Dr. Javier Tejero Salvador Dra. Montserrat Iborra Urios Departament d'Enginyeria Química i Química Analítica

Treball Final de Grau

A contribution to the study of the fructose to isosorbide conversion reaction.

Laura Castro Santacreu

January 2022

Aquesta obra està subjecta a la llicència de: Reconeixement–NoComercial-SenseObraDerivada

http://creativecommons.org/licenses/by-nc-nd/3.0/es/

The process of scientific discovery is, in effect, a continual flight from wonder

Albert Einstein

En primer lloc, vull agrair als meus tutors, la Dra. Montserrat Iborra i el Dr. Javier Tejero per haver-me donat l'oportunitat de realitzar aquell treball així com per l'ajuda, la dedicació i el suport rebut al llarg d'aquests mesos. Així mateix, al Dr. Rodrigo Soto, a qui li estaré eternament agraïda per tota l'atenció, consells i ajuda durant les hores al laboratori.

Als meus companys de laboratori Carla, Maria i Marc, per les estones i converses compartides. També als amics de la universitat. Al final ens en sortirem!

A la Sara, la Paula i la Maria per tot el suport, l'afecte i confiança des de fa tants anys. Perquè encara que no en siguin conscients, sense elles tot seria més difícil.

Per últim, a la meva família, per tot el recolzament i la confiança que tenen en mi des de sempre.

CONTENTS

SUMMARY	i
RESUM	iii
1. INTRODUCTION	1
1.1. BIOMASS AS A RENEWABLE RESOURCE	1
1.2. SYNTHESIS OF ISOSORBIDE FROM SORBITOL	2
1.2.1. Sorbitol	2
1.2.2. Isosorbide	3
1.2.3. Reaction mechanism	4
1.2.4. Solubility	7
1.3. ION EXCHANGE RESINS AS HETEROGENEOUS CATALYST	7
2. OBJECTIVES	11
3. EXPERIMENTAL SECTION	12
3.1. SORBITOL SOLUBILITY	12
3.1.1. Experimental materials	12
3.1.2. Experimental SET UP	12
3.1.3. Experimental procedure	13
3.1.3.1. Solubility mesurement	13
3.1.3.2. Clean up	14
3.1.4. Experimental conditions	14
3.1.5. Calculations	15

3.2. SORBITOL DEHYDRATION REACTION	15
3.2.1. Experimental materials	15
3.2.2. Experimental SET UP	17
3.2.3. Experimental procedure	19
3.2.3.1. Reactor loading ans launching	19
3.2.3.2. Sampling	20
3.2.3.3. Clean up	20
3.2.4. Experimental conditions	21
3.2.5. Calculations	21
4. RESULTS AND DISCUSSION	23
4.1. SORBITOL SOLUBILITY	23
4.2. SORBITOL DEHYDRATION REACTION	26
4.2.1. Monitoring an experiment	26
4.2.1.1. Experimental error	28
4.2.2. Screening over ion-exchange resins	29
4.2.3. Temperature effect	33
5. CONCLUSIONS	38
REFERENCES	39
ACRONYMS	42
APPENDICES	43
APPENDIX 1: HPLC CALIBRATION	45
APPENDIX 2: SOLUBILITY EXPERIMENTAL DATA	49
APPENDIX 3: REACTION EXPERIMENTAL DATA	53

SUMMARY

The search for an alternative to the rejection of petroleum derivatives as raw materials is one of the most important challenges facing the chemical industry. The increasing stringency of environmental legislation and the need to eliminate harmful products from industry present biomass as a viable and promising resource.

Isosorbide is a molecule of particular interest which can be obtained from agricultural and forestry waste. It can be used in a wide range of applications, such as the bioplastic production, and allows the substitution of bisphenol A, a monomer used, until recently, in some packaging in the food industry and which is harmful to consumers.

For the production of isosorbide, a reaction mechanism is taking part. The final stage, a double dehydration of sorbitol that requires an acid catalyst, is the one under study. Currently, to obtain acceptable selectivity and yield values, sulphuric acid or a similar strong mineral acid is used. These homogeneous catalysts have present disadvantages due to energy consumption, the need for subsequent separation and neutralisation treatments, and the costs derived from the equipment corrosion.

For this reason, the main interest is the search for heterogeneous catalysts that allow obtaining a good yield and selectivity with moderate conditions that promote energy costs savings.

The experiments carried out in this study have proved the viability of using acidic ion exchange resins as catalysts evaluating their catalytic behaviour. Resins with a lower cross-linking degree and a higher specific volume of swolling polymer have given the best results.

CT-482 resin has shown the best activity, obtaining a maximum isosorbide yield of 70% for a temperature of 180°C.

In addition, sorbitol solubility has been studied to determine possible substitutes for water. Regarding this, protic solvents with a higher polarity are the ones that have provided the best solubility values. Keywords: Sorbitol, Isosorbide, ion-exchange resins, dehydration, solubility, Bisphenol A

Resum

La cerca d'una alternativa al rebuig de derivats del petroli com a primeres matèries és un dels reptes més importants als quals s'enfronta la indústria química. La creixent duresa de la legislació mediambiental i la necessitat d'eliminar els productes nocius de la indústria, presenta la biomassa com una opció viable i prometedora.

La isosorbida és una molècula de gran interés que pot obtenir-se partint de restes vegetals. Pot utilizar-se en un gran ventall d'aplicacions com la producción de bioplàstics i permet la substitució del Bisfenol A, un monòmer que fins fa pocs anys s'emprava en alguns envasos a la industria alimentaria i que és perjudicial per a la salut dels consumidors.

Per a la producció de la isosorbida, té lloc un mecanisme de reacció en la que la darrera etapa, una doble deshidratació del sorbitol en la que es precisa d'un catalitzador àcid, és la que està sent subjecte de diferents estudis. Actualment, per a obtenir una selectivitat i rendiments considerables, s'empra àcid sulfúric o algun àcid mineral fort similar. Aquests són catalitzadors homogenis i presenten molts inconvenients tant pel consum energètic, per la necessitat de tractaments posteriors de separació i neutralització, com per les despeses derivades per la corrosió dels equips.

És per aquest motiu que el principal interès és la cerca de catalitzadors heterogenis que permetin l'obtenció d'un bon rendiment i selectivitat amb unes condicions moderades per a afavorir l'estalvi energètic.

Els experiments realitzats en aquest treball han comprovat la viabilitat d'emprar resines àcides de bescanvi iònic com a catalitzadors, avaluant-ne el seu comportament catalític. Aquelles resines amb un menor grau de reticulació i un major volum específic de polímer inflat han ofert els millors resultats. La resina CT-482 ha presentat la millor activitat, obtenint un rendiment màxim d'isosorbida d'un 70% per a una temperatura de 180°C. Paral·lelament, s'ha estudiat la solubilitat del sorbitol en diferents dissolvents orgànics per a determinar-ne possibles substituts de l'aigua. Els dissolvents pròtics amb una major polaritat són els que han ofert els millors valors de solubilitat.

Paraules clau: Sorbitol, isosorbida, resines de bescanvi iònic, deshidratació, solubilitat, Bisfenol A

1. INTRODUCTION

1.1. BIOMASS AS A RENEWABLE RESOURCE

The current model of chemical industry bases its production on the use of petroleum derivatives as raw materials. A finite resource which will be depleted in a not-too-distant future and whose consumption presents a high environmental impact. The emission of greenhouse gases (GHG) is one of the main focuses of global warming and chemical industry is responsible for 7% of this emission [1].

Efforts to improve this model are primarily aimed at finding another sustainable, renewable and economically viable resource that will enable to obtain products capable of replacing those of the current chemical routes. One of the most promising alternatives is biomass.

Biomass is defined as organic matter originating in animals, plants or microorganisms. Considering its use as feedstock in the chemical sector, using plant biomass has some interesting advantages. It would allow the GHG emission problem to be controlled. Carbon dioxide released into the atmosphere by its consumption at the end of the cycle would be limited since, during their growth, plants fix it through photosynthetic reactions [2]. Moreover, among the different types of plant biomass available, forestry and agricultural waste become particularly attractive. Valorising unavoidable waste and integrating it into industrial processes is a key aspect for achieving a greener chemical industry. Also, the use of this non-edible biomass avoids problems arising from the economic competition with food crops.

This type of biomass is composed of 80% lignocellulose [3], an organic substance present on the wall of plant cells. This, in turn, is mainly composed of three components: cellulose, a polymer formed by large linear chains of glucose molecules; hemicellulose, present in shorter chains composed of different sugar types (pentose and hexose); and lignin, a three-dimensional phenyl-propene aromatic compound. These components are present to a greater or lesser extent depending on the type of plant, but generally present the following percentages: 35-50% cellulose, 15-35% hemicellulose and 10-35% lignin [4].

Cellulose and hemicellulose can be subjected to a hydrolysis process in an acidic medium to depolymerise the chains and obtain C_5 and C_6 sugars. These, in turn, can be reduced by a hydrogenation process and produce building blocks capable of being transformed into other products with a high added value. Sometimes, this second process is carried out in combination with the previous hydrolysis.

Lignin, on the other hand, is used as a fuel [5].

1.2. SYNTHESIS OF ISOSORBIDE FROM SORBITOL

1.2.1. Sorbitol

In 2004, the US Department of Energy published a report that collected the 12 building blocks obtained from biomass with great potential for the chemical industry [6].

Among them, there is sorbitol ($C_6H_{14}O_6$), also known as glucitol, a polyalcohol formed by 6 carbon atoms and containing 6 hydroxyl groups as shown in *Figure 1*. It is naturally present in some fruits and, industrially, is traditionally obtained by catalytic hydrogenation of glucose [7]. However, it can be obtained from a biotechnological pathway in which the bacterium *Zymomonas mobilis* reduces glucose and fructose [8].

Figure 1. Chemical structure of sorbitol

Physically, it is usually commercialised as a crystalline solid in the form of a white powder. It is odourless and has a sweetness of about 60% of sucrose. For this reason, one of its main

applications is as an additive and sweetener in the food industry. It is also used in the pharmaceutical and cosmetics industries [9].

Concerning the chemical industry, sorbitol is of special interest as it is the starting point of a broad-spectrum of chemical routes to obtain high-value products.

1.2.2. Isosorbide

Isosorbide (C₆H₁₀O₄) is a V-shaped chiral molecule obtained from sorbitol. Its structure consists of two fused tetrahydrofuran rings and two hydroxyl groups as shown in *Figure 2*.

Figure 2. Chemical structure of isosorbide

The configuration of the two functional groups differs and, consequently, so is their reactivity. The hydroxyl group of position 2 has an *endo* configuration and is inside the V structure, while the second one, at position 5, has an *exo* configuration and is outside.

Isosorbide has two isomers that can be obtained by similar reaction mechanisms: isomannide and isoiodide. The difference between them lies in the configuration of the hydroxyl groups. In the former, both OH confer an *endo* configuration and, in the case of the latter, and *exo*. For this reason, all three molecules have different physicochemical properties and reactivities[10].

Hydroxyl groups in endo configuration are more acidic than those in the opposite as can form a hydrogen bond with the oxygen of the facing tetrahydrofuran ring [11].

Among the isomers, isomannide is a low reactive molecule and isoiodide, although it has higher reactivity, is difficult to produce because its precursor cannot be obtained from biomass. Therefore, isosorbide is the most attractive one [11].

In addition, due to its rigid structure and properties, isosorbide is gaining interest in the polymeric industry for the production of bioplastics. It is presented as a viable possibility by substituting other petroleum derivatives such as bisphenol A, a toxic molecule used in food-industry packaging [3].

However, the main problem lies in the difficulty of producing isosorbide on an industrial scale. The reaction mechanism for obtaining it presents low yields and selectivity, below industry standards. For this reason, research is geared toward the design of a more efficient process.

1.2.3. Reaction mechanism

The process to obtain isosorbide consists of a two-stage reaction mechanism in which double dehydration of sorbitol occurs.

The main difficulty lies in the formation of side-products that contribute to the reduction in the yield of isosorbide. As shown in *Figure 3*, in the first dehydration, different anhydrosorbitols are obtained but, among them, only 1,4-sorbitan and 3,6-sorbitan can form isosorbide.

The difference between these two molecules lies in which of the two rings is the first to form. In the case of the former the carbons C1 and C4 are first cycled, then C6 and C3. As for 3,6sorbitan, the order is reversed.

Of all intermediates, 1,4-sorbitan is the one that is formed in the highest proportion[12]. For their formation, two possible pathways can be thought of depending on which hydroxyl group is attacking and which carbon is attacked. First, it could occur that the OH group on the C1 was responsible for attacking the C4 and forming the tetrahydrofuran ring. Also, it could be assumed that it was the hydroxyl group in C4 that attacked C1. Studies have shown that, between these two pathways, the second one is the most energy-favoured [13] [14].

Therefore, dehydration takes place by an SN2 reaction mechanism in which the hydroxyl group in carbon C1 is protonated. Then, this is attacked by the OH group in C4 and a water molecule is released.

2,5-sorbitan

Figure 3. Double dehydration of sorbitol to isosorbide mechanism

The remaining molecules formed during the first step such as 1,5-sorbitan and 2,5-sorbitan are considered side-products and contribute to decreasing the yield reaction since they do not form isosorbide. Likewise, humins are formed, insoluble compounds of polymeric nature which are generated through the reaction by condensation or degradation of the molecules [15]. Yamaguchi A. et al. reported the formation of humins. Operating at a temperature of 573 K, they observed a reduction of the isosorbide yield during the reaction time due to a polymerisation of isosorbide with other compounds such as 2,5-sorbitan [16].

This process requires an acid catalyst and the election of it is one of the key factors in achieving good performance. Dabbawala A. et al. published a comparative study of various acids of different nature to determine which are the most effective [17]. They concluded that Brönsted acids, or catalysts with Brönsted active sites, performed better than Lewis acids.

Traditionally, isosorbide has been obtained using strong mineral acids, mainly sulfuric acid. The first patent in which it was used was published in 1930 [18] and, to this day, remains of significant industrial importance. However, the use of these mineral acids as homogeneous catalysts has several drawbacks. Firstly, they involve an increase in the overall cost of the process due to the requirement to implement treatments, often distillation equipment, to separate them from the product solution. Likewise, their corrosive nature makes production more difficult due to damages to the equipment.

Research is focused on finding alternatives to these catalysts. Yamaguchi et al. carried out the reaction in an aqueous medium at high temperature and pressure without any catalyst, taking advantage that, under these conditions, water autoionization is produced [16]. A 57% of isosorbide yield was obtained after an hour of reaction at 590 K. However, undertaking such extreme conditions still has a high economic impact.

The use of heterogeneous solids catalysts seems to be a good alternative to reduce that cost. Different studies using metal phosphates[19] [20], zeolites [21] and acid resins [22] have been described in the literature. *Table 1* contains a description of some of these experiments.

Def	6 0-1-1	Catalyst	Cohront	т	t	X _{SOH} a	:	Selectivity	r [%]
Rei.	Catalyst	load	Solvent	[°C]	[h]	[%]	IB⁵	1,4ST⁰	Others
[19]	SnPO	0.5 g	Water (SOH 10wt%)	300	2	72	65	34	1
[19]	ZrPO	0.5 g	Water (SOH 10wt%)	300	2	56	52	26	22
[19]	TiPO	0.5 g	Water (SOH 10wt%)	300	2	97	46	3	51
[20]	BP	1 wt%	Water (SOH 70wt%)	250	2	100	70	6	-
[21]	Beta(75)	SOH/AI=50	Water (SOH 9wt%)	200	2	87	33	43	24
[21]	Beta(150)	SOH/AI=50	Water (SOH 9wt%)	200	2	73	22	56	22
[21]	Modernite(110)	SOH/AI=50	Water (SOH 9wt%)	200	2	60	20	55	25
[22]	P-CT275	5 wt%	Free	140	1,5	96	40	-	-
[22]	P-CT269	5 wt%	Free	140	1,5	93	33	-	-
[22]	Amberlyst 70	5 wt%	Free	140	1,5	92	31	-	-
[22]	Amberlyst 35	5 wt%	Free	140	1,5	91	31	-	-

TABLE 1. Summary of experiments using heterogeneous catalysts

(a) sorbitol conversion

(b) Isosorbide

(c) 1,4-sorbitan

Among all these catalysts, ion exchange resins are the ones which allow to operate at lower temperatures, achiving high sorbitol conversions, although selectivities are still low. For this reason it is interesting to further study the reaction using these catalysts.

1.2.4. Solubility

Sorbitol melts at 95°C, consequently, at higher temperatures the reaction can be carried out without the use of any solvent. Nevertheless, its high viscosity and possible crystallisation at lower temperatures can hinder the process. For this reason, the selection and incorporation of a solvent in the reaction mixture may be of interest.

The election of the solvent is a key factor, thence solubility studies are necessary. The solvent must allow the complete dissolution of sorbitol under the established operating conditions and thus, avoid the formation of two phases inside the reactor. Also, following environmental criteria, it must be safe, non-toxic and non-contaminating.

For a mixture, solubility depends on temperature, pressure and solvent composition but, in binary systems and operating at atmospheric pressure, solubility depends exclusively on temperature.

1.3. ION EXCHANGE RESINS AS HETEROGENEOUS CATALYST

As mentioned above, the use of homogeneous catalysts has drawbacks that hinder chemical processes, in consequence, heterogeneous catalysis is most commonly used. At the industrial level, approximately 80% of catalytic processes use it [23].

In heterogeneous catalysis the reagent and the catalyst are in different phases, being the most common one in which the catalyst is a solid and the reactant is a fluid (gaseous or liquid).

Solid catalysis can be explained as a chemical process in which different elementary stages take place. The first one is the adsorption of the reactant onto the solid. As it is a surface phenomenon, the adsorption occurs at the active sites on the surface of the catalyst. For this reason, porous particles are often used to maximise the surface area per unit volume. Once the reactant is attached, a chemical reaction takes place and the reagent is transformed into a product. Finally, the desorption of this product from the particle occurs.

Thus, the catalytic solid does not interfere with the reaction permanently. At the end of the cycle, it is recoverable and can be reused, although not indefinitely. During the chemical reaction, the catalyst could undergo alterations in its structure and composition which will directly affect its activity. Therefore, it is important, when choosing a catalyst, to consider not only its selectivity and activity but also its lifespan i.e., the number of cycles it can withstand before suffering a reduction in its capacity.

Structurally, solid catalysts consist of a support, an active phase, and may also contain promoters. The active phase or active component is responsible for the objective of the catalyst i.e., to increase the reaction rate. The support contains these components and usually present a large surface area. Finally, promoters are substances that enhance the catalyst activity.

Among the different types of heterogeneous catalysts, ion exchange resins are materials capable of exchanging ions of their structure with those of another polar solution with which they come into contact. They consist of a matrix of hydrocarbon chains in the shape of a three-dimensional network with functional groups attached to it. They are usually commercialized as small spherical particles with a typical size distribution of 0,3 to 1,2 mm in diameter [24].

The most commonly used resins contain a styrene-divinylbenzene (PS-DVB) support. They are obtained through a polymerisation process of styrene and a consequent addition of divinylbenzene, a component that provides the crosslinking degree to the resin and is responsible for its stability and insolubility [25]. This last property is particularly interesting as it allows the easy recovery of the catalyst with low economic impact operations such as filtration or decantation.

Once the structure is obtained, the resin is functionalised and the corresponding functional groups are added. The different types of groups provide different properties. For the purposes of this work, the resins used are acidic and require a sulphonation process with sulphuric acid. The final structure is shown in *Figure 4*. According to their sulphonation degree, resins could be distinguished between over sulfonated, conventionally sulphonated and partially sulphonated.

Depending on the structure of the matrix, resins can be classified into two main groups: Geltype resins and macroporous resins.

Gel-type resins have a low percentage of DVB (1-5%) [26] and, consequently, a low crosslinking degree. They do not present a permanent porosity and require the presence of a

solvent to swell. They are also known as microporous resins because, once swollen, the space between hydrocarbon chains is small.

Figure 4. Matrix of a sulphonated PS-DVB resin

On the other hand, macroporous resins present a higher percentage of DVB (5-60%) [26] and, consequently, a higher crosslinking degree. They consist of spherical agglomerates alternating with macropores. The structural difference to the gel type lies in the polymerisation process. In macroporous resins, porogens are added and, after subsequent extraction and drying, they form permanent holes. If macroporous resins come into contact with solvents, they swell and the size of these pores can change.

Resins are usually characterised dry by means of analytical processes such as nitrogen adsorption-desorption to obtain their surface area. However, as mention above, in contact with certain solvents, the resin increase in size and, therefore, their structure differs. By means of ISEC (inverse size exclusion chromatography), resins can be characterised in their swollen form in aqueous solution.

The swelling degree of the resin depends on both on the thermodynamic affinity of the polymeric support for the solvent and on the type of structure of the matrix. The properties of gel-type resins depend on the crosslinking degree. The lower the amount of DVB, the greater the increase in volume they will undergo. In the case of macroporous resins, on the other hand, the behaviour is more complex as they contain the polymeric fraction and the holes between

pores. The polymeric phase follows the same behaviour as the gel-type. The space between pores, on the other hand, depend on the solvent. In *Figure 5* the swelling behaviour of a gel-type and a macroporous resins is compared.

Figure 5. Swelling behaviour of gel-type and macroreticular resins [27]

The application of ion exchange resins is limited by their stability, which can be altered by mechanical, chemical or thermal factors.

Mechanical stability is given by the breaking and compressive resistance of the particles. Macroporous resins, for example, are more fragile than gel-types resins and if they are used in highly agitated reactors, may break into small particles more easily. Chemical stability is defined as the resistance of the resin to the presence of strong oxidising agents that cause a degradation of its structure. As for thermal stability, each resin has a maximum operating temperature. Above this temperature, irreversible changes in the structure occur, leading to a loss of catalytic activity. These are caused by the breaking of the bonds between the functional groups and the support or between the atoms of the matrix itself.

Finally, although not considered as causes of catalyst instability, it is important to note that resin lifespan and activity can be affected by other phenomena such as a functional group poisoning or fouling.

2. OBJECTIVES

This work is part of a study for the synthesis of products derived from biomass. It focuses on the use of acidic ion exchange resins as catalysts for the double dehydration reaction of sorbitol in aqueous media. The main objectives are described below:

- 1. To determine the solubility of sorbitol in different organic solvents.
- To perform a screening of different ion exchange resins and select the most suitable one according to conversion, selectivity and yield criteria.
- 3. To study the effect of temperature on the best resin.

3. EXPERIMENTAL SECTION

3.1. SORBITOL SOLUBILITY

3.1.1. Experimental materials

To perform the experimental process, sorbitol (CAS:50-70-4, 98% purity) have been used as solute and methanol (CAS:67-56-1, 99% purity), ethanol (CAS: 64-17-5, 99% purity), n-butanol (CAS: 71-36-3, 99% purity) and acetone (CAS: 67-64-1, 99% purity) have been used as solvents. *Table 2* shows some physicochemical properties of the organic solvents.

Salvant	MW	MW T _m		ρ	μ	δ	E-N c
Solvent	[g/mol]	[K]	[K]	[g/cm ³] ^a	[cP] ^a	[MPa ^{1/2}] ^b	L L., C
Methanol	32.04	175.6	337.8	0.793	0.538	36.2	0.762
Ethanol	46.07	159.0	351.4	0.800	1.077	26.2	0.654
n-Butanol	74.12	183.3	390.8	0.806	2.554	28.7	0.586
Acetone	58.08	178.3	329.4	0.788	0.306	19.7	0.355

TABLE 2. Summary of some properties of the studied solvents

^a Values obtained at 1 atm and 298 K from Aspen Plus v 12.1

^b Hildebrand solubility parameters [28]

° Normalised solvatochromic solvent polarity parameters [29]

3.1.2. Experimental SET UP

In *Figure 6* a scheme with the experimental system is represented. It consists of a jacketed flask of (50 mL) connected to a thermostatic water bath (LAUDA Alpha A) with a maximum operating temperature of 70°C.

During the experiments, the flask is stirred using a magnetic stirrer with a hotplate (Stuart SB 162). A digital thermometer with an accuracy of $\pm 0,1$ °C was used to determine the mixture temperature during sampling.

Figure 6. Scheme of the experimental set up

3.1.3. Experimental procedure

3.1.3.1. Solubility measurement

Solubility determination of sorbitol in different organic solvents has been carried out using a gravimetric analysis method. For this purpose, the jacketed flask is filled with the desired solvent and an excess amount of sorbitol to ensure the solution saturation. The flask is connected to a thermostatic water bath to regulate its temperature and it is stirred with a magnetic stirrer for about 24 hours to reach solid-liquid equilibrium. To avoid large heat loss, the flask is also covered with a heating mantle.

Before sampling, the stirring is stopped for about two hours. The temperature of the solution is measured using a temperature sensor. Then, three 5mL aliquots of the supernatant are transferred, using filters, to three evaporation vials previously weighted. These vials are capped and reweighted. Finally, they are uncapped and left open at room temperature to allow the solvent to evaporate. In cases in which the solvent under study is not highly volatile, they are left for a few days in an oven at 60°C.

The bath temperature is then raised by 5 °C, the flask is refilled with the solvent and the stirring is connected again for the next samples.

Once the solvent is evaporated from the vials, they are weighed again and the corresponding calculations for the solubility determination are made.

3.1.3.2. Clean up

Once all the samples of a solvent have been taken, the stirring is switched off and the thermostatic bath is disconnected to cool down the flask to room temperature. The contents are filtered through a vacuum pump and a sample of the suspended solid is collected for further analysis.

The flask is cleaned with distilled water and dried using synthetic air. Finally, once dried, the device is prepared for the study of another solvent. It is important, for the correct determination of solubility, that the flask is completely dry.

3.1.4. Experimental conditions

A total of four experiments were carried out at atmospheric pressure with different durations depending on the temperature range studied (*Table 3*). The initial temperature was 25°C, which was increased by increments of 5°C up to the maximum temperature. This temperature differs between solvents and has been set considering the boiling temperature of the solvent and the maximum temperature reached by the thermostatic bath.

Solvent	T min [°C]	T max [°C]
Methanol	25	65
Ethanol	25	65
n-butanol	25	60
Acetone	25	50

	TABLE 3. tem	perature	range	studied	for	each	solven	t
--	--------------	----------	-------	---------	-----	------	--------	---

Samples were taken every 24 h, considering that, after this time, the liquid-solid system has reached equilibrium.

A first experiment to determine the solubility of sorbitol in water was attempted, but it was not possible to carry out. The system presents a high solubility and it was not possible to saturate the solution. As the concentration of sorbitol increased, the viscosity of the system also increased, being impossible to stir or to carry out sampling. Hence, another method of analysis would be required to determine the solubility.

This would justify the choice of water as the best solvent to carry out the reaction. Also, considering that after the hydrolysis stage, the resulting mixture is aqueous, it would be the most logical choice. But, in reality, it has a fundamental drawback. Water is one of the products of the sorbitol dehydration, so its use significantly reduces the reaction rate. As will be seen in later sections, long reaction times are required to achive a high reactant conversion. For this reason, it is important to find a solvent which can be used as a substitute for water.

3.1.5. Calculations

The solubility of a substance can be expressed in a variety of units. In this work, sorbitol solubility has been calculated in two different ways. *Equation 1* shows a ratio between the mass of solute (m_1) and solvent (m_2) .

$$c^* = \frac{m_1}{m_2} = \frac{m_{vial+cap+solid} - m_{vial+cap}}{m_{vial+cap+solution} - m_{vial+cap+solid}} \left[\frac{g_{solute}}{g_{solvent}}\right]$$
(1)

From this mass ratio, solubility has been expressed in terms of mole fraction by *Equation 2*, where M₁ and M₂ correspond to the molar mass of the solute and solvent respectively.

$$x_{eq} = \frac{c^* \cdot M_2}{(c^* \cdot M_2 + M_1)}$$
(2)

Finally, the Van't Hoff enthalpy change has been obtained from the graphical representation of the relationship expressed in *Equation 3* [30].

$$\left(\frac{\partial \ln x_{eq}}{\partial \ln(1/T)}\right) = -\frac{\Delta_{sin}^{\nu H} H^o}{R}$$
(3)

3.2. SORBITOL DEHYDRATION REACTION

3.2.1. Experimental materials

Sorbitol (Alfa Aesar, CAS: 50-70-4), with a purity of 98%, and water (Mili-Q, Millipore) were used to carry out the dehydration of sorbitol to isosorbide reaction.

In addition, Isosorbide (Alfa Aesar, CAS:652-67-5) and 1,4-Sorbitan (Sigma-Aldrich, CAS: 27299-12-3) with a purity of 98% and >99% respectively, were also used for the calibration of the chromatograph. *Table 4* shows some properties of these substances:

Properties	Sorbitol	1,4-Sorbitan	Isosorbide
Formula	$C_6H_{14}O_6$	$C_6H_{12}O_5$	$C_6H_{10}O_4$
MW [g/mol]	182.17	164.16	146.14
Density [g/cm ³] a	1.29	1.57	1.30
T _m [°C]	98-100	112-113	63
T₅ [°C]	295	443	175

TABLE 4. Properties of	reagents	used
------------------------	----------	------

a for T=25°C

The stirred batch reactor was pressurised with nitrogen gas supplied by Abelló Linde and with a purity of 99,9995%.

Concerning the catalysts, five sulfonated ion exchange resins were used: Amberlyst 45 (A-45), Amberlyst 70 (A-70), Purolite CT-482 (CT-482), Amberlyst DL-H/03 (A DL-H/03) and Amberlyst DL-I/03 (A DL-I/03). The first three catalysts are commercial resins while the other ones are prototypes. All of them present a macroporous structure with different percentages of DVB and are thermostable in the operating temperature range since the catalyst screening is carried out at a temperature of 170°C. *Table 5* contains some of their main properties.

		Δ 45	Δ 70			CT-482
		~ **	A 10			01-402
Туре		macro	macro	macro	macro	macro
Acid capacity [meq H*/g]		3.67	2.62	3.1	5.4	4.25
DVB [%]		medium	low	low	medium	low
T _{max,operation}	[°C]	170	190	170	170	190
Water reter	ntion [%]	51-55	53-55	50-52	51-55	48-58
	dp [mm]	0.58-0.75	0,57	0.711	0.644	0.81
Drav	d pore ^a [nm]	19.0			27.2	26.7
Swollen In water	S g ª [m²/g]	49.0	0.018	0.087	19.77	8.7
	V _{pore} ^a [cm ³ /g]	0.23			0.17	0.06
	θ ª [%]	25.4			21.6	8.2
	d _{pore} b [nm]	9.5	13.3	8.2	12.0	19.6
	S g ^p [m²/g]	220.2	66	283.1	153.3	214.0
	V _{pore} b[cm ³ /g]	0.52	0.22	0.577	0.459	1.05
	V _{sp} ^b [cm ³ /g]	0.97	1.149	0.87	0.744	1.081
	θ Þ [%]	54.4	51.9	52.8	48.7	65.7

TABLE 5. Properties of ion exchange resin used in this study

^a measured by BET technique

^b measured by ISEC technique

3.2.2. Experimental SET UP

Figure 7 a scheme of the device used for the dehydration reaction of sorbitol is represented. It consists of a stainless steel stirred (316 SS) batch reactor with a capacity of 100 mL (Autoclave Engineers) operating at a pressure of 30 bar. This is measured by a manometer situated between V8 valve (relief valve) and the reactor. It is also equipped with a rupture disc that allows an instantaneous pressure release when the operating pressure exceeds the maximum one (between 50.1 and 54.8 bar).

Figure 7. Scheme of the experimental Set up

The agitation system contains a turbine with four mixed-up paddles connected to a rotor (Magnedrive II Series 0.7501). The stirring speed is controlled by a frequency converter model T-VERTER N2 SERIES. A baffle is placed next to the stirrer to promote the homogenisation of the mixture. Likewise, the reactor contains a thermocouple to measure the temperature inside the reactor and which is part of a PID temperature control system.

To add the catalyst, the reactor has a cylindrical injector (316 SS), through which a nitrogen stream can circulate by means of valves V1-V4.

The heating system consists of an electric furnace connected to the temperature control system via another thermocouple which measures the temperature of the outer wall of the reactor. Once the setpoint is reached, and the temperature is established, its value remains constant with an error of ± 0.1 °C.

Finally, samples are extracted through a filter that avoids the loss of catalyst particles. This extraction is carried out manually through valves V3, V6 and V7. Although the system is connected to a gas chromatograph, samples are analysed by a high-performance liquid chromatograph (HPLC).

A Hi-Plex Ca column with a size of 250 x 4,6 mm operating at a temperature of 80°C and using Millipore water as mobile phase with a flow rate of 0.3 ml/min has been used for the analysis.

3.2.3. Experimental procedure

3.2.3.1. Reactor loading and launching

First, the reaction mixture is prepared. The reactant (sorbitol) and the solvent (water) are weighted separately and added to the reactor. Then, it is closed by three safety screws.

To ensure that the reactor is completely closed and that no leakage will occur, a tightness test is done. Valve V1 is opened and valve V3 is set to position 1 to allow the entry of nitrogen into the reactor. Once it is pressurised, V3 is closed. The pressure indicated by the manometer must remain constant. Then, valve V8 is opened to reduce the pressure to 10 bar.

The heating furnace is fastened around the reactor and it is switched on. The stirring is also connected.

The catalyst is taken out of the oven, where it has been for at least 24 hours at 110°C to remove moisture, weighted and introduced into the injector by unscrewing over valve V4 and using a paper funnel (It is important to check valve V5 is closed to prevent resin from being added to the reactor in advance). Due to its high hygroscopic behaviour, this step must be carried out quickly to avoid the capture of moisture from the environment.

Once the reactor temperature reaches the setpoint, the catalyst is injected. For this purpose, valves V2 and V4 must be open to pressurise the injector. The manometer must indicate a pressure around 10 bar. If it is higher, it is reduced by opening valve V8. Inside the reactor, the pressure must not be much higher since a pressure difference of at least 20 bar is required for the catalyst to be injected correctly. Likewise, it must not be lower, because it is necessary to keep the solvent (water) liquefied to avoid its loss when valve V8 is opened.

Valve V5 is opened and then closed quickly, as soon as the pressure inside the reactor reaches the nitrogen line pressure. Using valve V8, the pressure is reduced to 10 bar and the process is repeated at least 5 times to ensure the full injection of catalyst.

3.2.3.2. Sampling

For sampling, valve V7 is placed in position 1. Valve V6 is opened slowly and the sample is collected in a 1,5 ml vial. Once it is obtained, V6 is closed and V7 is placed in position 2.

To recover the sample retained in the pipe with valve V3 in position 2, the relief valve V8 is opened to reduce the pressure inside the reactor to 10 bar and, at the same moment that this valve is closed, V6 is opened to let nitrogen pass through and push the solution remains inside. Once the manometer indicates the line pressure value, the valve is closed.

This procedure is followed for all samples. The first one is obtained when the reactor has reached the setpoint temperature, just before the catalyst is added. The time of catalyst injection is considered as the initial time of reaction (t=0). From then on, samples are taken every half hour for the first 2.5 hours of reaction and then every hour thereafter, until an experimental time of 8.5 hours is reached.

In a high-performance liquid chromatograph (HPLC), a sample of 50 μ L is analysed. For this purpose, a flow rate of 0.3 ml/min of Millipore water is used as eluent and the column temperature is set to 80°C. Due to the high concentration of reactant, the analysed sample is diluted. Therefore, each extraction is diluted 1:2 with Millipore water.

3.2.3.3. Clean up

After the last sample is obtained, the stirring and heating are stopped, valve V1 is closed and the reactor is cooled down at room temperature before cleaning.

After cooling, the three safety screws are unscrewed and the reaction mixture is filtered. A vial with a sample of the final reactor contents and the filtered catalyst are separately collected.

It is important to check that the catalyst has been fully injected to ensure a correct discussion of the experimental results. For this purpose, the reactor, previously cleaned with deionised water and dried, is placed at the end of the injector. Valves V1, V2 and V4 are opened and V5 is quickly opened and closed several times.

For cleaning the internal accessories, several steps are followed. First, valves V3 and V7 are set to position 2 to remove any remaining solution from the piping. Then, valve V6 is opened to allow nitrogen to push it through the filter.

The reactor is then filled with deionised water and closed. The heating furnace is placed, fastened correctly around it and switched on to heat the water to about 70°C. Valve V3 is placed

in position 1 to pressurise the reactor and, with valve V7 in position 1 and opening V6, the water is extracted and collected in a breaker.

Finally, the reactor is cooled down. The heating furnace is removed, the reactor is unscrewed and cleaned again with an ethanol-acetone mixture and dried with synthetic air.

3.2.4. Experimental conditions

The experiments had a reaction time of 8.5 h and were carried out at a pressure of 30 bar to ensure that the mixture remained in the liquid phase.

Initial composition was one of the parameters that were kept constant between the experiments. 4,5 g of sorbitol were added to a volume of 90 mL of water (4,7 wt%), Also, to compare the behaviour of different ion exchange resins, the mass of dry catalyst was fixed at 1g.

These resins were not subjected to any sieving process. Thus, they present the size distribution of the commercial sample. Also, before being used in the experiments, they were left for a minimum of 24 hours in an oven at 110°C and atmospheric pressure to remove the water molecules they contain.

Concerning the operation temperature, for one of the catalysts, five experiments have been carried out at a different temperature in the range of 150-190°C and, for each experiment, it has remained constant.

Finally, as for the stirring, the influence of external mass transfer has not been studied, so it has been set at 750 rpm, based on previous experience with similar systems, and the resistance has been assumed to be negligible.

3.2.5. Calculations

To analyse the temperature effects on reaction and to be able to compare the best performing catalysts, the reactant conversion and the intermediate and products selectivity and yield have been calculated.

The conversion for a batch system indicates the fraction of reactant consumed in a specific time regarding its initial amount. In *equation 4*, it is defined for the system under study.

$$X_{SOH}(t) = \frac{n_{SOH}^0 - n_{SOH}(t)}{n_{SOH}^0}$$
(4)

On the other hand, selectivity, also for a discontinuous system, is a parameter that indicates the amount formed of a given substance regarding the total moles of reactant consumed for a certain time. For the system studied, it is defined in *equation* 5, where j corresponds to a specific species (1,4-sorbitan, isosorbide or 2,5-sorbitan).

$$S_{j}(t) = \frac{n_{j}(t)}{n_{SOH}^{0} - n_{SOH}(t)}$$
(5)

Finally, using the selectivity and conversion values, a specific substance yield can be obtained from *equation 6*.

$$Y_j(t) = S_j(t) \cdot X_{SOH}(t)$$
(6)
4. RESULTS AND DISCUSSION

4.1. SORBITOL SOLUBILITY

The solubility curves of sorbitol obtained for four organic solvents are represented in *Figures* 8 and 9. In the temperature range studied, it can be observed that solubility increases with temperature and shows an exponential dependence for those solvents with higher solubility. This trend is notably visible for methanol. Furthermore, as solubility decreases, this dependence is in turn weaker, presenting practically linear behaviour in the case of acetone.

Figure 8. Mass ratio solubility of sorbitol in different solvents

To justify this variation, the structures of the solvents must be compared. All of them present a polar nature, but a distinction can be made between protic (alcohols) and aprotic (acetone) solvents. The difference between them resides in the presence or absence of hydrogen atoms bonded directly to a highly electronegative atom. Alcohols contain a hydroxyl group (OH) with this characteristic, which is not present in the case of acetone.

Figure 9. Molar fraction solubility of sorbitol in different solvents

To be considered a good solvent, a substance must be able to replace bonds between solute molecules with solute-solvent ones. For attractions of a similar nature, the energy required for such substitution will be lower and, consequently, the solubility of the system will be higher.

Sorbitol molecules are linked together by the formation of hydrogen bonds between their hydroxyl groups. Protic solvents are the only ones capable of forming such bonds, which is why acetone, as an aprotic solvent, has such low solubility. In this case, dipole-dipole interactions are generated which are weaker than hydrogen bonds.

In *Table 6*, the mole fraction solubilities for the four solvents are given. They have also been compared with the values found in the literature. It can be seen that, for all cases, the values obtained are similar.

Solvent	x _{eq} (this work) ^a	x _{eq} (literature) ^b [31]
Methanol	0,00616	0,00739
Ethanol	0,00198	0,00181
n-Butanol	0,00086	0,00106
Acetone	0,00032	0,00044
^a for T= 301K		

TABLE 6. Sorbitol solubility reported in literature

^a for T= 301I

[▶] for T=303K

However, it should be noted that, among alcohols, the range of values is quite wide, with solubility decreasing as the number of carbon atoms in the molecule increases (MeOH > EtOH > BuOH). Therefore, the length of the chain is another factor to consider.

Hydrocarbon chains are practically non-polar structures. They contain two different types of bonds: between two carbon atoms and between a carbon and a hydrogen atom. The former has no polarity and, in the case of the latter, it is weak. Therefore, in molecules with a high number of carbons, the effect of the non-polarity of the hydrocarbon chain concerning the overall molecule will be much greater than the influence of the polar functional group. Consequently, the solute-solvent bonds will be weaker and the solubility will be lower.

Finally, *Figure 10* shows the ln (X_{eq}) regarding the inverse of temperature for each solvent. It can be seen that, for all of them, it shows a linear behaviour.

Figure 10. Representation of Van't Hoff plot of sorbitol solubility

The enthalpy change (Δ_{sin}^{vH} H^o) can be obtained from the slope of the regression equation (solid lines) according to the Van't Hoff equation. Their values, standard errors and regression coefficients are shown in *Table* 7.

TABLE 7. Van't Hoff enthalpy change for each studied solvent												
	Methanol		Ethanol		N-Butanol			Acetone				
Δ sln ^{vH} H⁰ [kJ/mol]	42.2	±	1.8	37.5	±	1.5	31.5	±	1.6	17.6	±	2.3
R ²	0.984		0.992 0.981			0.	936					

This magnitude indicates the dependence of solubility on temperature. All values obtained are positive because, as mentioned above, for the four solvents solubility increases with temperature. Furthermore, a relationship between the capacity of a solvent to dissolve sorbitol and the enthalpy value of the solution can be observed. The higher the solubility in a solvent, the higher the Van't Hoff enthalpy.

In *Table 8* this values are compared with those reported in the literature. As can be observed, the results are quite similar, being slightly higher for alcohols and slightly lower for acetone. In both cases these differences are attributable to experimental error.

Solvent	Δ _{sin} ^{vH} H ^o [kJ/mol]				
Solvent	(this work)	(literature) [31]			
Methanol	42.2	38.3			
Ethanol	37.5	34.0			
n-Butanol	31.5	27.7			
Acetone	17.6	21.0			

TABLE 8. Van't Hoff enthaply change reported in literature

4.2. SORBITOL DEHYDRATION REACTION

4.2.1. MONITORING OF AN EXPERIMENT

After obtaining and analysing the samples, a graphical representation like *Figure 11* is obtained, showing the evolution of the moles regarding the reaction time.

As mentioned in the introduction section, the reaction mechanism for obtaining isosorbide from sorbitol consists of two dehydration reactions in series. In the first one, the intermediate 1,4-sorbitan is formed and, in the latter, it is consumed and isosorbide is formed. Furthermore, in the first stage, several parallel reactions take place in which other sorbitans are formed.

Figure 11. Moles of SOH, IB, 1,4-ST and 1,5-ST vs. reaction time (catalyst: A-70, T=170°C)

From the analysis sample, through calibration (Appendix 1), SOH, IB and 1,4-ST have been identified and quantified. However, in all the experiments, another signal of a substance has been reported.

The trend of this signal is increasing during the reaction time until it reaches a value where it stabilises. Due to this behaviour, the possibility that it was 3,6-sorbitan has been discarded since, in the same way as 1,4-sorbitan, it would lead to the formation of isosorbide and its consumption should have been observed.

Different authors have reported the presence of 2,5-sorbitan in greater quantities than the rest of secondary sorbitans [12][13][31]. In some cases, it is the only one detected. Therefore, it has been considered that the signal corresponds to this substance.

This compound has been impossible to obtain so, knowing that it is an isomer of 1,4sorbitan, the same calibration has been used for quantification.

Finally, since the eluent used in the HPLC is water, neither the solvent nor the water produced during the reaction was detected in the analysis. This was the main reason why, when

carrying out the calibration, it was decided to relate known concentrations of the species to the area obtained instead of using the percentage of area.

4.2.1.1. Experimental error

Before analysing the different results and drawing conclusions, it is important to know the error associated with the experiments. For this purpose, a mass balance has been verified for each experiment by carrying out a carbon mass balance and quantifying a possible deviation.

In all the experiments it was found a deviation from mass balance which corresponds to an error of approximately 20%. In all of them, this variation is positive, i.e. the analyses of the samples always present a higher concentration of species than expected.

It has been concluded that, of the whole experimental process, the greatest source of error is found in sampling. For the analysis, samples must be taken manually, as the HPLC is not directly connected to the reactor. It is worth remembering that the reaction mixture contains a large amount of water and the reactor is operating at a high temperature, above 100°C. So it is necessary to pressurise the reactor to keep the solvent in the liquid phase. This pressure decreases drastically when the sample is extracted. Therefore, a fraction of the solvent is released as vapor, which results in a more concentrated sample.

Likewise, in order to check the reproducibility of the experiments, three replicates were carried out using A-70 resin as catalyst and with an operating temperature of 170 °C. *Table* 9 presents the reactant conversion and the selectivity and yield of the intermediate and products at the final reaction time (t=510 min) together with their associated deviation.

TABLE 9.	Conversion,	selectivities	and yields o	of reagents	for repli	cates a	nd its a	associated	deviation
		(α=0),1). T=170°	C, t=510mi	in , C=A-	-70			

Хзон [%]	S⊪ [%]	S 1,4-ST [%]	S2,5-ST [%]	Y _{IB} [%]	Y1,4-ST [%]	Y 2,5-ST [%]
97.6	52.2	39.9	7.9	48.0	35.4	16.6
± 0.6	± 14.1	± 14.2	± 0.2	± 25.2	± 8.7	± 25.6

The error between the replicates is quite significant, but it is similar to that quantified in the mass balances, so it can be assumed that it corresponds to the loss of solvent in sampling.

4.2.2. SCREENING OVER ION-EXCHANGE RESINS

The reaction was carried out using five different resins, fixing the rest of the experimental conditions. In order to observe the complete consumption of the reactant, the operating temperature has been set at 170°C. For this reason, catalysts have been chosen based on their thermostability and not prioritising the structural differences. Therefore, all resins are macroporous.

Figure 12 shows the evolution of sorbitol conversion during the reaction time for each resin. It can be seen how, with four of them, almost complete conversion is achieved, although this is reached at different times.

On the other hand, the experiment using resin A-45 shows a lower final conversion, not reaching 90% after 8.5 hours of reaction.

Figure 12. Sorbitol convertion vs. reaction time T=170°C

However, in order to justify the selection of one catalyst or another, the analysis will focus on the comparison of selectivities and yields between the different compounds. The main product is isosorbide, so the resin that maximises its production will be the one with the best catalytic behaviour and will be chosen to subsequently study the temperature effect. Table 9 contains the results obtained for each catalyst. CT-482 resin is the one that shows the best results both in the final reactant conversion and in the selectivity and yield of isosorbide.

	X [%]		S [%]			Y [%]		D _{pore}	∑V _{sp}	Acid cap.	DVB
	SOH	IB	1,4-ST	2,5-ST	IB	1,4-ST	2,5-ST	[nm]	[cm ³ /g]	[H+/eq]	[%]
A-45	87.6	24.7	67.7	7.6	21,6	59.3	6.7	9.5	0.52	3.7	Medium
A-70	97.6	53.0	39.1	7.9	51,8	38.2	7.7	13.3	0.22	2.6	Low
ADL-H/03	96.1	39.3	53.5	7.2	37.8	51.4	6.9	8.2	0.58	3.1	Low
ADL-1/03	96.9	40.5	52.4	7.2	39.2	50.7	7.0	12	0.46	5.4	Medium
CT-482	97.0	56.1	36.1	7.8	54.4	35.0	7.6	19.6	1.05	4.3	Low

TABLE 10. Summary of results and parameters for each catalyst

As for the rest of the substances, it should be noted that 2,5-ST has very similar selectivities and yields for all catalyst. Therefore, none of these resins seems to notably improve the selectivity in favour of the formation of 1,4-ST in the first stage of the reaction mechanism.

To understand these differences, it is important to relate the results to the properties of each catalyst.

Figure 13 correlates selectivities with the resin acid capacity, i.e. the number of sulphonic groups available to carry out the exchange. It might be expected that this would be one of the most decisive parameters, but the results reveal the opposite.

Figure 13. Selectivity vs. Acid capacity T=170°C t=510 min

Resins A DL-H/03 and A DL-I/03 present similar isosorbide selectivities (39.3% and 40.5% respectively) and yields (37.8% and 39.2%) but their acid capacities are quite different. From all resins, the latter has the maximum value of 5.4 H⁺/eq. while the former is 3.1 H⁺/eq. Likewise, resin A-70, which has the second higher isosorbide yield value, is also the one with the lowest acid capacity.

Therefore, it seems to indicate that other factors related to the accessibility of reactants to these sulphonic groups have a greater influence that the amount a resin contains. For example, in general, a correlation between pore diameter of the swollen state and selectivity does appear to be found (*Figure 14*). For larger diameters, the greater the selectivity of isosorbide, while for smaller diametres, the greater the selectivity of the intermediate.

This might be due to the reactant molecules volume. 1,4-ST contain a tetrahydrofuran ring which gives the molecule a larger volume compared to sorbitol. The small pore diameters hinder the access of larger molecules to the active sites and hence, in the present study, the yield of the second reaction decreases.

Figure 14. Selectivity vs pore diameter T=170°C t=510 min

However, there are other factors to consider. Resin A-45, for example, does not respond to the expected trend, since its pore diameter (9.5 nm) is larger than that of resin A DL-H/03 (8.5 nm). Moreover, their acid capacities are similar, the former being slightly higher (3.7 H⁺/eq and 3.1 H⁺/eq respectively). But isosorbide yield for A-45 is much lower, 21.6% compared to 37.8% for A DL-H/03.

The main difference between this resins lies in the percentage of DVB contained in their structure. Although no specific values have been found, the amount of DVB of A DL-H/03 is low and that of A-45, medium. DVB provides the crosslinking degree of the polymeric matrix, and gives it rigidity. Therefore, a possible explanation for these results is that a high crosslinking degree hinder reagent molecules to access the inner active sites and, consecuently, they can only react with the outermost ones.

Likewise, the two resins with the best catalytic activity are CT-482 and A-70, whose matrices also contain a low %DVB.

Finally, the possible correlation between the selectivities and the volume of swollen polymer (Vsp) has been analysed (*Figure 15*). In general, resins with higher isosorbide selectivities and yields are those which also present a higher Vsp. Again, this results are related to the accessibility of the active sites. This parameter indicates the swelling capacity of a resin in polar

medium, so that the higher the Vsp, the more the resin will swell and, consequently, the more accessible the active sites will be to the reactant.

Figure 15. Selectivity vs. Vsp T=170°C, t=510 min

It should be noted that the comparison between catalysts is complex, since the catalytic activity is not given by the value of a single property but by a combination of all of them. As it has been observed, the morphological properties of the resin seem to be determinant in obtaining a good selectivity and yield of isosorbide. Therefore, possible variations in the behaviour of the resins could be explained due to differences in the morphology of their gel phase, for which data could not be found for the discussion.

Even so, it can be concluded that, of all the resins estudied, CT-482 is the one with the best results for the production of isosorbide due to its good accessibility of the active sites (low %DVB, large pores and high Vsp) and its good acid capacity.

4.2.3. TEMPERATURE EFFECT

In order to evaluate the effects of the operation temperature on the reaction, five experiments were carried out in a temperature range of 150°C-190°C using CT-482 as catalyst, since it was the one that presented the best catalytic behaviour in the screening.

Firstly, the differences in the evolution of the sorbitol conversion over the reaction time have been analysed (*Figure 16*). It can be observed that the conversion achived at the three highest temperatures is almost complete at 8.5 reaction hours, with values around 98%.

Figure 16. Sorbitol convertion vs. reaction time Catalyst=CT-482

However, it should be noted that progession differs. The higher the temperature, the less time is required to reach this conversion. This is an expected behaviour, since kinetic constants of reactions, following the Arrhenius model, increase their value with temperature and, hence, their reaction rate.

For this reason, the conversion obtained at the end of the experiments at lower temperatures is consequently smaller. Reactant consumtion is slower and, thus, a longer experimental time would be required in order to obtain similar conversion values.

Figure 17 shows the progression, in terms of moles, over time of the species present for each temperature.

Figure 17. mole evolution vs. reaction for different temperatures Catalyst= CT-482

The evolution of isosorbide and 2,5-sorbitan is similar. Both show an increasing trend until they reach a certain value at which they stabilise. 2,5-ST is a product of the first reaction stage and, hence, the value stabilises when sorbitol moles are almost consumed. In constrast, in the case of isosorbide, this behavior is not observed for all temperatures. For 150°C, 160°C and 170°C isosorbide moles increase practically linearly during the whole reaction time, but at the two higher temperatures, the final stabilisation can be intuited.

1,4-sorbitan, the intermediate compound, also shows an expected profile. Its formation until it reaches a maximum value and its subsequent consumption. This peak appears in shorter times with increasing temperature. Again, due to the increase in reaction rate produced by working at higher temperatures.

As occurred with isosorbide, in the experiment carried out at 190°C, it is observed how it stabilises for the last reaction times. It should be noted that sorbitol dehydration to isosorbide is a reaction mechanism consisting of two reversible reactions in series, so that, for an infinite reaction time, the species would reach kinetic equilibrium.

Finally, *Figure 18* compares selectivity at the final time reaction (t=510 min) for the intermediate and both products.

Figure 18. Selectivity of IB, 1,4-ST and 2,5-ST vs tempeture t=510 min Catalyst= CT-482

It can be observed that increasing the operating temperature favours the formation of the desired product, isosorbide. Consequently, since these are two reactions in series, as the yield of isosorbide increases, the selectivity and yield of the intermediate decrease. Therefore, lower temperatures promote the formation of 1,4-ST.

It is worth mentioning that, in the experiments carried out at 180°C and 190°C, both selectivites stabilise. Therefore, from a temperature of 180°C and above, an increase in temperature does not leat to an improvement in isosorbide selectivity and, consequently, in its yield.

Likewise, 2,5-ST shows a constant selectivity for any temperature in the range studied. Therefore, temperature does not seem to be a factor that could improve the 1,4-ST selectivity in the first stage of reaction.

5. CONCLUSIONS

Regarding the study of sorbitol solubility, it can be concluded that, in protic solvents, the solubility value is higher than in aprotic solvents due to their capacity to form hydrogen bonds with the solute molecules. Likewise, comparing the results between the different alcohols, it can be concluded that solubility decreases as the number of carbons in the hydrocarbon chain increases due to a decrease in polarity. Therefore, among all the solvents studied, methanol is the one with the best solubility values.

Regarding the reaction, this study confirms that the double dehydration reaction of sorbitol to isosorbide can be carried out in aqueous media using acidic ion exchange resins. Among the characteristics of these catalysts, the main ones responsible for the catalytic behaviour are their morphological properties. Those resins with a lower percentage of DVB, a larger pore diameter and a higher volume of swelling polymer offer better results, with CT-482 being the best. As for acid capacity, it has not turned out to be a determining property in the final catalytic behaviour of the resin.

Finally, high reaction temperatures increase the reaction rate and improve both selectivity and yield of isosorbide. As for the formation of side-products, 2,5-ST selectivity has remain practically constant for the whole temperature range studied.

REFERENCES

- [1] Iea, "Technology Roadmap Energy and GHG Reductions in the Chemical Industry via Catalytic Processes," 2013.
- [2] D. Radlein and A. Quignard, "Une bréve revue historique de la pyrolyse rapide de la biomasse," *Oil and Gas Science and Technology*, vol. 68, no. 4, pp. 765–783, 2013, doi: 10.2516/ogst/2013162.
- [3] F. Liguori, C. Moreno-Marrodan, and P. Barbaro, "Biomass-derived chemical substitutes for bisphenol A: Recent advancements in catalytic synthesis," *Chemical Society Reviews*, vol. 49, no. 17. Royal Society of Chemistry, pp. 6329–6363, Sep. 07, 2020. doi: 10.1039/d0cs00179a.
- [4] H. Muhammad, N. Iqbal, G. Kyazze, and T. Keshavarz, "Biotech applications of biomass," 2013.
- [5] C. E. Wyman, S. R. Decker, M. E. Himmel, J. W. Brady, C. E. Skopec, and L. Viikari, "Hydrolysis of Cellulose and Hemicellulose," 2005.
- [6] J. J. Bozell and G. R. Petersen, "Technology development for the production of biobased products from biorefinery carbohydrates—the US Department of Energy's 'top 10' revisited," *Green Chemistry*, vol. 12, no. 4, pp. 539–55, Apr. 2010, doi: 10.1039/b922014c.
- [7] B. García, J. Moreno, G. Morales, J. A. Melero, and J. Iglesias, "Production of Sorbitol via Catalytic Transfer Hydrogenation of Glucose", doi: 10.3390/app10051843.
- [8] M. Silveira and R. Jonas, "The biotechnological production of sorbitol," *Applied Microbiology and Biotechnology*, vol. 59, no. 4–5. pp. 400–408, 2002. doi: 10.1007/s00253-002-1046-0.
- [9] A. W. Newman *et al.*, "Sorbitol," 1999.
- [10] F. Aricò and P. Tundo, "Isosorbide and dimethyl carbonate: A green match," *Beilstein Journal of Organic Chemistry*, vol. 12. Beilstein-Institut Zur Forderung der Chemischen Wissenschaften, pp. 2256–2266, Oct. 26, 2016. doi: 10.3762/bjoc.12.218.
- [11] M. Rose and R. Palkovits, "Isosorbide as a renewable platform chemical for versatile applications-quo vadis?," *ChemSusChem*, vol. 5, no. 1, pp. 167–176, Jan. 2012, doi: 10.1002/cssc.201100580.
- [12] C. Dussenne, T. Delaunay, V. Wiatz, H. Wyart, I. Suisse, and M. Sauthier, "Synthesis of isosorbide: An overview of challenging reactions," *Green Chemistry*, vol. 19, no. 22, pp. 5332–5344, 2017, doi: 10.1039/c7gc01912b.
- [13] M. Yabushita, H. Kobayashi, A. Shrotri, K. Hara, S. Ito, and A. Fukuoka, "Sulfuric acidcatalyzed dehydration of sorbitol: Mechanistic study on preferential formation of 1,4sorbitan," *Bulletin of the Chemical Society of Japan*, vol. 88, no. 7, pp. 996–1002, 2015, doi: 10.1246/bcsj.20150080.

40	Castro Santacreu, Laura
[14]	T. Kondo, T. Sasaki, and M. Shiga, "The mechanism of sorbitol dehydration in hot acidic solutions," <i>Journal of Computational Chemistry</i> , vol. 42, no. 25, pp. 1783–1791, Sep. 2021. doi: 10.1002/jcc.26710
[15]	G. Morales <i>et al.</i> , "Isosorbide Production from Sorbitol over Heterogeneous Acid Catalysts: Screening and Kinetic Study," <i>Topics in Catalysis</i> , vol. 60, no. 15–16, pp. 1027–1039, Sep. 2017, doi: 10.1007/s11244-017-0794-0
[16]	A. Yamaguchi, N. Hiyoshi, O. Sato, and M. Shirai, "Sorbitol dehydration in high temperature liquid water," <i>Green Chemistry</i> , vol. 13, no. 4, pp. 873–881, Apr. 2011, doi: 10.1039/c0qc00426j.
[17]	A. A. Dabbawala, D. K. Mishra, G. W. Huber, and J. S. Hwang, "Role of acid sites and selectivity correlation in solvent free liquid phase dehydration of sorbitol to isosorbide," <i>Applied Catalysis A: General</i> , vol. 492, no. 1, pp. 252–261, Feb. 2015, doi: 10.1016/j.apcata.2014.12.014.
[18]	"14. Dehydration product of sorbitol and the process of making it, US patent".
[19]	M. Gu et al., "Metal (IV) Phosphates as Solid Catalysts for Selective Dehydration of Sorbitol to Isosorbide", doi: 10.1007/s10562-009-0142-5.
[20]	O. A. Rusu, W. F. Hoelderich, H. Wyart, and M. Ibert, "Metal phosphate catalyzed dehydration of sorbitol under hydrothermal conditions," <i>Applied Catalysis B: Environmental</i> , pp. 139–149, 2015, doi: 10.1016/j.apcatb.2015.03.033.
[21]	R. Otomo, T. Yokoi, and T. Tatsumi, "Synthesis of isosorbide from sorbitol in water over high-silica aluminosilicate zeolites," <i>Applied Catalysis A: General</i> , vol. 505, pp. 28–35, Aug. 2015, doi: 10.1016/j.apcata.2015.07.034.
[22]	M. J. Ginés-Molina, R. Moreno-Tost, J. Santamaría-González, and P. Maireles-Torres, "Dehydration of sorbitol to isosorbide over sulfonic acid resins under solvent-free conditions," <i>Applied Catalysis A: General</i> , vol. 537, pp. 66–73, 2017, doi: 10.1016/j.apcata.2017.03.006
[23]	J. F. Izquierdo, F. Cunill, J. Tejero, M. Iborra, and C. Fité, <i>Cinética de las Reacciones</i> <i>Químicas</i> , 2004.
[24]	Dowex-Lenntech, "Fundamentals of Ion Exchange DOWEX Ion Exchange Resins Lenntech", Accessed: Dec. 07, 2021. [Online]. Available: www.lenntech.comFax.+31- 152-616-289info@lenntech.comTel.+31-152-610-900www.lenntech.comFax.
[25]	S. D. Alexandratos, "Ion-Exchange resins: A retrospective from industrial and engineering chemistry research," <i>Industrial and Engineering Chemistry Research</i> , vol. 48, no. 1. pp. 388–398, Jan. 07, 2009. doi: 10.1021/ie801242v.
[26]	D. C. Sherrington and P. Hodge, Eds., Syntheses and separations using funtional polymers. 1988.
[27]	K. Jeøábek, "Ion Exchanger Catalysts."
[28]	J. K. Fink, "Terpene Resins," in <i>Reactive Polymers Fundamentals and Applications</i> , Elsevier, 2013, pp. 303–315. doi: 10.1016/b978-1-4557-3149-7.00012-7.
[29]	C. Reichardt and T. Welton, Solvents ans Solvent Effects in Organic Chemistry, fourth edition. Wiley-VCH, 2011.
[30]	R. Soto, M. Svärd, V. Verma, L. Padrela, K. Ryan, and Å. C. Rasmuson, "Solubility and thermodynamic analysis of ketoprofen in organic solvents," <i>International Journal of Pharmaceutics</i> , vol. 588, Oct. 2020, doi: 10.1016/j.ijpharm.2020.119686.
[31]	W. Zhi, Y. Hu, W. Yang, Y. Kai, and Z. Cao, "Measurement and correlation of solubility of D-sorbitol in different solvents," 2013, doi: 10.1016/j.molliq.2013.07.014.

[32] H. Kobayashi, H. Yokoyama, B. Feng, and A. Fukuoka, "Dehydration of sorbitol to isosorbide over H-beta zeolites with high Si/Al ratios," *Green Chemistry*, vol. 17, no. 5, pp. 2732–2735, May 2015, doi: 10.1039/c5gc00319a.

ACRONYMS

1,4-ST	1,4-sorbitan
2,5-ST	1,5-sorbitan
dp	particle diameter
dpore	pore diameter
DVB	divynilbenzene
nj	Moles of a reagent j
IB	Isosorbide
ISEC	Inverse size exclusion chromatography
Sg	Pore surface
Sj	Selectivity of a reagent j
SOH	Sorbitol
t	time
Tb	Boiling temperature
Tmax, operation	Maximum operation temperature
V _{sp}	Specific volume if swollen polymer
V _{pore}	pore volum
Xsoh	Sorbitol conversion
Yj	Yield of a reagent j
$\Delta_{sin}{}^{vH} \; H^o$	Van't Hoff enthalpy change
Θ	porosity

43

APPENDICES

APPENDIX 1: HPLC CALIBRATION

Compound	Retention time [min]
2,5-sorbitan	7.76
1,4-sorbitan	8.64
Isosorbide	10.54
Sorbitol	14.20

Retention time of each compound

Calibration. Sorbitol

Calibration. Isosorbide

	С				1
IB	[g/mL]	Are	a, 10	⁶ [-]	
1	0,0011	0,47	±	0,01	
2	0,0023	1,00	±	0,06	
3	0,0033	1,4	±	0,1	
4	0,0043	1,8	±	0,2	
5	0,0055	2,65	±	0,01	
6	0,0069	3,2	±	0,4	
7	0,0080	3,5	±	0,4	
8	0,0106	4,7	±	0,4	
9	0,0128	6,3	±	0,7	
10	0,0140	6,9	±	0,9	
11	0,0155	7,0	±	1,0	
12	0,0170	8,5	±	0,8	
13	0,0184	9,4	±	1,2	
14	0,0059	2,6	±	0,3	
15	0,0070	2,78	±	0,09	
16	0,0081	3,5	±	0,5	
17	0,0095	4,6	±	0,5	_

Calibration 1,4-Sorbitan / 2,5-Sorbitan

	С					
ST	[g/mL]	Area, 10 ⁶ [-]				
1	0,0004	0,21	±	0,01		
2	0,0017	0,77	±	0,01		
3	0,0032	1,5	±	0,1		
4	0,0048	1,9	±	0,4		
5	0,0063	2,5	±	0,1		
6	0,0096	4,9	±	0,2		
7	0,0130	6,7	±	0,4		
8	0,0164	8,86	±	0,1		
9	0,0200	10,4	±	0,4		
10	0,0236	12,9	±	0,2		

Calibration equations

Compound	equation	R ²
Sorbitol	y= (1.87E-09 ± 1.3E-10)·x + (3.19E-04 ± 1.3E-03)	0.994
Isosorbide	y=(1.95E-09 ± 1.1E-10) x + (7.6E-04 ± 5.2E-04)	0.990
1,4-sorbitan		0.005
2,5-sorbitan	$Y = (1.01E - 0.9 \pm 1.0E - 10) \cdot X + (7.48E - 0.4 \pm 0.7E - 0.4)$	0.995

APPENDIX 2: SOLUBILITY EXPERIMENTAL DATA

Experiment 1. n-Butanol

Vial	T [ºC]	vial+cap [g]	vial+cap+solution [g]	vial+cap+solid [g]
1	23,8	11,0378	14,8861	11,0447
2	23,8	11,0704	16,0178	11,0800
3	23,8	11,0304	14,4663	11,0364
4	28,4	11,0611	13,4000	11,0664
5	28,4	11,1066	14,8733	11,1132
6	28,4	11,1095	14,0409	11,1162
7	32,6	11,0159	15,2852	11,0254
8	32,6	11,0458	15,9994	11,0573
9	32,6	10,9999	15,6405	11,0104
10	38,6	10,4407	14,0831	10,4514
11	38,6	10,4166	14,6009	10,4272
12	38,6	10,4154	15,2462	10,4212
13	43,7	10,3296	14,5587	10,3436
14	43,7	10,3226	15,0701	10,3384
15	43,7	10,4501	15,3249	10,4671
16	48,5	10,3793	14,5962	10,3984
17	48,5	10,3414	15,1708	10,3633
18	48,5	10,4406	15,116	10,4619
19	52,7	10,4209	14,6645	10,4426
20	52,7	10,3482	15,2812	10,3730
21	52,7	10,3845	15,3684	10,4092
22	58,1	10,4162	14,6879	10,4453
23	58,1	10,4471	15,3503	10,4780
24	58,1	10,4177	15,0484	10,4453
25	62,5	10,3916	14,6764	10,4242

50				Castro Santacreu, Laura
26	62,5	10,3519	14,9949	10,3878
27	62,5	10,4125	15,2793	10,4504

Expermient 2. Methanol

Vial	T [°C]	vial+cap [g]	vial+cap+solution [g]	vial+cap+solid [g]
28	21,1	10,4082	14,4875	10,5291
29	21,1	10,3982	14,2416	10,5101
30	21,1	10,3598	12,976	10,4344
31	25,7	10,3513	13,0709	10,4430
32	25,7	10,3886	14,1835	10,5175
33	25,7	10,3622	16,9216	10,5886
34	28,8	10,3522	13,6243	10,4919
35	28,8	10,3403	14,3288	10,5122
36	28,8	10,3829	14,7979	10,5592
37	39,2	10,4348	14,5572	10,6854
38	39,2	10,4143	15,3870	10,7128
39	39,2	10,3799	15,6747	10,6901
40	44,1	10,4118	13,9471	10,7150
41	44,1	10,4225	14,4793	10,7664
42	44,1	10,4585	15,1196	10,8491
43	49,4	10,4256	14,8629	10,9099
44	49,4	10,368	14,6647	10,8337
45	49,4	10,4102	15,1894	10,9437
46	54,5	10,3506	14,2722	11,0157
47	54,5	10,3974	12,2534	10,6699
48	54,5	10,4321	12,1149	10,6463
49	59,4	10,4273	13,259	10,8212
50	59,4	10,3272	12,6767	10,7136
51	59,4	10,3622	12,1769	10,6997
79	34,7	10,4278	12,8733	10,5473
80	34,7	10,4443	14,0189	10,6217
81	34,7	10,365	13,1126	10,4951

Vial	T [ºC]	vial+cap [g]	vial+cap+solution [g]	vial+cap+solid [g]
52	23.9	10.4566	13,9902	10,4879
53	23.9	10.5232	14,4156	10,5583
54	23.9	10.4161	13,8393	10,4479
55	28.3	10.4344	13,6369	10,4593
56	28.3	10.4698	13,6286	10,4944
57	28.3	10.3779	14,3472	0,4089
58	34.3	10.3900	12,7462	10,4124
59	34.3	10.3737	13,8945	10,4075
60	34.3	10.3981	13,6166	10,4291
61	39.3	10.3893	13,2377	10,4217
62	39.3	10.4603	13,4087	10,4940
63	39.3	10.4688	13,8800	10,5078
64	44.0	10.4595	12,9622	10,4961
65	44.0	10.4731	13,8705	10,5222
66	44.0	10.4257	13,6073	10,4713
67	48.8	10.4442	12,9273	10,4922
68	48.8	10.4681	13,7600	10,5319
69	48.8	10.3722	14,3542	10,4485
70	53.8	10.4388	12,8929	10,4969
71	53.8	10.4495	13,3728	10,5200
72	53.8	10.4469	13,9694	10,5279
73	58.9	10.4026	12,8197	10,4767
74	58.9	10.3548	13,445	10,4502
75	58.9	10.4277	13,7797	10,5285
76	63.4	10.3956	12,9717	10,4876
77	63.4	10.4019	13,4842	10,5128
78	63.4	10,4619	14.801	10,6225

Experiment 3. Ethanol

Experiment 4. Acetone

Vial	T [°C]	vial+cap [g]	vial+cap+solution [g]	vial+cap+solid [g]
82	23.8	10,3881	13,1795	10,3910
83	23.8	10,3809	13,8445	10,3838
84	23.8	10,4114	13,4473	10,4145

85	29.6	10,3566	13,2369	10,3595
86	29.6	10,4561	13,265	10,4590
87	29.6	10,3673	14,6615	10,3716
88	34.7	10,4403	13,4392	10,4438
89	34.7	10,3505	13,9028	10,3551
90	34.7	10,3737	13,6265	10,3775
91	39.6	10,2514	13,7135	10,2557
92	39.6	10,4317	13,8199	10,4358
93	39.6	10,4231	13,7415	10,4269
94	44.4	10,3872	13,777	10,3914
95	44.4	10,4184	13,8816	10,4242
96	44.4	10,3819	13,4489	10,3864
97	49.6	10,4009	13,6232	10,4063
98	49.6	10,3964	14,2196	10,4043
99	49.6	10,392	13,6651	10,3977

APPENDIX 3. REACTION EXPERIMENTAL DATA

The data of the experiments used for the study are attached below:

Experiment 1. Screening

Catalyst	A-45	m catalyst [g]	1,0053
T [°C]	170	m sorbitol [g]	4,5068
Stirring [rpm]	750	m H ₂ O [g]	89,70

		Area _j [-]				nj [r	mol]	
t [min]	SOH	IB	1,4-ST	2,5-ST	SOH	IB	1,4-ST	2,5-ST
0	14094241	0	336758	0	0,0261	0	0	0
30	14161761	0	562278	0	0,0262	0	0,0019	0
60	12858875	15367	1022071	62896	0,0239	0,0010	0,0028	0,0009
90	12209374	72208	1749328	94545	0,0227	0,0011	0,0042	0,0010
120	11266034	123541	2442176	127498	0,0209	0,0012	0,0056	0,0011
150	9788662	222718	3283172	171179	0,0182	0,0015	0,0072	0,0011
210	7613199	455267	4817514	257328	0,0143	0,0020	0,0103	0,0013
270	5694809	770200	6087404	336858	0,0107	0,0028	0,0127	0,0015
330	4580526	1142024	7279308	415833	0,0087	0,0036	0,0151	0,0016
390	3192931	1397958	7388624	440574	0,0062	0,0042	0,0153	0,0017
450	2239126	1691600	7496114	461317	0,0044	0,0049	0,0155	0,0017
510	1602123	1985924	7571546	483209	0,0032	0,0056	0,0157	0,0018

Experiment 2. Screening

Catalyst	A DL-H/03
T [°C]	170
Stirring [rpm]	750

m catalyst [g]	1,0065
m sorbitol [g]	4,5013
m H₂O [g]	89,45

		Area _j [-]				n j [I	mol]	
t [min]	SOH	IB	1,4-ST	2,5-ST	SOH	IB	1,4-ST	2,5 - ST
0	13239713	0	0	0	0,0247	0	0	0
30	13056575	0	844808	57938	0,0243	0	0,0025	0,00093
60	11882866	71391	1622808	93153	0,0222	0,0011	0,0040	0,00100
90	10139450	147010	2501192	139939	0,0190	0,0013	0,0057	0,00109
120	10095360	223309	3524668	182162	0,0189	0,0015	0,0078	0,00117
150	8294104	371900	4524916	233936	0,0156	0,0018	0,0097	0,00128
210	4983443	984665	6230376	343988	0,0095	0,0033	0,0131	0,00149
270	2946423	1535377	7231389	424819	0,0057	0,0046	0,0151	0,00165
330	1508363	2025607	7398488	470514	0,0031	0,0058	0,0154	0,00174
390	1003532	2901692	7922246	549689	0,0022	0,0079	0,0164	0,00190
450	510877	3312841	7080312	540792	0,0013	0,0088	0,0148	0,00188
510	351302	4068946	7012441	589063	0,0010	0,0107	0,0146	0,00197

Experiment 3. Screening

Catalyst	A DL-I/03
T [°C]	170
Stirring [rpm]	750

		Area _j [-]				nj [r	nol]	
t [min]	SOH	IB	1,4-ST	2,5-ST	SOH	IB	1,4-ST	2,5-ST
0	13623066	0	0	0	0,0253	0	0	0
30	13165724	0	1293915	67320	0,0245	0	0,0034	0,0009
60	11299635	95308	2462109	116023	0,0211	0,0012	0,0057	0,0010
90	9378510	182431	3481618	160860	0,0175	0,0014	0,0077	0,0011
120	7668139	385189	4970016	231435	0,0144	0,0018	0,0106	0,0013
150	5849422	777526	6037276	289382	0,0111	0,0028	0,0127	0,0014
210	2971342	1525154	7841846	409438	0,0058	0,0046	0,0162	0,0016
270	1242226	2248915	7935894	446504	0,0026	0,0063	0,0164	0,0017
330	614720	2886848	7664037	463574	0,0014	0,0078	0,0159	0,0017
390	377727	3517513	7372488	529493	0,0010	0,0093	0,0153	0,0019
450	289803	4128625	7105217	570362	0,0008	0,0108	0,0148	0,0019
510	260795	4040821	6613317	549521	0,0008	0,0106	0,0138	0,0019

Experiment 4. Screening	Experiment	4.	Screening
-------------------------	------------	----	-----------

Catalyst	CT-482	m catalyst [g]	1,0015
T [⁰C]	170	m sorbitol [g]	4,5037
Stirring [rpm]	750	m H ₂ O [g]	89,40

		Area _j [-]				nj [r	mol]	
t [min]	SOH	IB	1,4-ST	2,5-ST	SOH	IB	1,4-ST	2,5-ST
0	11940119	0	0	0	0,0223	0	0	0
30	9608838	378842	3670335	218410	0,0180	0,0018	0,0080	0,0012
60	7091594	837405	5616424	350129	0,0133	0,0029	0,0119	0,0015
90	4604723	1332959	7175745	465608	0,0088	0,0041	0,0149	0,0017
120	2787131	1985869	7841864	541641	0,0054	0,0057	0,0163	0,0019
150	1544424	2538076	8254656	605193	0,0032	0,0070	0,0171	0,0020
210	619159	3569766	7857934	654099	0,0015	0,0095	0,0163	0,0021
270	327517	4002378	6921871	646529	0,0009	0,0105	0,0144	0,0021
330	236151	4647127	6501001	682081	0,0007	0,0120	0,0136	0,0022
390	213853	5193722	5901490	692500	0,0007	0,0133	0,0124	0,0022
450	212484	5380963	5197285	665387	0,0007	0,0138	0,0110	0,0021
510	191198	6059103	4671794	691524	0,0007	0,0154	0,0100	0,0022

Experiment 5. Replicates

Catalyst	4-70	m catalyst [g]	1,0007
T [°C]	170	m sorbitol [g]	4,5061
Stirring [rpm]	750	m H₂O [g]	89,70

	Area _i [-]					n j [mol]				
t [min]	SOH	IB	1,4-ST	2,5-ST	SOH	IB	1,4-ST	2,5-ST		
0	15616549	0	0	0	0,0291	0	0	0		
30	12997969	47466	1001350	60189	0,0243	0,0010	0,0028	0,0009		
60	10690064	148107	3102320	150275	0,0200	0,0013	0,0069	0,0011		
90	8589739	305945	4465657	219396	0,0162	0,0017	0,0096	0,0013		
120	6432161	539805	5645762	283267	0,0122	0,0022	0,0120	0,0014		

56							Castro Sar	ntacreu, Laura
150	4425744	1045824	6707261	348671	0,0085	0,0034	0,0141	0,0015
210	2204542	1770179	7759356	451571	0,0044	0,0052	0,0161	0,0017
270	1055807	2464792	7883020	509542	0,0023	0,0068	0,0164	0,0018
330	643791	3238118	8244567	588700	0,0015	0,0087	0,0171	0,0020
390	352302	3472866	6937521	551314	0,0010	0,0093	0,0145	0,0019
450	234773	3664345	5949511	525493	0,0007	0,0097	0,0126	0,0019
510	188994	3891841	5231116	518681	0,0007	0,0103	0,0111	0,0018

Experiment 6. Replicates

Catalyst	A-70	m catalyst [g]	1,0015
T [°C]	170	m sorbitol [g]	4,5037
Stirring [rpm]	750	m H ₂ O [g]	89,40

		Area _j [-]				n j [I	nol]	
t	0011	10	4 4 97	0 C 0T	0011	in	4.4.07	0 C 0T
[min]	SOH	IB	1,4-51	2,5-51	SOH	IB	1,4-51	2,5-51
0	6685944	0	0	0	0,0247	0	0	0
30	10692263	197234	3087989	172608	0,0200	0,0014	0,0069	0,0012
60	7890620	435088	4774634	282586	0,0148	0,0020	0,0102	0,0014
90	5313035	1021817	6627321	410622	0,0101	0,0034	0,0139	0,0016
120	3368788	1606148	7998549	519430	0,0065	0,0048	0,0166	0,0018
150	2003199	1899250	7792525	525254	0,0040	0,0055	0,0162	0,0019
210	891700	2820921	8005104	606912	0,0020	0,0077	0,0166	0,0020
270	530339	3537033	7719273	635075	0,0013	0,0094	0,0160	0,0021
330	35401	4093483	7054940	643451	0,0004	0,0107	0,0147	0,0021
390	251982	4717932	6660830	667943	0,0008	0,0122	0,0140	0,0021
450	214501	4699260	5484018	620010	0,0007	0,0122	0,0116	0,0020
510	188064	5476798	5346743	678208	0,0007	0,0140	0,0114	0,0022

Experiment 7. Replicates

Catalyst	A-70
T [°C]	170
Stirring [rpm]	750

m catalyst [g]	1,0044
m sorbitol [g]	4,5034
m H₂O [g]	89,47

		Areaj [-]				nj [I	nol]	
t	2011	ID	4 4 CT	2 5 GT	60U	ю	4 4 67	2 5 6 T
լուոլ	30n	ID	1,4-51	2,5-51	30n	ID	1,4-51	2,3-31
0	13303153	0	0	0	0,0248	0	0	0
30	9334176	368717	4010502	242711	0,0175	0,0018	0,0087	0,0013
60	5979027	926076	6178780	388324	0,0113	0,0031	0,0130	0,0016
90	3405664	1425811	7090266	432746	0,0066	0,0043	0,0148	0,0017
120	1844574	2129920	7615336	549918	0,0037	0,0060	0,0158	0,0019
150	1059441	2644068	7830375	599968	0,0023	0,0072	0,0162	0,0020
210	387555	3625744	7046022	641035	0,0010	0,0096	0,0147	0,0021
270	270673	4386267	6297358	654710	0,0008	0,0114	0,0132	0,0021
330	194004	5496533	5932880	717744	0,0007	0,0141	0,0125	0,0022
390	178577	6228851	5364696	744277	0,0006	0,0158	0,0114	0,0023
450	150721	6363369	4516621	718663	0,0006	0,0161	0,0097	0,0022
510	137172	6693526	3994525	717369	0,0006	0,0169	0,0087	0,0022

Experiment 8. Temperature effect

Catalyst	CT-482	m catalyst [g]	1,0015
T [°C]	150	m sorbitol [g]	4,5037
Stirring [rpm]	750	m H ₂ O [g]	89,86

	Area _i [-]				n j [mol]			
t	0011	10	4 4 07	0 5 0T	0011	10	4 4 97	0 5 OT
[min]	50H	IB	1,4-51	2,3-51	50H	IB	1,4-51	2,5-51
0	17206962	0	0	0	0,0321	0	0	0
30	13880455	0	424635	0	0,0260	0	0,0017	0
60	11780031	92741	2179069	10059	0,0221	0,0012	0,0051	0,0008
90	10291400	156407	2924949	131947	0,0193	0,0013	0,0066	0,0011
120	9450007	240802	3927290	177843	0,0178	0,0015	0,0086	0,0012
150	8207161	368972	4810704	221627	0,0155	0,0018	0,0103	0,0013
210	5942243	768972	5993108	290334	0,0113	0,0028	0,0127	0,0014
270	3856858	1030148	6352012	327050	0,0074	0,0034	0,0134	0,0015
330	2901766	1333582	6936800	360561	0,0057	0,0041	0,0145	0,0015
390	2232325	1927725	7814673	478735	0,0044	0,0056	0,0163	0,0018
450	1370074	1882334	7620575	450796	0,0028	0,0054	0,0159	0,0017
510	924258	1890831	6394889	375643	0,0020	0,0055	0,0135	0,0016

Experiment 9. Temperature effect

Catalyst	CT-482	m catalyst [g]
]	160	m sorbitol [g]
i ng [rpm]	750	m H ₂ O [g]

	Area _j [-]				n j [mol]			
t [min]	SOH	IB	1,4-ST	2,5-ST	SOH	IB	1,4-ST	2,5-ST
0	14270471	0	0	0	0,0266	0	0	0
30	14124323	50151	864413	52227	0,0263	0,0010	0,0025	0,0009
60	10827730	203584	3312180	176866	0,0203	0,0014	0,0073	0,0012
90	8937118	384002	4535270	242511	0,0168	0,0018	0,0098	0,0013
120	6922527	592014	5493618	297535	0,0131	0,0023	0,0117	0,0014
150	4732210	1243696	7149150	422369	0,0090	0,0039	0,0149	0,0016
210	3454244	1661473	7831904	487051	0,0067	0,0049	0,0163	0,0018
270	2040436	2188708	8239800	539779	0,0041	0,0062	0,0171	0,0019
330	1218416	2651064	8225895	570404	0,0026	0,0073	0,0170	0,0019
390	784858	3071956	8054063	590513	0,0018	0,0083	0,0167	0,0020
450	555097	3268949	7719584	588364	0,0013	0,0087	0,0160	0,0020
510	402515	3623786	7361592	617144	0,0011	0,0096	0,0153	0,0020

Experiment 10. Temperature effect

Catalyst	CT-482	m catalyst [g]
C]	180	m sorbitol [g]
Stirring [rpm]	750	m H₂O [g]

	Area _j [-]				n _j [mol]			
t [min]	SOH	IB	1,4-ST	2,5-ST	SOH	IB	1,4-ST	2,5-ST
0	14302114	0	0	0	0,0268	0	0	0
30	12929629	222005	2315401	127093	0,0242	0,0015	0,0054	0,0011
60	3679294	1228796	5933105	417893	0,0071	0,0039	0,0126	0,0016
90	2057785	2190184	7608920	594361	0,0041	0,0062	0,0159	0,0020
A contribution to the study of the process of fructose to isosorbide conversion.

120	1015050	3002738	7626928	657322	0,0022	0,0081	0,0159	0,0021
150	536623	3476506	7047303	670923	0,0013	0,0093	0,0148	0,0021
210	265226	4910708	6393263	743816	0,0008	0,0127	0,0135	0,0023
270	204136	5940453	5484777	774225	0,0007	0,0152	0,0117	0,0024
330	176457	6591616	4691270	786869	0,0006	0,0168	0,0101	0,0024
390	82820	6808552	3984626	775148	0,0005	0,0173	0,0087	0,0024
450	77994	7313063	3787217	796045	0,0005	0,0185	0,0083	0,0024
510	119265	7374899	3532971	788280	0,0005	0,0187	0,0078	0,0024

Experiment 11. Temperature effect

Catalyst	CT-482	m catalyst [g]	1,0017
T [°C]	190	m sorbitol [g]	4,5013
Stirring [rpm]	750	m H ₂ O [g]	89,49

	Area _j [-]				n j [mol]			
t [min]	SOH	IB	1 4-ST	2 5-ST	SOH	IB	1 4-ST	2 5-ST
0	15567211	0	0	0	0.0290	0	0	0
30	5160312	1198730	6442727	449099	0.0098	0.0038	0.0135	0.0017
60	1704093	2566666	8186567	700681	0,0034	0,0071	0,0169	0,0022
90	526982	4155986	7471858	723504	0,0013	0,0109	0,0155	0,0022
120	384438	5701189	7187911	840820	0,0010	0,0146	0,0150	0,0025
150	257972	5987872	6375360	868280	0,0008	0,0152	0,0134	0,0025
210	198542	6886328	5317237	889906	0,0007	0,0174	0,0113	0,0026
270	319243	7220731	4500156	869331	0,0009	0,0182	0,0097	0,0025
330	227935	7336721	4363146	879791	0,0007	0,0185	0,0094	0,0025
390	167501	7535069	4398006	896540	0,0006	0,0189	0,0095	0,0026
450	386639	7708309	4414869	919871	0,0010	0,0194	0,0095	0,0026
510	262912	7742376	4161945	870809	0,0008	0,0194	0,0090	0,0025