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Symmetries and fixed point stability of stochastic differential equations
modeling self-organized criticality
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A stochastic nonlinear partial differential equation is constructed for two different models exhibiting self-
organized criticality: the Bak-Tang-Wiesenfd®BTW) sandpile modelPhys. Rev. Lett59, 381(1987); Phys.
Rev. A 38, 364(1988] and the Zhang mod¢Phys. Rev. Lett63, 470(1989]. The dynamic renormalization
group (DRG) enables one to compute the critical exponents. However, the nontrivial stable fixed point of the
DRG transformation is unreachable for the original parameters of the models. We introduce an alternative
regularization of the step function involved in the threshold condition, which breaks the symmetry of the BTW
model. Although the symmetry properties of the two models are different, it is shown that they both belong to
the same universality class. In this case the DRG procedure leads to a symmetric behavior for both models,
restoring the broken symmetry, and makes accessible the nontrivial fixed point. This technique could also be
applied to other problems with threshold dynam{&1063-651X97)04603-5

PACS numbg(s): 64.60.Ak, 05.40+j, 05.90+m, 64.60.Lx

[. INTRODUCTION tal results on transport properties on rice p[l&§]. The close
connection between these sandpile models and interface de-
In the past decade much attention has been paid to thginning has been established in Rgif7].

phenomenon known as self-organized critical®DC0). Bak, Some authors have attempted to connect the randomly
Tang, and Wiesenfeldl] studied a cellular automaton model driven models to stochastic differential equatidis,19.
as a paradigm for the explanation of two widely occurringThese continuous descriptions are developed ac_cording to
phenomena in nature: flhoise and fractal structures. Both the Symmetry rules obeyed by the discrete models in order to
have in common a lack of characteristic scales. Although th@chieve a generic scale-invariant conditi@0]. Neverthe-
SOC models do not always showf Itioise, they have no hItess, none of them either explicitly or implicitly includes the
characteristic scales either; this scale invariance suggests t E"f e
these systems are critical in analogy with classical equilib-o SO.C models: on th? ot.her har.]d’ gnomalogs_ diffusion
rium critical phenomena; but in SOC one deals with dynami-equ"’ltlons .W'th smgularmes in the diffusion cggfﬁgent havg
cal nonequilibrium statistical properties. Moreover, the Sys_been considered in order to study the deterministic dynamics

i | turallv to the critical state without wni of the avalanches generated in the critical sfat22. A
em evolves naturally to the critical state without any tuning yige ey approach has been introduced by Pietronero and
of external parameters, that is, in a self-organized process

, ‘co-workers, using a real-space renormalization procedure to
Several cellular automata and coupled map lattices Modgetermine the dynamical exponent as well as the avalanche

els exhibiting SOC have been reported in the literature. Ingj,e exponent23).
the original sandpile model of Baét al. [1], the system is In a previous papei24] one of us studied two nonlinear
perturbed externally by a random addition of sand grainsstochastic differential equations derived from the discrete dy-
Once the slope between neighboring cells has reached ramical rules of two models with different symmetry prop-
threshold value, sand is transferred between them in a fixedrties. In principle, one would expect, for this reason, differ-
amount. Taking this model as a reference, different dynamient critical behavior. However, it was shown analytically, by
cal rules have been investigated, leading to a wide variety ofneans of the dynamic renormalization gro(IpRG) [25—
universality classes. Continuous variables with a full transfeR7], that both models belong to the same universality class.
from a cell instead of a fixed discrete amo{&t5]; directed  The threshold condition was kept, but the step function was
flows [6]; a threshold condition imposed on the height, onregularized in order to allow a power-series expansion. In the
the gradient, or even on the Laplaciafj; and anisotropy8] limit that recovers the threshold it was shown that the cou-
are a few examples. These randomly driven models do ngiling constants that distinguish both models become decou-
exhibit SOC when the interaction rules are not conservativgpled from the common coupling constants; since the critical
[9]. Later on, other deterministically driven models haveexponents depend only on the latter constants, one obtains
been introduced where conservation is not a necessary cotire same values for both models. Once this equivalence was
dition [10—15. Much more recently, sandpile models with established, the most symmetric model was considered,
deterministic perturbations but intrinsic randomness in theshowing that an infinite number of coupling constants was
threshold dynamics have been used to reproduce experimerelevant below the upper critical dimensiaiy=4; by ex-
panding the number of nonlinearities, the DRG procedure,
up to first order ine=4—d, gave an estimate of the dynami-
*Electronic address: alvaro@ulyses.ffn.ub.es cal exponent close to the value obtained by scaling argu-
"Electronic address: albert@ulyses.ffn.ub.es ments and in the numerical simulatiofs5]. This value of
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the dynamical exponent is obtained when the flow in param- Ei(t+1)=E;(t)—E;(1)O(E;(t)—E,)
eter space reaches the nontrivial stable fixed point; neverthe-
less, when taking into account the physical values of the
parameters, they do not lie in the basin of attraction of the
fixed point, thus making this computed value in some sense
speculative since it cannot be ensured that the flow in paramgng
eter space will be able to reach the attractor.

Our goal in this paper is to complement the previous work E/(t+1)=E;(t)—E.O(E;(t)—E,)
in order to check the validity of the calculation of the critical
exponents at the stable fixed points and to analyze the role 1
played by symmetries in randomly driven SOC models and, +a% EOEWm-E)+&D (b
in general, in other models where an infinite hierarchy of

nonlinear terms is required. Our procedure also illustrates thg,, Zhang's and the BTW model, respectively. The sum runs
effect of symmetry breaking in DRG calculations as agyer theq nearest neighbors of siie labeled NN, and the
mechanism to make the attractors in parameter space acCfreshold condition enters through the Heaviside step func-
sible for the physical values of the parameters in the originajjon @  defined a® (x<0)=0 and®(x>0)=1. Due to the
equations. The continuum equation for the Bak-Tangqntinyous nature of the models the valBéx=0) is irrel-
Wiesenfeld(BTW) and Zhang models is introduced in Sec. oant and we can keep it undefined, for now. For the external

II, as well as the alternative regularization that breaks th%oiseg-(t) which drives the system only when there are no
symmetry that distinguish both models. In Sec. Il we de-44ye Isite’s one can formally write

velop the DRG procedure and show that this symmetry is

irrelevant, in view of the fact that the nontrivial fixed point is

not modified by this alternative approach. Moreover, the ef- &= 5E5i,n<t)H [1-O(E;(t)—Ey)], 2

fect of symmetry breaking allows the flow of the original Vi

parameters to reach the nontrivial fixed point, where the

critical exponents can now be computed. Finally, we preserivhere &; ) is the Kronecker delta symbol an(t) is a

our conclusions in Sec. IV. random vector pointing towards the site of the lattice that
will be perturbed with a random amount of enedfy (in the

original BTW modelSE=E_/q). The product runs over all
Il. MODELS AND SYMMETRIES the lattice sites.

First, we describe briefly the dynamics of the two SOC When applying the DRG one deals with infinite systems

models under consideration. The first model was originall)fgnd g‘eﬂ the 'T?olitant[ teffect of td||s_,|3|pat|on _atstgec ope(T
proposed by Zhan{] and consists of a@-dimensional lat- oundaries 1S not taken Into account. FHOWEVer, in mod-

L ; . . ... els a distribution of absorbing defects through the lattice
tice in which any site can store some continuously distrib- : .
uted variableE. This variable, which we will call energy, can plays the same role as the op@bsorbing boundarie428],

have different physical interpretatiof3|. The system is per- as we have Ve”f'e.d through computer 'S|m_ulat|c[|?_9].
turbed by adding a random amount of enei@g>0 at a Then, we can redejmg our models in an infinite lattice, but
randomly chosen site. Once a site reaches a value of th‘g'th a que_nchegl d|str|but|(_)n of defects. The F‘?SU_“S are not
energy greater than the threshold valijg this site becomes ”?Od'f'ed with th'S. assumption. Another possibility is to con-
active and transfers all its energy to its nearest neighbors. A ider that_eaqh site of an infinite lattice has a small probabil-
this point the input of energy from the outside is turned off.\Y of dissipating an amount of energy /q when it topples,

The energy ransered to e neighborng sies can mad% ST Ll 2 cenar heonher T poee
them active, giving rise to an activation cluster or avalanche ' P b '

which ends when all the sites have reached a value of th%ccuracy implieg that when a site re_c;eives a toppling from
energy smaller thaik. . It is only when the avalanche has some neighbor, it has a S”.‘a” probablhty of hot accepting the
stopped that energy is added again, otherwise the SySteﬁiannotL)jgtir?ctlLelgggga)zcé?{evv\\//htlgrhn:Sin?ﬁii%fs?fn?%iﬁ:suE[)(;]
remains quiescent. In this way there is a clear time-scalé '

separation in the dynamics. The external noise acts in a slo € replaced by

time scale, whereas the avalanches evolve infinitely fast, in

comparison. The second model differs from Zhang's model &(t)=SES, an [1-O(E;(t) —EJ)]

only in the amount of energy an active site transfers to its TV

neighbors, which is a fixed amouBt., instead of its whole

energy E. Therefore it is closer to the original sandpile - _

model of Baket al.[1], but is continuous irE. When SE is % Eun® Exn(t) ~ Eo). 3

not random but fixed this difference becomes irrelevant. For

this reason, it will be referred to as BTW model. Notice thatwhereyy is a dichotomous noise, taking the value 0 with a

both models are conservative in the sense that the adddarge probability and the valu&./q (dissipation with a

energy (always positive is only dissipated at the open small one. If{\y depends o, i.e., {ynv={nn(t), we are

boundaries. dealing with annealed random boundaries, whereas if it de-
The microscopic evolution rules can be written from timepends only on the position, we have quenched random

t (on a fast time sca)eto t+ 1 for each sité as boundaries or absorbing defects.

1
+=> En(D)O(Eny()—E+&(1) (18)
anNN
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In terms of a rescaled ener@y— E.—E and introducing measuring the value of the dynamical exponent. For this pur-
a parameteZ to unify the description, we have for both pose we have to look at the system on a fast time scale, i.e.,
models the scale of the evolution of the avalanches. In Re&fit was
argued that in this case one can understand the noise as a

1 quenched Gaussian process uncorrelated in space, and then
Ei(t+1)- Ei(t)za%:\, {IZEnn(D) +Ec]O (Enn(D)) its correlation function is given by
—[ZE(O)+EJOE M+ &), (4 (p(r,)n(r7 t"))y=2T&%r—r"). 7)

where Z=1 f_or Zhang’s model anczzo for the BTW_ When looking at the system on a slow time scale one cannot
model. Equatiori4) defines a stochastic coupled map lattice.  sq this prescription for the noise, which has to be uncorre-
Moreover, notice that the deterministic BTW equation dis- . . . > —

Jated in time too, ie, (n(rt)qp(r't'))

plays invariance under a parity transformation of the orde . ) _ A _
parameteE— — E. This is the only symmetry that the BTW =20 8%(r—r")5(t—t"), and this prescription is mainly re-
model does not share with Zhang's model. The commonated to the interface roughness between avalan3ts
symmetries are invariance under spatial translations, rota- Equations(5)—(7), together with the fact that the noise is
tions, and reflections, as well as conservation of the orde® Gaussian process, completely define our model. However,
parameter. the presence of the step function in E§) gives rise to a
Equation(4) can be coarse grained in order to obtain aStrong nonlinearity. A perturbative expansion of this equa-
continuum equation for the effecti\E(F,t). Then, by using tion can be performed if one regularizes the step function as

the prescriptions for the temporal derivative and for the

Laplace operator O(E)= lim f(BE) ()

B—x©

IE(T 1)

g = aV2[ZE(F,)+ EJOE(F,H)) + 7(F 1), (5) and makes a series expansion f¢f3E) in powers ofE

[22,24. The functionf(x) must be monotonical increasing
with f(—«)=0 and f(«)=1. Moreover, we choose
wherea is a coefficient that depends on the lattice spacingf(x)_l/z as an odd function, sb(0)=1/2. Several func-
the unit time step, and the coordination numgeiThe noise  tions of this type have been used in the literature, but that
n(r,t) accounts for the effective external noise as well as forcoming from the error function as
the internal noise that appears due to the elimination of mi-
croscopic degrees of freedom. l+erf(x) 1 (x )

Up to this point, Eq(5) truly describes the coarse-grained f(x)= — - = e Ydy 9)
evolution of the system, but we have not yet characterized Vi) -«

the noise(r,t), which derives fromg;(t). The product in allows a power expansion that has an infinite radius of con-

Eq. (3) makesy(r,t) a multiplicative noise that depends on vergence, in contrast with previous choid€®,24. In any

the whole lattice state, and the problem is intractable. We argase, the relevant results do not depend on the particular
going to ignore the restrictions imposed by the step functiong,,y of f(x).

in Eq. (5); thus breaking the time-scale separation. Then the Tpe regularization given by Eq8) keeps the symmetry
noise7(r,t) acts continuously in time and can provoke ava-of the step function and therefore the invariance under a
lanches to overlap. However, for small enough noise this iarity transformation in the BTW model. As an alternative
very unlikely, and one can still identify avalanches in com-regularization that breaks this invariance we propose

puter simulations. Moreover, the dynamical exponent does

not change with this assumpti$f] because the added noise O(E)= lim f(BE+K), (10)

is orders of magnitude smaller than the energy transferred by B

the avalanche and thus its dynamics is not affected. In this

case we still have two time scales, although they overlap. Imwith K an arbitrary constant. Although in the linft— o we

what follows #(r,t) will be considered as an additive ran- recover the step function, we do not recover its symmetry
dom process including two effects: the external driving, al-anymore becaus® (E=0)=f(K)#1/2 if K+#0, and this is
ways positive, and the dissipation at thandon’) bound- the reason for the breaking of the symmetry in the BTW
aries, always negative. In the statistical stationary state thgodel. Now we perform a series expansion of the regulariz-
random input of energy must equal, on average, the output 4tg functionf(BE) in powers ofE, obtaining

the boundaries. Then we assume that

©

N ® — i n
(n(F,1))=0. (6) OE)=m 2 a(BKE (1)
In fact, this is the same assumption made in all the studies of . )
SOC by means of DREL8,19 and it is somehow equivalent Where the coefficienta,(8,K) are given by
to the stationary condition used in R§23]. - N
Moreover, we are mainly interested in the spatiotemporal a,(B.K)= (KB (12)
propagation of a perturbation through the system, that is, in e n! '
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with f(W(K) being the nth-order derivative off(x) at
x=K. Substituting the expansiofil) into Eq. (5), we can
write

JE(T 1)
ot

=DV2E(r,t)+ > N V2EN(T O+ 7(r,t), (13
n=2

where the effective diffusion constait and the coupling
constants\, (which make the equation nonlingaeke dif-
ferent values depending on the model:

D= lim a(E.,fV(K)B+Zf(K)), (14
B
= lim = i E.f(M(K znf(n_l)(K)
TR
n=223,...,%. (15

2437

the relevance of the different coupling constants in this equa-
tion by naive dimensional analysis: a change of scale
b=e'>1,

rr=e’'r, t'=e?t, E'=e XE, (16)

is performed in Eq9(13) and(7), with y being the roughness
exponent, which is related to the hydrodynamic exponent,
and z the dynamical exponent. Then one obtains that the
parameters transform as

[ b2z 0-dr,

D—>bz_2D, )\n_>bz+(n—1))(—2)\n_

17

Under this scaling transformatiorz, and y are chosen to
keep the linear model scale invariant, i.e., the paramdéers
and I' have not to be modified. This choice gives2,
x=(4-d)/2, and

N, b4 =12y (18)

On the one hand, foK=0, since all the even derivatives

verify f?"*2)(0)=0, all even coupling constants vanish for Then one can see that when we apply iteratively the trans-
the BTW model, whereas they do not for the Zhang modelformation (p— ) for d>4 all the nonlinear terms vanish
Using Eq.(13), this allows one to verify the symmetry of the anq are irrelevant. However, all the coupling constants go to
BTW model under the parity transformation of the orderinfinity for d<4 and hence all nonlinear terms become rel-
parameteE. On the other hand, fd€#0, the even coupling evant; this implies that the upper critical dimension is
constants do not vanish in any case and this constitutes the — 4 and nontrivial values of the exponents are expected
symmetry breaking for the BTW model. Then, under thispg|gw it.
condition, the only difference between both models is that The relevance of all the terms makes our problem much
the constants depend ¢hin a different way; however, itis more complicated than, for instance, the Kardar-Parisi-
easy to see that in the limg— o both sets of constants are zhang model of interface growth, where only the first non-
identical and then the Zhang model and the brokenjinear term is relevanit32]. The appropriate treatment of Eq.
symmetry BTW model have to belong to the same univer{13) would be to renormalize the infinite number of relevant
sality class. This can only be shown fiér# 0. Nevertheless, coupling constants that are involved. Of course this is impos-
considering< =0 only introduces a difference in the value of sjple to do in practice. Ifi24] an expansion in the number of
©(0), which is irrelevant in a continuous model, and thencoupling constants for the BTW model was performed with
one can include thé&symmetri¢ BTW model in this univer- only odd terms, i.e., without symmetry breaking £0).
sality class too. The critical exponents where obtained as a function of the
At this pOint it is worth noting that we have transformed a h|ghest Coup”ng constant, up X@ Fortunate|y, the dynami-
stochastic coupled map lattice, which involves a thresholgta| exponent was well behaved and could be extrapolated up
condition and presents a clear separation of time scales, intg ) . . However, keeping the symmetry of the step function,
a nonlinear stochastic partial differential equation, where th@nhe nontrivial fixed point of the DRG is unreachable using
nonlinearity of the threshold is described by an infinite serieghe parameters given by Eq&l4) and (15), even for the
of powers and the randomness enters via a Gaussian proceghang model. We want to show that with the proposed al-
with zero mean to account for the dissipation at the boundternative regularization of the step function, which breaks the
aries. During this transformation, and due to the approximasymmetry of the BTW model and allows the existence of
tions we have performed concerning the noise correlationgyven coupling constants, the DRG fixed points are not
we have broken the time-scale separation since the noise a@fanged, but now they are accessible to the flow when the
constantly in time. Nevertheless, we expect that such aparameters take their real values. For this reason, and as an
equation explains the dynamical properties of the systenpitial attempt to justify our hypothesis as well as the con-

within the fast time scale of the propagation of the ava-cjysions of Ref[24], we will focus on Eq(13) with only its
lanches. As we have mentioned before and as discussed ffist two nonlinear terms, i.eN, and\, and see how they

[31], to deal with the slow time scale, where the avalanchegehave under a DRG transformation,
are instantaneous, another noise correlation is more appropri-

ate. JE(r,t)

i DV2E(r,t)+\,V2EZ(r,t)

Ill. DYNAMIC RENORMALIZATION-GROUP

PROCEDURE +N3V2E3(r )+ (1 t). (19)
The model to be studied by the DRG is defined by the The DRG procedure consists of the removal of the fast
nonlinear partial differential equatiofi3) and the Gaussian modes(large wave numbek) in the momentum space, fol-

noise given by Eqs(6) and(7). As a first step we can check lowed by a rescaling of a facta in order to recover the



2438 ALVARO CORRAL AND ALBERT DIAZ-GUILERA 55

FIG. 1. Diagrammatic expressions for EG81) and (25), defined in the range<Ok<A. The double bar with the cross at its end is
the order parametédt, the single bar with the cross represeBtsy, whereas the single bar aloneGg. A vertex withn branchesit=2 or
3 in the figuré represents a convolution productmlements, including a prefacter\ ,k?/(27) ("~ D@+ The circles correspond to the
average over the noise.

original Brillouin zone[25-27. After this transformation, . . Lo

one obtains an equation that is equivalent to the original one, (E*E)(k,w)= f dg dQ E(q,Q)E(k—0,0—Q).

but with different (effective or renormalizedcoefficients. (24)

Successive iterations of this transformation give the flow of

the coefficients in the parameter space. If this flow convergeBigure Xa) shows the expression of E€R21) in terms of

towards a fixed point, the system presents ‘“scale invariFeynman diagrams. As the intensity of the ndiséas also

ance” in the hydrodynamic limi{large-distance and long- to be renormalized by the DRG transformation, we need to

time behavioy. Then, the fluctuations of the order parameterconsider the equation for the correlation function of the

verify the scaling equation transformed energyE(k,w)E(k”,»')), which, up to one-

loop order, is

([E(To,to) —E(Fo+r,to+ 1) 1PY2~rXF(t/r?), (20 226!

2 0™~0
EE')=GyG} "N —g=7((E*E)(E*E)"),
where the critical exponenjgandz are those that ensure the < )=GoColnn") (2m)Hd+D { N )

existence of the fixed point. However, it is worth mentioning (25)
that with this procedure the scaling functiér(x) remains R
unknown[33]. where the prime denotes a dependencé&kqm’ instead of
We now outline the DRG calculation. First of all we write the dependence dnw. The diagrammatic representation of
Eqg. (19) in Fourier space this equation is shown in Fig.(i). Equations21) and(25),
which are the ones that we are going to renormalize, hold for
k? A3k? 0<k<A, where A is the wave-number cutoff due to the
EZGoﬁ—GoWE* E—GOWE* E*E. underlying discrete structure. The transformed noise

(21 n(K,w) turns out to be also a Gaussian process with zero
mean, but with a correlation

Here E(Iz,w) and 7(k,w) are defined as the Fourier trans- - - d+2 - o, ,
- - = + .
forms of E(r,t) and #(r,t), i.e., (n(kw)m(K,w"))=2(2m) 2T &(k+ k') 8(w) &(w ()26)

. d otk e o The first step of the DRG transformation consists in split-
E(k,w)=| drdte E(r.1), (22)  ting the Fourier space in two shells: an inner shell, which
contains the slow modes, i.e.<k<e 'A, and an outer
shell, containing the fast modes,'A <k<A. Both modes
are coupled through the convolution products in E@4)
1 and (25). We consider the diagrams for the slow modes and
Go(k, )= ————— (23  perform a perturbative expansion of the fast ones up to the
—lw+Dk lowest order in the intensity of the noigsee the Appendix
for more details Then we integrate out these modes by an
is called the bare propagator. The symbotepresents the average over the noise in the outer shell. After this transfor-
convolution product, defined as mation the resultant equations are shown diagrammatically

whereas
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nd L L L
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O
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\0,

FIG. 2. Diagrams obtained after the first step of the DRG transformation. Now continuous lines correspond to the inner shell, whereas
dashed lines correspond to the outer shell. A comparison with Fig. 1 allows one to define new coefficients. Observe that the new averages
affect only the outer shell. The notation has been simplified with respect to Fig. 1, suppressing the syatlibé end of the vertices and
also the arrows.

in Fig. 2. It is clear that we can obtain new equations that are 14T\ 3 |dr)\§ |dr)\‘21
formally equivalent to the initial ones, Eq&1) and (25), Ng— N3 1= 18—~ + 7257~ — 3255, (270
defining the new coefficients as the original ones plus the 3
corresponding integrals over the outer shell. With the noise

correlation(26) these integrals can be easily computed in thevhere

hydrodynamic limit K—0, w—0), as it is shown in the s

Appendix, and then the coefficients transform according to 25y 1-e d—a 28)

(D= a2
r—r, (279
and S; is the complete solid angle id dimensions. How-
PO |dn\§ ever, the new equations are only defined in the inner shell
1+3—5—4 } (27b 0<k<e 'A. The second step allows us to recover the origi-
D nal Brillouin zone G<k<<A by rescaling the equations using
transformation(16), which in Fourier space writes

D—D

D4

lTA3 |dn§} 273

)‘2_”‘2[1_18 p? T127p7 K=€ek, o' =ew, E'=e X*ztdlg (29
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The combined effect of both transformations, in the limitwhich was unstable fod>4. In this case the diffusion is
|—0, constitutes an infinitesimal DRG transformation, anomalous; to be more precise, the fact that2 gives a
which gives the flow equations of the parameters in paramsuperdiffusive behavior in the hydrodynamic limit. Note that

eter space. In these flow equations insteadl pand\ it is
suitable to use the dimensionless coupling constasntand
N3, given by

— 1§TAS )\__|5,1>r>\3 30
27 D4 ’ 3™ D3 ’
wherel = (d14/d),_o=[2S4/(2m)9]A%"*. Then
dr
57 = Tl2z—2x—d], (31a
dD - =
WZD[Z—2—4)\2+3)\3], (31b)
d, —f4-d - —
W = )\2 + 20)\2_ 24)\3 y (31C)
— . — A\
3 2 2
_:)\3 4_d+84)\2—27)\3_32= . (31d)
dl A3

We are interested in the invariance of the parameters under
DRG transformations. This means that we have to look for

the fixed points of the flow equations; if we write Eq81)

asda;/dl=gi(- - - @j---), whereq; represents any coeffi-

cient, then the fixed points verifg;(---«af---)=0 Vi.

ConsideringD #0 andI’ # 0, we obtain four algebraic equa-

tions with four unknownsy, z, \,, and \s; their solutions
will give us the fixed points of the transformation; and
%, as well as the values of the exponemtand y that

the one-loop expansion in the intensity of the ndisgives a
nontrivial fixed point that is expressed as a perturbation of
the Gaussian one in a first-orderexpansion. Observe also
that the breaking of symmetry does not modify the value of
the fixed point obtained without taking into account the even
coupling constank, [24]. Moreover, the fact that the non-
trivial fixed point is an attractor of the dynamics contrasts
with equilibrium critical phenomena, where this point is
stable only along one direction. In this fact lies the difference
between fine tuning of parameters for equilibrium systems at
the critical point and self-organization towards criticality for
nonequilibrium processes.

Now we know the attractors in the parameter space, but
this is not enough in our case; since our stochastic equation
(13) is derived directly from the discrete rules of the BTW
and Zhang models, we also need to know the basins of at-
traction of the stable fixed points and whether our initial
conditions, that is, the initial values of the coefficients cor-
responding to our physical problem, are inside these basins.
These values for the dimensionless coupling constegs
can be calculated from Eqg6l4) and (15) and they are

11§°r0 §(K)2
4 o’E; fH(K)*Y

1IPT £3(K)
* 6 o’E; FH(K)Y
(34

(A9)2=

result that also holds fdk =0, where we obtainy=0 even

for the Zhang model. The superscript O indicates the initial
value of the coefficient, that is, its value before any renor-
malization. As we have no restriction fd° (except that it
has to be smallandK can take any arbitrary real value, this
implies that the initial dimensionless coupling constants will
be defined in the region

guarantee that the DRG transformation leads to a scale-free

behavior. Notice that the particular valueslofandD play

no role in the existence and location of the fixed points. We
can also find the stability of the fixed points under small

2 _
>\2<§(>\2)2, (35)

perturbations using a linear stability analysis: the fixed poinhayving used forf (x) the explicit form given by Eq(9).

{af} is stable(i.e., an attractorif all the eigenvaluegor

Clearly, the stable fixed point fat<4 [Eq. (33)] is out-

their real partsof the matrixdg; /de; evaluated at this fixed side the region of initial conditions defined by E&5). It

point are negative.

The results are the following: foil>4 one obtains six

will be of maximum interest, however, to know whether or
not these conditions will drive the system towards the non-

different fixed points, but the only stable one corresponds tarivial fixed point. We first consideK =0, which implies

. z=2, M=\;=0, (32

N| m

X:

where as usuad is defined ax=d;,—d=4—d. This is the
trivial or Gaussian fixed point, which gives a norm@ar

\=0, corresponding to the case studied in R&#]. For
d<<4 one gets a different behavior depending on the sign of

)\_g. Figure 3 shows that whexf is positive it flows towards

the stable fixed point3 = €/27, giving a dynamical exponent
z=2—€l9. A negative\, which is our case of physical in-

Brownian diffusive behavior because of the vanishing of thel€reést, flows away. An exact solution of E(1d with
coupling constants. The values of the exponents do not cor2=0 gives that\; would reach— in a finite | and then
respond with those of the Edwards-Wilkinson model, used invould reappear as;=c, then being under the attraction of
the study of surface growth, because the noise correlation e nontrivial fixed point. However, our one-loop calculation
different [34]. For d<4 this fixed point becomes unstable forces the flow of the coupling constant along the parameter
and the only stable one is space to stay of ordes, and one cannot sustain the validity
of the preceding description. Then it is not possible to predict
the renormalization ohs. It will be either renormalized to

Lo oz2-5 M0, M-
z= R A \5 or other fixed points will appear along the floiworre-

X=1g€ 9 57 (33
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of all, we insist that the stable fixed points are the same as for

K=0, due to the fact that, renormalizes to zero. Moreover,

as can be seen in Fig. 4, where we have plotted the flow lines

of Eq. (31) obtained by numerical integration, the basin of
g attraction of the nontrivial fixed point is delimited by the
parabola

1
coc
)
<
!

— 4,
A3==Z A2, (36)

d>4
which is also a particular solution of the flow equations,
regardless of the value af. This parabola is inside the re-
gion defined by Eq(35), and this fact implies that the new
regularization makes it possible to reach the attractor for
A2 d<4 starting in the region of physical meaning. Using Egs.
o (34) and (36) together with Eq(9), one gets that the condi-
FIG. 3. Flow in\; space when only this nonlinear term is taken tion to converge towards the nontrivial fixed point is

into account. The squares correspond to the ste®)l@fid unstable K2>§. Then, the parameter that breaks the symmetry in the
ch)Jr?ng)t(if)?]SpomtS and the arrows show the flow under DRG trans-q o arization of the step function, which, in principle, was
: arbitrary, determines the behavior of the system in the hy-

sponding to strong coupling and not given by the one—loopdrOdyr‘"’lmiC limit.

e expansioh Therefore, the fixed point given by E3), fi Fdor d.>4 tEe ﬂﬁw IS ”;Ofe %omplex because of thg S')r(]
although it is an attractor, is unreachable from our initial!X®d POINtS, but the result Is that convergence towards the

conditions 0\2<0). For that reason the conclusions of Ref. Gaussian one also happens for our initial conditions, as Fig.

. 5 shows. The linear stability analysis of the fixed points
[2.4.] were mcomplete. On the other hand, above the u.p.peéives the same results as the numerical integration shown in
critical dimension the system evolves towards the trivial

] o . . . . the figure. However, this linear analysis fails tbr 4, where
fixed pointA; =0 giving a diffusive behavior witk=2 pro- | the fixed points collapse towards the Gaussian one. It is

vided thatA is not too negativésee Fig. 3 This behavior by means of the numerical integration that we verify that it is
of the fixed pointA} as a function ofe corresponds to a an attractor for the region above the parabola given by Eq.
transcritical bifurcation. (35), but for the region below it is a repeller. This strange

Now, by introducing the alternative regularizatioi ( behavior appears becausedr 4 we are at the bifurcation
#0), we will see the effect of the symmetry breaking. Firstpoint.

3

- -

-

(=2 ¢ 27)]

0.2 T
0.15 - FIG. 4. Flow in (\,, \3) space
for d=3 when both nonlinear
terms are taken into account. In
general, for anyd<<4 the results
0.1 N are qualitatively the same. Dots
correspond to the numerical inte-
o gration of Egs.(31¢9 and (31d
1< 0.05 L _ and the thin line is E¢(36), which

clearly delimits the basin of at-
traction of the nontrivial fixed

point, as it is seen in the plot. Be-
0 low the continuous thick line the
values of the parameters corre-
spond to our physical situation Eq.

0.05 - * * “ * ‘ * b * * * ] (85). Squares correspond to the
' fixed points. Observe that for
\,=0 we obtain the same results
as in Fig. 3.
-0.1 L 1 1 1 1 1
0 0.1 0.2 0.3 04 0.5 0.6 0.7
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0.2

0.15

0.1 -
FIG. 5. Same as Fig. 4, but for
o d=5. The results hold fod>4.
1~ 0.05 - Only four of the six fixed points

are shown because of the symme-
try of the flow lines. In this case,

the curve)x—3= - %)\_§ represented
by another thin line, is the repul-
sive branch of the saddle point.

In Ref.[24] it was shown for the BTW model and=0 parameter; then, for the BTW model the DRG restores the
that\,,= 0, whereas for the Zhang model, although the everbroken symmetry, whereas for the Zhang model we conclude
coupling constants do not vanish, it was argued that theithat its asymmetric nature is irrelevant in the behavior at
flow equations became decoupled from the odd ones in thiarge distances and long times. Therefore, this validates the
limit 83— 0. This fact enabled us to establish the same uniextrapolation performed if24] since now we have show that
versality class for both models and to deal with only oddthe symmetry breaking makes the stable fixed points reach-
terms in Eq.(13). Then, an expansion in the number of cou- able, when starting in the region of physical interest in the
pling constants was performed, whose extrapolation comspace of parameters. Let us finally mention that in a recent
pares well with the results of the simulatidi#s5]. Note that  work, Ghaffari and Jensef86] performed a different ex-
in the simulations one computes the dynamical exponent refapolation of the same results, which show better agreement
lating the characteristic length and lifetime of the avalanchesyith large-scale simulations and with real-space renormaliza-
whereas within the DRG framework one computes the dyiion calculations for the dynamical expond@g]. It is no-
namical exponent from the fluctuations of the order paramiiceable than the same technique has been applied to the
eter[35]. The agreement between these calculations confirmstudy of the effect of dissipation in a uniformly driven BTW
the basic scaling hypothesis that in both cases length anahodel[37].
time are related by means of the same exponent. However,
the problem of this calculation was that the nontrivial fixed
point was unreachable for the original equation.

In our approach, due to the symmetry breaking, we have We have studied analytically two models that show self-
to consider also the effect of even coupling constants. In therganized criticality. The difference between them is that the
present work we have dealt with a restricted problem withsecond ondBTW) is symmetric under a parity transforma-
only the lower-order even and odd coupling constaptand  tion, whereas the firgZhang model is not. From the micro-

N3, showing that\, renormalizes to zero, supporting the scopic rules one writes a effective long-wavelength equation
calculation of Ref[24]. Then the stable fixed points are not involving the threshold condition, which enters into the
modified by the presence of an even coupling constant in thequation through a step function, making the equation unap-
model, but due to the symmetry breaking that we have introproachable under this form. We have introduced a regular-
duced, the nontrivial one is an attractor in the parameteization of the step function that breaks the symmetry of the
space when the parameters corresponding to the real mod8TW model. After a power-series expansion, the equation is
are taken into account. This behavior should be the same fauitable for the application of the dynamic renormalization
any even coupling constant; actually, preliminary calcula-group, although it contains an infinite humber of relevant
tions including\ , andX\ 5 in Eq.(19) make us suspect that all coupling constants. As a consequence, one has to truncate at
even coupling constants renormalize to zero. This fact meargme point the expansion in the coupling constants. The re-
that in the hydrodynamic limit the solution of both models sults only make sense if it is possible to extrapolate the val-
has to be symmetric under parity transformations of the ordeues of the exponents up to an infinite nhumber of coupling

IV. CONCLUSION
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constants. We obtain the fixed points of the transformation in

parameter space and study carefully their stability and basins /
of attraction. Then we find that with this regularization it is O’/
possible to reach the nontrivial fixed point fd<4, which 7
was unreachable in a previous work, where symmetry was N
not broken. This means that in the hydrodynamic limit the N ""'\
models display scale invariance. Moreover, in this limit we \

obtain a symmetric behavior under parity transformations for

both models and therefore the recovery of the brok_en SYM- g6, 6. Diagram computed in the Appendix as an example. The
metry for the BTW model and the irrelevance of this Sym-,nqjar brackets stand for an average over the outer shell.

metry for Zhang’s model. Although we have dealt with a

simplified version of the problem, we expect this behavior to .

be the same for the complete problem in the sense that all 1he DRG procedure eliminates the modes of the outer
even coupling constants renormalize to zero, validating thé"€ll. within the same philosophy as the Kadanoff transfor-
calculation of Ref[24]. The application of this technique Mation in real space. Then one is only interested in
should also be useful for other kinds of problems in whichE~(k,») and(E~(k,»)E~(k’,®")), whose equations turn
one deals with thresholds or with an infinite number of non-out to be equivalent to Eq&21) and(25), but with additional
linear terms, for instance, interface dynamics. Moreover, théerms due to the coupling between the two shells, via the
DRG calculation performed is interesting because it providesonvolution products. The fact th&t™ (k,») appears in the

an example showing how important it is to know not only theinner-shell equations allows a perturbative expansion in the
stable fixed points of a DRG transformation but also theirggrm E”(k,w)=Gg (K,w) 7 (K,®)+ - - - [using the equiva-

basins of attraction. It is remarkable that a simple symmetryen; of Eq.(21), but in the outer shell Then the noise in the
breaking can solve the problem of the inaccessibility of the

. outer shell enters into the equation f8F (k,w). A similar
attractors in parameter space. _ o B L
The fact that the parameter that breaks the symmetry deRerturbative expansion is done fOE™(k,)E~(k’,@’)).
termines the behavior in the hydrodynamic limit is difficult By averaging overn~(k,w), the contribution of the fast
to understand and we believe that it is an artificiality intro-modes is eliminated from the inner shell. This is done up to
duced in the calculation by the truncation in the coupling-one-loop order in the perturbative expansion, that is, the low-
constant expansion. We expect that higher orders in this exest order in the intensity of the noi$g which implies that it

J

pansion will give a behavior independent of tevalue. has to be small enough. This tedious calculation becomes
more appealing using the diagrams of Fig. 1 instead of the
ACKNOWLEDGMENTS corresponding equations. After this process, the relevant dia-

_ grams that survive the averaging are shown in Fig. 2.
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and C. J. Peez for very fruitful discussions. A.C. thanks the g 544 denoted by/(K, w):

Spanish Ministerio de Educacicgy Cultura for financial sup-
port. This work has been supported by CICyT of the Spanish

Government, Grants Nos. PB92-0863 and PB94-0897. R — k2 R o
V(k,w)=<w+—lG§(k,w)f dig dQG; (k—q,0—Q)
APPENDIX
Here we present further details about the derivation of > 2 > 2 —Ap(k—g)?

Egs. (27), WhFi)Ch give the transformation of the parameters X Go (A, )77 (4. ) (277)a+l

after the first step of the DRG. Our starting points are Egs.

(21) and (25), i.e., the equations forE(E,w) and Xf ddq’dQ’Gﬁ(IZ—c]—cT’,w—Q—Q’)
(E(K,w)E(K’",0")). As we have already mentioned, these

equations are only defined foxdk<A. The DRG procedure _ —No(k—g—q')?

consists in splitting the momentum space into two shells: an X E<(Q’,Q')W

inner one, with 6<k<Ae™ ', and an outer one, with

Ae '<k<A. Then the magnitudes that depend kanlike
the energ)E, split as

E(K,w)=E=(K,0)+E> (K ) -0 7 (k—d-q' —-q,0—Q-Q'-Q")
=E(k,0)0(Ae"'—k)+E(k,0)0(k—Ae™"), (A1) WE(F Q,,)> (A2)
where®(x) is again the Heaviside step function. This equal-

ity definesE<(I2,w) as the corresponding part of the energy

in the inner shell, wherea&~ (k, ) is the same, but defined Where the symbo{ ).. stands for an average over the outer
in the outer shell. This separation also holds for the baré&hell. Using the noise correlation given by Eg6), we can
propagatoiG, and the noisey. integrate ovex}, ()", andq”, and then we have
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” 2)\§F 20<(IL deyr ’
V(k,w)z—mﬂk GO(k’w)f d q daQ

><E<<t?,n'>E<(|2—c?,w—Q’>f d’q

|
X Gg (k—,©)Gg (4,0 (k—0)°
X Gy (k—=d-a,0—Q")(k—q-0q")°G; (4,0
(A3)
As the bare propagator is a known function, given by Eq. Aok

> —d—G (k w)(E~* E<)(k ) (A8)
(23), we are also able to perform the integral ogetthat is, (2m)4Ft 0

and compare it with Eq(A7), we observe only an additional

f ddq[ ]=J diq Gy (k—0,0)Gg2(q,0)(k—q)? term | 4(1)A3I'/D* that comes from the outer-shell integra-
tion. So the diagram shown in Fig. 6 contributes to the renor-
ng(IZ a 57 —Q") (k- d’ q—7)2 malization of Eq.(A8), that is, it renormalizes the coupling

constant\,. As Fig. 2a) shows, the diagram in Fig. 6 ap-
(A4) pears eight times in the perturbative expansion and the new
\o, after the first step of the transformation, will be modified

This integral is a function 0E,w,(1_7, and(}’. However, we by
are going to evaluate it in the hydrodynamic limit by taking

= ) AT
k.'—0 andw,Q'~0. Then Ne—hal 1+8l4(1) g + -+ . (A9)
f dq[ 1= f d%99*G4%(—q,00G54(q,0) In the same way one can perform the outer-shell integrals
. of the rest of diagrams in Fig.(&. A general result for its
S d-54 Sy A4? 1o l(d-4) contribution to the renormalization of any coupling constant
“D? Aeqq a= D?d— 4( € ). N\ or to the diffusion coefficienDb (which will be referred to
(A5) here also as-\,) is given by
It is easy to check that this result is also valid tbr 4. We H \
have used the explicit form of the bare propagd8) and (—1)* (1) ' m=1 (A10)
also thatdq=S,q" 'dg, with Sy the complete solid angle S > LR W

in d dimensions, that is, the area of a unif) (sphere. Then,

by making use of Eq(28), we obtain wherev is the number of vertices each diagram H&sfor

our example(since the dashed line in Fig. 6 forms a tri-
q (2m)%14(1) angle], b(m) is the number of branches of theth vertex(2
f dal 1= —p7 (AB)  for each one in the exampleand B is the number of
branches of the diagram that is renormaliz@din the ex-
ample and fulfils B=X;_;b(m)—v—1. Note that the
magnitude in Eq(A10) is dimensionless. Using this equa-
tion and Fig. 2a) the derivation of Eqs(27b)—(27d) is then

and substituting into EqA3),

R Aok straightforward.
V(k—0,0—0)— — WGO (k, ) For the renormalization of the intensity of the nol3ave

have only one diagram, the dashed one in Fign).2lt is
s 5 immediate to see that the integral over the outer stib#
X(ET*E7)(k,)la(l) 57 (A7) value does not matteis multiplied by a factok?k’?. Then

2

2
It is clear from Fig. 2 that after the first step of the DRG r—T 1+Ak2k’2g+ ...
we have the same diagrams as at the begin(fing 1), but D
defined only in the inner shell, plus many diagrams of the

same type as the one in Fig. 6. These diagrams, which convhereA is simply a numeric factor, and hence, in the hydro-
tain integrals over the outer shell, renormalize the other diadynamic limit and up to one-loop order, the intensity of the
grams that are only defined in the inner shell. For instance, ihoise is not renormalized after the first step of the DRG, as
we consider the diagram Eq. (273 states.

, (A11)
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