HRI). 

4 DAC at the single-agent level 

Within the recycling context, we propose two types of robots working as single agents 

that allow for the transportation, disassembling and classification of the different 

WEEE components. The two robot categories are robotic grippers and mobile robots. 

We propose that the implementation of DAC does not differ between robots. Howev-

er, it needs to be adapted for the different tasks these robots perform, based on the 

data provided by the different sensors, the needs and goals, and the robots’ actuators. 

 In mobile robots, the needs range in different dimensions depending on their relat-

ed aCell. Based on the project, we define as aCell the workbench related to a specific 

worker equipped with a robotic arm where different WEEE is disassembled. Mobile 

robots aim to transport WEEE in an adaptative way; for instance, taking into consid-

eration the disposal of materials or the specific disassembled and classified compo-

nents. Here, the Reactive Layer is responsible for driving the needs of the robots to-

wards different navigation patterns as well as pick up and place behaviours, that are 

carried out by the actuators (i.e. motors of the wheels and the lifting platforms). Sen-

sors such as wheels’ encoders, proximity sensors and RGB cameras provide the Reac-

tive Layer with the information needed to trigger reflexive behaviours, and the Adap-
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tive Layer with the information required to learn associations, which in turn, assist in 

the behavioural policies formation by the Contextual Layer. 

 In the robotic grippers, the needs change from navigation-oriented to motor con-

trol-oriented goals, since its porpoise is assist in the disassembling procedure itself. 

Here, the Reactive Layer processes information regarding pressure, proximity and 

torque sensors, along with data provided by a camera and triggers reflexive behav-

iours (like a stop signal for safety). This sensory information forms progressively 

sensory representations by associative learning at the Adaptive Layer and these asso-

ciations will then be stored in Contextual Layer modules if the associated behaviours 

allow reaching goal states. Thus, robotic grippers are not just able to perform reflex-

ive actions such as unscrewing. When endowed with adaptive and contextual capa-

bilities, they could, for example, correctly locate the bolt, apply the appropriate veloc-

ity and pressure, and predict when the bolt is going to be unscrewed. 

At single-agent level, we consider three essential areas for the successful imple-

mentation of a recycling plant where robots work alongside humans for e-waste disas-

sembly: Navigation, HRI and Motor Control. DAC has been tested in these areas 

supporting its implementation in both mobile and humanoid robots. 

4.1 Previous implementations of DAC: Navigation 

Robotic navigation has already been achieved without requiring a cognitive architec-

ture. However, the characteristic of the Industry 4.0 context demands goal-oriented 

navigation, which adapts to changing environments, needs to be aware of the material 

transported and the state of the aCell, and ensures the safety of other robots and hu-

mans along the trajectory. Due to the complexity of navigation in this context, an 

architectural approach is more suitable, and the DAC architecture has largely demon-

strated its strengths performing foraging tasks with mobile robots. 

 Aiming to prove that the different computational models proposed by DAC ac-

count for functional mapping of specific brain areas and work complementing each 

other when the system operates as a whole, Maffei et al. [15] embed the version 

DAC-X in a mobile robot performing a foraging task. In this study, the Somatic Layer 

computed input signals from the robot’s sensors, while the output was calculated as 

the total motor signal provided by the architecture. Finally, the actions were con-

strained by the robot’s body morphology. The Reactive Layer reflexively mapped 

sensory states into actions by using feedback controllers that approximated the role of 

the Brainstem nuclei. Reflexive object avoidance, visual target orientation and com-

putation of bodily states such as needs and drives were obtained by computational 

models, mimicking the Trigeminal Nucleus, Superior Colliculus and Hypothalamus 

functions respectively. In the Adaptive Layer, a model of the cerebellar microcircuit 

allowed associative learning by coupling neutral sensory cues with adaptive respons-

es. The motivation for action arose by modelling the Ventral Tegmental Area for the 

computation of low-level internal states, and action-selection for behavioural plans 

was achieved by modelling the Basal Ganglia. Finally, the memory systems of the 

Contextual Layer comprised a biologically constrained model of the Hippocampus by 

which the agent acquired an internal representation of the environment; and a model 
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of the Prefrontal Cortex that included mechanisms for storing decision-making and 

goal-dependent information. 

 Analysis that discretised the behavioural performance into three phases (early, 

middle and late trials) showed that at the beginning, the naive agent relies on its re-

flexes to explore the arena and seek for resources. This initial navigation emerges 

primarily from the work of the Reactive Layer, resulting in a stochastic trajectory 

pattern that covered a large part of the arena and had a low item collection rate. After 

a few trials, the Adaptive Layer took advantage of the local visual landmarks de-

ployed in the floor, thus complementing the primary reactive navigation with adaptive 

responses. Using the internal representation of space fostered by the Reactive Layer in 

the explorative trials, the Adaptive Layer allowed goal-directed navigation reducing 

occupancy of the arena and the mean trajectory length and increasing the collection 

rate. Finally, at the late trials, the agent ended up displaying a mostly linear trajectory 

from the home location to the target and back. This linear pattern was achieved thanks 

to the involvement of the Contextual Layer since it combined a robust representation 

of the environment and made available the goal locations stored in the long-term 

memory. These achievements in a hoarding task, by implementing DAC in a mobile 

robot, support a similar implementation in the context of Industry 4.0. 

4.2 Previous implementations of DAC: Human-Robot Interaction 

In the context of a recycling plant, social skills such as empathy, natural language, or 

social bond formation do not precisely fit the context of collaboration between hu-

mans and robots in an industrial plant. However, the human workers will interact with 

the robots, especially the robotic grippers, as they both will be required to perform 

tasks with the common goal of disassembling a device. These robots will also consid-

er that workers may show different skills, preferences, and even trust in robots. Per-

ceived safety, collaboration, adaptation to each worker and the completion of a task 

are critical points for successful Human-Robot Interaction. 

 An example of a successful collaboration that ensures safety has been shown by 

[18]. Here, the authors presented a collaborative human-robot assembling task. How-

ever, the task was restricted to the assembling of a single component, always follow-

ing the same steps, and no tool manipulation was required. In contrast, the disassem-

bling process requires tool manipulation and includes a variety of devices, where the 

disassembly steps may differ. Thus, a more adaptive solution is needed to disassemble 

different WEEEs while collaborating with the human partner successfully. 

 Numerous contributions to the field of HRI have been provided by DAC through 

its implementation in humanoid robots. However, focusing on relevant problems for 

recycling plants, addressing the anchoring problem is essential. The anchoring prob-

lem refers to the process of creating and maintaining the link between raw data pro-

vided by the sensors and symbolic representation processed and stored by the system. 

[16] tackled this problem by defining a representation of knowledge based on the so-

called H5W problem. Thus, several entities connected by semantic links (who, how, 

what, where and when) full describe the situation. In other words, the Somatic Layer 

is taking the sensory input data (i.e. spatial properties of objects and agents). Subse-



8 

quently, the Adaptive Layer will translate this data into instances (i.e. unsafe situa-

tion) by providing solutions to the H5W problem. Finally, these solutions will be 

compared with those stored in the Long-Term Memory of the Contextual Layer (that 

previously showed good results), so the best one will be selected. 

 In the context of a recycling plant, considering the limited social skills of a robotic 

gripper, and at the same time that interaction with the worker is needed, we propose 

two channels of communication. As most plants are considered noisy, and workers 

wear protection gear, verbal communication is not preferable. For this reason, we will 

employ a predefined gesture-based communication of a set of fundamental requests to 

the robot, such as start, stop, take rest position, etc., by providing the workbench with 

a computer vision system able to solve the anchoring problem. Gestures, combined 

with a multitouch interactive tablet, will provide more complex interaction scenarios. 

4.3 Previous implementations of DAC: Motor Control 

Simple behaviours such as grabbing a tool, unscrewing a bolt or extracting and plac-

ing a component during the disassembling task are complex movements that require 

lengthy training sessions until a robotic gripper can adequately perform such actions. 

 Although a complete version of DAC has not been applied to control the specific 

behaviours of a robotic gripper, previous studies have validated the implementation of 

the DAC architecture for motor control. More specifically, motor control was 

achieved with the acquisition of affordances, namely the categorisation of goal-

relevant properties of objects [19]. Within the context of DAC, Sanchez-Fibla, Duff & 

Verschure [20] proposed the notion of affordance gradients: object-centred represen-

tations that describe the consequences that an action may have on this particular ob-

ject. Through object-centred force fields, the agent was not just able to predict the 

outcomes of an action, but also to generalise predictions to actions that the agent has 

not previously perform. These affordance gradients were acquired through learning in 

Adaptive Layer, allowing to a mobile robot to push an object from the right side and 

place it in a target position and orientation. These affordance gradients were recently 

extended to the acquisition of bimanual affordances in Sanchez-Fibla et al. [21]. 

5 DAC at the large-scale level 

Interestingly, DAC has also shown its capabilities to control an entertainment space. 

Ada [17] was a large-scale intelligent and interactive environment that was able not 

just to learn information from its visitors, but also to modify its behaviour guiding 

their steps toward a given direction. Ada achieved interaction with its visitors by 

expressing its internal states through global lighting and background sound. Infor-

mation processing through DAC allowed leveraging multi-modal data from Ada’s 

sensors (cameras, microphones and pressure-sensitive floor) to learn the best way to 

interact with its visitors following paradigms of classical and operant condition, 

demonstrating that DAC is not constrained to conventional robots. 
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6 Multi-scale DAC: A micro-recycling plant 

For a recursive multi-scale implementation of DAC architecture, a central system is 

endowed with DAC operating on a large-scale level, and so controlling the synergic 

functioning of the single-agent level (Fig.1). DAC at this large-scale level is imple-

mented more abstractly, since it leverages sensors and effectors of the single-agent 

level, leading to an intertwined recursive multi-scale architecture. The fact that this 

central system integrates information from all single agents allows new perceptions 

such as the amount of aCell that are free or taken, space occupied by mobile robots or 

mean amount of WEEE disassembled. 

 

Fig. 1. Recursive DAC. Arrows represent information flow. Blue arrows indicate a connection 

between modules and layers of the same entity; Yellow arrows represent information sent from 

single-agent level to large-scale level; Orange arrows represent information sent from a large-

scale level to single-agent level. 

 

By using a wireless connection, the large-scale level creates a network with each 

single-agent, consisting of three loops. A sensory loop integrates data from the differ-

ent robots’ sensors at the large-scale level, allowing overall interpretation of the con-

text and therefore triggering reflexive signals to every robot (e.g. stopping signals in 

case of general danger situation). Based on the needs of the large-scale level and the 

current state of the plant, an orchestrator loop is in charge of modulating the needs of 

every single agent. This second loop allows the robot to behave in an allostatic way 

between worker-based and plant-based needs. A third loop is in charge of intercon-

necting Long-Term Memory modules across the entire plant. By connecting the LTM 

module of the large-scale level to those LTM modules embedded in each robot, learn-

ing generalisation and information sharing occur across single agents. Thus, workers 

could find the aCell adapted to their needs even if they change from one workbench to 
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another, or mobile robots could plan their trajectories based on the location and trajec-

tories of others. 

To evaluate the candidature of DAC as a perfect candidate architecture to control 

an industrial plant within the context of Industry 4.0, we are developing a prototype of 

a micro-recycling plant. 

6.1 Micro-plant design. 

To build the closest setup to the HR-Recycler project, our design for a robotic micro-

plant includes both mobile robots and robotic arms (Fig.2). These robots also embed 

those sensors used in the project (cameras RBG, proximity and pressure sensors, 

wheels’ encoders, etc.). In this prototype, workers are represented by balancing robots 

that, by using a visual cue, are related to a specific workbench and embed different 

worker’s characteristics. However, unlike HR-Recycler, these robotics workers will 

no assist in the disassembling process. The robotics arms will be in charge of full 

disassemble simple devices composed of four parts representing different materials 

(plastic, metal, paper and risky material). To classify these components, robotics arms 

also will place the parts of the components into bins coloured according to the materi-

al that must be collected in it. Using a lifting platform, mobile robots can lift the bins 

and transport it when is full. A computer placed outside the micro-plant will be run-

ning the central control system that allows synergic performance between all the 

agents implicated in the recycling plant. Additionally, a conveyor belt will be used to 

facilitate intermediate steps in the development process. 

 

 
Fig. 2. Micro-recycling plant model and robots. a) 3D sketch of single-agents working syn-

ergistically to disassemble WEEE. Mobile robots can lift and transport coloured bins. These 

bins are coloured according to the material that must be classified in it. Robotics arms adapt its 

performance based on the presence of a worker represented by balancing robots moving around 

the plant. b) Functional robots to be implemented in the micro-plant. 

6.2 Future benchmarks and expected results. 

After testing DAC architecture runs correctly in each of the agents individually, we 

propose two benchmarks in order to assess the success of the recursive architecture 

proposed. First, we will evaluate the implemented multi-agent navigation systemati-

cally deploying two or more mobile robots that will operate under two conditions: 
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autonomously with the large-scale influence of the plant, and autonomously but with-

out this influence. When the central control system is not enabled, we expect to see 

navigation adaptative to the contextual characteristics of the environment and goal-

oriented behaviour related to the transportation of material from or towards the work-

benches. However, coordination between the agents will be not found, unless the 

central control is enabled, leading to convergence of trajectories and no distribution of 

spaces, workbenches and materials. Second, we will evaluate the generalisation of 

worker characteristics by deploying two different robotics arms performing in an 

adaptative way to the worker situated in its related workbench. With the central con-

trol system not enabled, we expect to find adaptive behaviours of both robotics grip-

pers toward their related worker (i.e. distance to the worker based on its trust in ro-

bots). However, if the workers are exchanged of the workbench, the adaptative behav-

iour to the specific worker performer by the previous gripper will not be found in the 

new place, unless the central control system is enabled. 

7 Discussion. 

In this article, we proposed the Distributed Adaptive Control (DAC) cognitive archi-

tecture as a candidate for robot and plant control within the context of Industry 4.0. 

The implementation of this architecture has been supported by previous works on 

different robotic areas such as Navigation, Human-Robot Interaction and Motor Con-

trol. However, the following issues have not been discussed yet. 

 The implementation of DAC has been addressed within the context of a hybrid 

human-robot recycling plant. This kind industrial plant can be perceived as a simpli-

fied instance since in comparison with the overall idea of Industry 4.0 it less depend-

ent on other technologies such as IoT or cloud computing. However, although we are 

convinced that our recursive implementation of DAC could take great advantage of 

such technology, the Fourth Industrial Revolution will be achieved thanks to discreet 

but firm steps. 

 How much must be learned and how much must be prewired by the agents is an-

other important question to solve, in order to maintain both adaptability and efficien-

cy. We propose that basic abilities such as grabbing a tool or creating and navigating 

a map of the environment are preferably achieved in previous training sessions, so the 

agent can adapt a behaviour already learned. Hence, the robots just should adapt these 

abilities already learned to the position of the tool or the trajectory of other mobile 

robots. Other significant information such as the referred to the worker’s abilities and 

preferences could be integrated directly in the central control system by using ques-

tionnaires. 
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