

Treball Final de Grau

Tutor

Dr. Carles Fité Piquer
Departament d’Enginyeria Química i

Química Analítica

Software to design a cooling tower

Marc Terés Labrid
June 2022

 Aquesta obra està subjecta a la llicència de:
Reconeixement–NoComercial-SenseObraDerivada

http://creativecommons.org/licenses/by-nc-nd/3.0/es/

CONTENTS

SUMMARY i

RESUM iii

1. INTRODUCTION 1

 1.1. PSYCHOMETRICS OF EVAPORATION 3

 1.2. COUNTERFLOW GAS-LIQUID CONTACT EQUIPMENT 5

 1.3. OPERATION LINE 6

 1.4. MASS AND HEAT TRANSFER THROUGH THE GAS OR LIQUID
FILM 7

 1.5. TIE LINE 8

 1.6. CALCULATION OF THE TOWER HEIGHT 9

 1.7. CONDITIONS FOR A FEASIBLE COOLING PROCESS 10

 1.8. TOWER PROFILES 13

2. OBJECTIVES 15

3. METHODOLOGY 17

 3.1. USER INTERFACE 17

 3.2. PARAMETER INTRODUCTION AND CHECKING 18

 3.3. OPERATION LINE INTERSECT THE SATURATION CURVE 19

 3.4. TOWER HEIGHT CALCULATION 20

 3.5. OPERATION LINE GRAPH 21

 3.6. LIQUID TEMPERATURE PROFILE 23

 3.7. HUMIDITY AND GAS TEMPERATURE PROFILES 23

4. RESULTS 25

 4.1. COOLING TOWER 26

 4.2. DEHUMIDIFICATION TOWER 29

 4.3. OPERATION LINE INTERSECTS THE SATURATION CURVE 30

5. CONCLUSIONS 33

REFERENCES AND NOTES 35

ACRONYMS 37

APPENDICES 39

 APPENDIX 1: FULL PYTHON CODE 41

Software to design a cooling tower i

SUMMARY

Cooling tower is a unit operation widely used in the chemistry industry. It is used to cool

water that has lost its utility as a refrigerant because it has been used in condensers and heat

exchangers. After cooling, water can be reused or send back to the environment without thermal

damage.

Although cooling towers can generate large steam plumes, which causes many people to

associate this steam with smoke and pollution, it is a clean operation that takes advantage of

the principle of cooling by water evaporation.

In this project, a tool is created to facilitate the design for this type of operation. That is why

an executable application has been made, using the python programming language. The

program calculates the height of a counterflow water cooling tower for a given set of

parameters: water and air inlet conditions, water outlet conditions and individual transfer

coefficients. The solution is obtained by solving the mass and heat balances and differential

transfer equations through the gas and liquid film along the cooling tower.

This tool is though for a user that can be specialized or not in cooling towers, in order that

the user can get design parameters easily and quickly.

Keyboards: Cooling tower, dehumidification, software design, python.

Software to design a cooling tower iii

RESUM

La torre de refrigeració és una operació unitària altament utilitzada a la indústria química

per refredar aigua que ha estat utilitzada en condensadors o intercanviadors de calor, i ha

perdut la seva capacitat de refrigeració. Així aquesta pot ser reutilitzada o tornada al medi

sense generar danys tèrmics.

Tot i que les torres de refrigeració poden generar grans columnes de vapor, fet que fa que

molta gent relacioni aquest vapor amb fum i contaminació, és una operació neta que aprofita el

principi de refredament per evaporació.

En aquest projecte es crea una eina per facilitar el disseny per aquest tipus d’operació. Així

doncs, s’ha generat un aplicació executable, a partir de d’un software que utilitza el llenguatge

de programació python. El programa calcula l’altura d’una torre de refrigeració d’aigua en

contracorrent donats els següents paràmetres: condicions d’entrada de l’aire i l’aigua,

condicions de sortida de l’aigua i coeficients de transferència individuals. La solució s’obté

resolent els balanços de massa i energia, i les equacions diferencials de transferència a través

de la pel·lícula de gas i líquid al llarg de la torre.

Aquesta eina està pensada perquè l’usuari, tant si està especialitzat o no amb les torres de

refrigeració, pugui obtenir paràmetres de disseny amb facilitat i rapidesa.

Keyboards: Torre de refrigeració, deshumidificació, disseny de software, python.

Software to design a cooling tower 1

1. INTRODUCTION

In the chemistry industry, there are lots of processes that generates big amounts of heat. In

order to dissipate this heat, water is usually used as a refrigerant in heat exchangers and

condensers. The resulting water is hot and loses its utility as a refrigerant. Cooling towers are

used to reduce the temperature of this water, in order that water can be reused or send back to

the environment without thermal damage.

Cooling towers are based on the principle of evaporation. When a warm liquid is brought in

contact with an unsaturated gas, a little portion of the liquid is vaporized.1 The energy to

vaporize the liquid comes from the liquid so it is cooled.

A cooling tower is a gas-liquid contact unit operation. This gas and liquid are usually air and

water. The heat-transfer process involves latent heat due the vaporization of a small portion of

the water and sensitive heat due the difference of temperature between air and water. Most of

the heat transfer is due the latent heat.2

Gas-liquid contactors have more applications than cooling. A cooling tower is also a

humidifier because the liquid is cooling while the gas is humidifying. Gas-liquid contactors can

also be used as dehumidifiers. When we brought in contact a warm saturated gas with a cold

liquid, part of the vapor condenses, and the humidity of the gas decreases. Then, if it is

reheated, the gas has the same temperature but less humidity than before. This dehumidifying

process entails an increase of the temperature of the liquid. Dehumidification of air is a common

unit operation in many processes.

There are several types of cooling towers, with many sizes and models of each type.

Depending in the relative directions of the water there are counterflow and crossflow towers. In

counterflow operation, the air goes vertically upward against the downward fall of the water. In

crossflow the air goes perpendicularly through the downward fall of the water.

In a general classification based on the air draft, there is natural and mechanical draft. In

natural draft the air flow is produced by the density difference between the heated air inside the

2 Terés Labrid, Marc

tower and the cool air of the ambient. The hot air is less dense than the cool air, that’s why the

hot air with the water vapor goes upwards the tower making the characteristic steam column

that it is seen in this kind of tower. In Figure 1 natural draft towers are shown. The first one

operates in counterflow and the second in crossflow.

Figure 1. Natural draft towers.3

In mechanical draft towers the air flow is produced by one or more fans. Depending on the

fan location, these towers are categorized as forced draft, if the fan is in the ambient air

entering, or induced draft, if the fan is in the air discharge. In Figure 2, a forced draft tower is

shown.

Figure 2. Counterflow forced draft tower.3

Software to design a cooling tower 3

Cooling towers usually use nozzles, water sprays or other devices to distribute the water

across the section of the tower. Drift eliminators are usually used to reduce the escape of water

droplets entrained in the discharge air stream. Cooling towers often have a packing material.

The propose of the packing is to allow a higher contact between air and water, because a large

surface area for evaporative cooling is provided, to enhance the tower efficiency. Several types

of packing can be used. Figure 3 shows V-shaped bars packing, which is used in counterflow

towers.

Figure 3. Typical splash-type fill.3

 PSYCHOMETRICS OF EVAPORATION

Some general knowledge of psychometrics is necessary to understand cooling towers

performance. Psychometry is the relation between physic and thermodynamic properties of a

gas mixture composed by an incondensable gas and a condensable vapor. This mixture can be

in contact with the liquid of the vapour compound. In most of cooling towers, the gas is air, and

the liquid is water. Some basic definition and equations of psychometrics will be explained. The

following equations show the psychometrics of air-water system. In case that the cooling tower

uses another mixture, some equations may not be valid.

4 Terés Labrid, Marc

Dry temperature (T): Temperature indicated directly by a thermometer exposed to the air.

Absolut humidity (H): Vapor mass (A) carried by dry gas (B).

Humid heat (cs): Heat energy necessary to increase 1ºC the temperature of 1 kg of the gas

plus the contained vapor.1 The specific heat of air is 1.005 kJ/kg·ºC and the specific heat of

water vapor is 1.884 kJ/kg ºC.4

𝑐𝑠 = 𝑐𝑃𝐵 + 𝑐𝑃𝐴 · 𝐻 [1]

𝑐𝑠 [
𝑘𝐽

𝑘𝑔 º𝐶⁄] = 1.005 + 1.884 · 𝐻 [2]

Humid enthalpy (iG): Enthalpy of a unit mass of gas plus whatever vapor it may contain. The

total enthalpy is the sum of the sensible heat of the vapor, the latent heat of the liquid in the gas,

and the sensible heat of the vapor-free gas.1 The reference temperature (T*) chosen for both

components is 0 ºC. The latent heat of water at 0 ºC (λ*) is 2502 kJ/kg.4

𝑖𝐺 = 𝑐𝑠 · (𝑇 − 𝑇∗
) + 𝜆∗ · 𝐻 [3]

𝑖𝐺 [
𝑘𝐽

𝑘𝑔⁄] = 𝑐𝑠 · 𝑇[º𝐶] + 2502 · 𝐻 [4]

Saturated enthalpy of wet air (iGs): The enthalpy of the gas plus the vapor when the

equilibrium between phases is stablished.1 This iGs is tabulated. These are the empiric equations

found fitting the tabulated data in some ranges.4

For a temperature between -15 ºC and 20 ºC:

𝑖𝐺𝑠 [
𝑘𝐽

𝑘𝑔⁄] =
9.36 + 1.613 · 𝑇[º𝐶]

1 − 0.01265 · 𝑇[º𝐶] + 6.0 · 10−5 · 𝑇[º𝐶]2
 [5]

For a temperature between 10 ºC and 60 ºC:

𝑖𝐺𝑠 [
𝑘𝐽

𝑘𝑔⁄] =
10.42 + 1.37 · 𝑇[º𝐶]

1 − 0.019 · 𝑇[º𝐶] + 9.5 · 10−5 · 𝑇[º𝐶]2
 [6]

For a temperature between 50 ºC and 90 ºC:

𝑖𝐺𝑠 [
𝑘𝐽

𝑘𝑔⁄] =
2.28 · 𝑇[º𝐶] − 16.9

1 − 0.015862 · 𝑇[º𝐶] + 5.88 · 10−5 · 𝑇[º𝐶]2
 [7]

Software to design a cooling tower 5

 COUNTERFLOW GAS-LIQUID CONTACT EQUIPMENT

The design a counterflow gas-liquid contact equipment is based in the scheme of Figure 4.

Gas-liquid contact operations are dehumidifiers and humidifiers like cooling towers, that is why

the design is valid for all these kinds of operation, as long as these operations follow the

scheme. The gas-liquid contactor operates in counterflow. The bottom of the tower is

considered as zone 1 and the top of the tower is considered zone 2. All flows and properties of

the top or bottom of the tower have the subindex of its zone. The gas (G) enters to the bottom at

a temperature TG1 and with a humidity H1 and leaves to the top at a temperature TG2 and with a

humidity H2. The liquid (L) enters to the top at a temperature TL2 and leaves to the bottom at a

temperature TL1. The section (S) of the tower is constant. The height (z) of the tower includes

only the range where gas and liquid are in contact.

Figure 4. Scheme of a counterflow gas-liquid contact equipment.

6 Terés Labrid, Marc

 OPERATION LINE

The mass balance for the scheme in Figure 4 is: 𝑑𝐿 = 𝐺′ · 𝑑𝐻

The enthalpy balance for the scheme in Figure 4 is: 𝐺′ · 𝑑𝑖𝐺 = 𝐿 · 𝑐𝐿 · 𝑑𝑇𝐿

The operation line is obtained integrating the enthalpy and mass balance from the bottom of

the tower to a certain point of the tower. The operation line is Equation 8. The flow of liquid (L) is

considered constant despite some of the liquid evaporates or condensates in the process,

because the variation is negligible. The gas flow without vapor (G’) and the calorific capacity (cL)

are constants. Because these parameters are constant the result of the integral is a line. The

operation line is the relation of the total enthalpy of the gas at any point of the tower (iG) with the

temperature of the liquid at any point of the tower (TL), considering at the bottom of the tower

that the total enthalpy of the gas is iG1 and the temperature of the liquid is TL1.

𝑖𝐺 = 𝑖𝐺1 +
𝐿 · 𝑐𝐿

𝐺′
(𝑇𝐿 − 𝑇𝐿1) [8]

The operation line goes from the zone 1 (bottom of the tower) to the zone 2 (top of the

tower). Two different operation lines are represented in Figure 5. The operation line cannot

cross the saturation curve because is not possible to pass from one side of the equilibrium to

the other. All operation lines below the saturation curve are operations of cooling. We can see at

this kind of operation that TL1 is lower than TL2, that means that the temperature of liquid at the

exit tower has decreased (zone 1 and the exit of liquid are in the bottom of the tower), while the

enthalpy of the wet gas has increased, because it has been humidified.

Otherwise, all operation lines above the saturation curve are dehumidification operations. In

that case, the temperature of the liquid has increased, and the enthalpy of the wet gas has

decreased due the loss of humidity and temperature.

Software to design a cooling tower 7

Figure 5. Operation lines of cooling (humidification) and dehumidification towers.

 MASS AND HEAT TRANSFER THROUGH THE GAS OR LIQUID FILM

From mass balance, enthalpy balance and heat flows balance the following differential

equations result.4 In these equations the heat-transfer area per contact volume is represented

as a. The subindex i means the parameter is in the interface. The interface is in the equilibrium

of saturated gas.

Equation 9 relates variation of z with the variation of humidity. This relation is obtained by

the mass transfer in the gas film, so it is related with the mass-transfer coefficient from gas to

interface (kY).

𝑑𝑧 =
𝐺′

𝑆⁄

𝑘𝑌 · 𝑎

𝑑𝐻

𝐻𝑖 − 𝐻
 [9]

8 Terés Labrid, Marc

In this case, Equation 10 relates variation of z with the variation of liquid temperature. This

relation is obtained by the heat transfer in the liquid film, so it is related with the heat-transfer

coefficient from liquid to interphase (hL).

𝑑𝑧 =
(𝐿

𝑆⁄) · 𝑐𝐿

ℎ𝐿 · 𝑎

𝑑𝑇𝐿

𝑇𝐿 − 𝑇𝑖

 [10]

In Equation 11, variation of z and variation of gas temperature are related. The relation is

obtained by the heat transfer in the gas film, so it is related with the heat-transfer coefficient

from gas to interface (hG).

𝑑𝑧 =
(𝐺′

𝑆⁄) · 𝑐𝑠

ℎ𝐺 · 𝑎

𝑑𝑇𝐺

𝑇𝑖 − 𝑇𝐺

 [11]

Finally, Equation 12 relates z variation with total enthalpy of the gas variation. This equation

is only valid for air-water systems because the relation hG = kY·cs has been used in the balances

and it is a relation only valid for the air-water system.

𝑑𝑧 =
𝐺′

𝑆⁄

𝑘𝑌 · 𝑎

𝑑𝑖𝐺

𝑖𝐺𝑖 − 𝑖𝐺

 [12]

 TIE LINE

The tie line is the relation between the conditions in the interface and the films. It comes

from the union of Equations 10, 12 and the mass and enthalpy balance. Because Equation 12 is

used, the equation is only valid for air-water systems. The resultant Equation 13 is a line with a

slope of -hL/kY.

𝑖𝐺 − 𝑖𝐺𝑖

𝑇𝐿 − 𝑇𝑖

=
−ℎ𝐿 · 𝑎

𝑘𝑌 · 𝑎
 [13]

The tie line is shown in red at Figure 6. This line slope limits are minus infinite and zero.

When the transfer in the gas film is the only controlling step, the hL coefficient tends to infinity.

That is the reason why slope is minus infinite, therefore the tie line is vertical as shown in the

representation as case A. On the other hand, if the transfer in the liquid film is the only

Software to design a cooling tower 9

controlling step, the kY coefficient tends to infinity. In that case, the slope of the tie line is zero to

give a horizontal line, as shown in case B. When the transfer control is in both films, the slope of

the tie line is between these limits, as case C.

Figure 6. Representation of tie line.

 CALCULATION OF THE TOWER HEIGHT

Usually, the objective to the design of a cooling tower is to determine the height of the tower

if it is wanting to cool the water with a gas stream with a given temperature and humidity. The

determination of that height (z) is made in different ways depending on the hL and kY

coefficients.

If the control is in the liquid film, z is determined by Equation 14. Equation 14 comes from

the integration of Equation 10 from TL1 to TL2. The tie line is iG = iGi because the slope is 0. The

hL coefficient is in the Equation 14 because is the controlling parameter in the transfer of heat in

the liquid film.

𝑧 =
(𝐿

𝑆⁄) · 𝑐𝐿

ℎ𝐿 · 𝑎
 ∫

𝑑𝑇𝐿

𝑇𝐿 − 𝑇𝑖

𝑇𝐿2

𝑇𝐿1

 [14]

10 Terés Labrid, Marc

In the other hand, if the control is in the gas film, z is determined by Equation 15. This

equation comes from the integration of Equation 12 from iG1 to iG2. In that case the tie line is

vertical, that means that TL = Ti. The kY coefficient is relevant because is the controlling

parameter in the gas film.

𝑧 =
𝐺′

𝑆⁄

𝑘𝑌 · 𝑎
 ∫

𝑑𝑖𝐺

𝑖𝐺𝑖 − 𝑖𝐺

𝑖𝐺2

𝑖𝐺1

 [15]

If the transfer control is in both films, the tie line is Equation 13. Equation 14 and 15 are both

valid to determine z and will have the same solution. Equation 14 and 15 are only vali for air-

water system.

 CONDITIONS FOR A FEASIBLE COOLING PROCESS

Not always a cooling (humidifier) or dehumidifier operation is possible. To be possible some

condition must be met. First one is that must be thermodynamically possible. That means that

for a cooling (humidification) the wet temperature of the air must be below the temperature of

the liquid at the tower bottom. Another way to see it is that the total enthalpy of the gas in

entering of the tower (iG1) must be below the saturation curve.

In contrast, for dehumidification is the opposite. The wet temperature of the inlet air must be

above the temperature of the liquid at the tower bottom, and the total enthalpy of the inlet air in

(iG1) must be above the saturation curve.

The second condition is that the relation L/G’ must be below a maximum slope. The

operation line slope is defined by (L·cL)/G’. The operation line cannot cross the saturation curve.

That is why there is a maximum L/G’ ratio that cannot be exceeded in order that the operation

line does not cross the saturation line. That means that if a given water flow is fed in the tower,

there is a minimum air flow (G’min) that necessarily needs to be surpassed, in order the

operation to be feasible. Or if the air flow is given, there is a maximum water flow (Lmax) that

cannot be surpassed in order the operation is possible.

In order to find this maximum slope for humidification, there are two possibilities due the

convex form of the saturation line. The first one is the possibility in Figure 7 (situation a). Where

Software to design a cooling tower 11

TL2 has the enthalpy of the equilibrium. But if using this method we cross the saturated curve,

the maximum slope is the tangential between the operation line and the saturated curve shown

in Figure 8 (situation b). One easy way to see if it is situation a or b is looking at the slopes. If

the slope of the operation line is steeper than the slope of the saturation curve at zone 2, it is

situation a. Otherwise, it is situation b.

For dehumidification there is only one possibility due the form of the saturation line, and this

is situation shown in Figure 9.

If Lmax or G’min are used, the height of the tower is infinite, that’s why the liquid flow should

be below Lmax or the air flow should be above G’min (not equal).

Figure 7. Representation of the maximum slope for a cooling tower in situation a.

12 Terés Labrid, Marc

Figure 8. Representation of the maximum slope for a cooling tower in situation b.

Figure 9. Representation of the maximum slope for a dehumidifier.

Software to design a cooling tower 13

 TOWER PROFILES

Tower profiles show the variation of some properties at different heights of the tower. Some

interesting properties to determine are the liquid temperature, the gas temperature, and the gas

humidity.

One way to determine the temperature of the liquid at any tower height is solving the

differential Equation 10. If the tie line is horizontal, this equation cannot be integrated because Ti

equals TL, and, since the mass transfer coefficient in the gas film tends to infinity, originates an

indeterminate form. Instead, Equation 12 should be solved to obtain the variation of the total

enthalpy of the humid gas (iG). The operation line relates iG with the liquid temperature (TL), with

that the temperature of the liquid can be determined.

The temperature and humidity of the gas can be determined at any height of the tower by

solving simultaneously Equations 9 and 11. If the transfer control is not in gas film (the tie line is

horizontal), the temperature and the humidity of the gas become the values in the interface.

Software to design a cooling tower 15

2. OBJECTIVES

The aim of the project is to create a python software that calculates the height of a

counterflow cooling tower when some parameters are introduced. The software must generate

and application easy and friendly to be used, where the parameters are introduced in a window

by the user. In addition to the calculation of the height of the tower, the program should show

other information, like the operation line, and water temperature, air temperature and humidity

along the tower. It also should warn when the operation is not possible, and it should tell the

user why it is not possible.

The software is thought to calculate the height (z) of a counterflow humidifier (cooling tower)

or dehumidifier as the pattern shown in Figure 4. The parameters that must be introduced are

the common parameters that are used in this unit operation design. These parameters are:

- Temperature of inlet water at the top of the tower (TL2).

- Temperature of outlet water at the bottom of the tower (TL1).

- Temperature of inlet air at the bottom of the tower (TG1).

- Humidity of inlet air at the bottom of the tower (H1).

- Water flow velocity (L/S).

- Air flow velocity in dry basis (G’/S).

- Volumetric mass-transfer coefficient in the gas film (kYa).

- Volumetric heat-transfer coefficient in the liquid film (hLa).

Software to design a cooling tower 17

3. METHODOLOGY

In this part of the project is shown how the software works. Not all parts of the software are

shown, there are only explained the basics of the code in order to understand how it operates.

The full software is the Appendix 1.

 USER INTERFACE

To make easier the use of the program, a graphical user interface has been created by

means of the package tkinter, imported as tk. Initially a main window is created with the function

tk.Tk. The parameters to be entered by the user are defined in the code as string variables.

Then a table is created, where the left column (0) are labels of the parameter name and units,

and the right column (1) is formed by text boxes where the user can introduce keyboard

characters. The left column is created with the function tk.Label, and the right column is created

with the function tk.Entry. After every tk.Label and tk.Entry function the suffix .grid is added to

show the position in the table. Every row in the table correspond to a parameter.

Another tk.Entry is created in the next column to show the answer. In order the user cannot

modify the box, this is in disabled state.

An image of the scheme of the cooling tower is added under the table with function Image.

A white figure is also added to posteriorly display graphs.

Then two buttons are added with the function tk.Button. The first one is the “Clear all”

button. This button realises the command clear. The command clear is function where every

parameter is set to nothing. To do that, every variable in function clear has the suffix .set(“”).

This command also clears the graph and the solution. The second is “Solve” button. This is

situated next to the “Clear all” button. The “Solve” button has the command answer. The

command answer is the one that do all the calculations.

Finally, the widget .mainloop is responsible to handle all events received by the application.

There is a fragment of the code for a better understanding of the past explanation:

18 Terés Labrid, Marc

window = tk.Tk()

window.title("Water cooling or air dehumidification tower")

kYa_w = tk.StringVar()

[…]

tk.Label(window, text = "kYa [kg/(s·m^3)]", width=15).grid(row
= 7, column = 0)

[…]

tk.Entry(window, textvariable = kYa_w, justify="center",
width=15).grid(row = 7, column = 1)

[…]

z_w = tk.Entry(window, justify="center", width=15)

z_w.grid(row= 1 , column = 4)

z_w.configure(state="readonly")

png0 = PIL.Image.open("app_image.png")

pngr = png0.resize((500, 450), resample=4)

pngf = ImageTk.PhotoImage(pngr)

labelphoto = tk.Label(window, image = pngf).grid(row = 9,
column = 0, rowspan = 2, columnspan = 5)

fig1 = plt.figure(figsize=(7.5, 6.2))

canvas = FigureCanvasTkAgg(fig1, master=window)

canvas.draw()

canvas.get_tk_widget().grid(row=1, column=5, rowspan=9)

clear_but = tk.Button(window, text = "Clear all", font=(15), fg
= "white", bg = "red", padx = 35, pady = 5, command =
clear).grid(row = 3, column = 2, rowspan = 3, columnspan = 3)

solve_but = tk.Button(window, text = "Solve", font=(15), fg =
"white", bg = "green", padx = 46, pady = 5, command =
answer).grid(row = 6, column = 2, rowspan = 3, columnspan = 3)

window.mainloop()

 PARAMETER INTRODUCTION AND CHECKING

When the “Solve” button is pressed, the software does all the calculation. But the

parameters introduced by the user need to be introduced and check in the function answer. The

function answer starts proving if the text introduced can be transformed into a float. To do that, a

Software to design a cooling tower 19

function called is_valid_fload has been made. This function tries to transform a string into a

float, if it can return a True, but if it cannot return a False.

If a parameter cannot pass that function as a True, the software generates a warning

message box. Otherwise the parameter is introduced with the suffix .get().

Some other checks are required. For instance: the air water cannot be supersaturated; if it is

a humidification iG1 must be below the saturation point; etc. These are on consecutive sequence

of “if” and “elif”. Each of it has his own warning message box. In the else the software continues,

that means that if any of these checks happened, a message box informs on which parameter is

wrong and stops.

 OPERATION LINE INTERSECT THE SATURATION CURVE

If the operation line crosses the saturation curve, the process is impossible. To see if it

happens, the function fsolve from scipy.optimize is used to solve an equation. What is wanted to

know is which temperature the saturation curve (Equations 5, 6 and 7) is equal to the operation

line (Equation 8). This solver is the next code:

TLintersection, infodict, ier, msg = fsolve(lambda TL: iGi(TL)
- iG(TL, param1), x0=TL1, full_output=True)

TLintersection is the temperature where both functions cross. The parameter ier is 1 when it

found a solution, and it is another number when there is no solution. So, to know if there is an

intersection ier must be 1 and TLintersection must be between TL1 and TL2.

If there is an intersection, the operation is impossible. However, the maximum water flow

(Lmax) and the minimum air flow (G’min) can be calculated to help the user to find a possible

operation.

In a cooling tower, TL2 is higher than TL1. In a humidification there are two possibilities. In

situation a (Figure 7) the maximum slope is found with the enthalpy of the saturated curve at

TL2. But if the slope of the saturation curve at TL2 is higher than the slope of the operation line in

situation a, occurs situation b (Figure 8). In situation b, the maximum slope is found when the

saturation curve slope is equal to the slope of the operation line when its contact. So, a fsolve

20 Terés Labrid, Marc

need to be realised with that condition. The function pendiGi(TL_) calculates the slope of the

saturation line at any TL_.

For a dehumidification TL2 is lower than TL1. In that situation (Figure 9) the maximum slope

is the same as situation a of the previous case. Finally, knowing that the maximum slope is

L/(G’·cL), Lmax and G’min can be determine. There is a fragment of the code to for a better

understanding:

if ier == 1 and (TL1 - TLintersection)*(TL2 - TLintersection) <
0:

if TL2 > TL1:

pendromax = (iGi(TL2) - iG1) / (TL2 - TL1)

if pendromax < pendiGi(TL2):

TLpendiguals = fsolve(lambda TL: pendiGi(TL) -
(iGi(TL) - iG1)/(TL - TL1), TL2)[0]

pendromax = (iGi(TLpendiguals) - iG1) / (TLpendiguals
- TL1)

else:

pendromax = (iG1 - iGi(TL2)) / (TL1 - TL2)

After that, a message box generates a warning that tell the user G’min and Lmax. The code

generates a graphic that shows how the operation line cross the saturation curve. To generate

the graphic matplotlib.pyplot is used.

 TOWER HEIGHT CALCULATION

If there is none of the previous problems, the tower height (z) can finally be calculated. To

calculate this, there are 3 situations (Figure 6). For cases A and C, the equation to solve is

Equation 15. On the other hand, the Equation 14 is solved for case B. Both equations got an

integral. To solve these integrals function quad from scipy.integrate is used.

The way to solve these equations for the different cases is similar. This is the code for case

C:

def subintd(iG_, param):

 kYa, hLa, cL, L, G, TL1, TL2, iG1, zreal = param

Software to design a cooling tower 21

 pend = -hLa / kYa

 TLsub = TL(iG_, param)

Ti = fsolve(lambda T: (iG_ - iGi(T)) - pend*(TLsub - T),
TLsub)[0]

 return 1 / (iGi(Ti) - iG_)

def z_d(param):

 kYa, hLa, cL, L, G, TL1, TL2, iG1, zreal = param

 iG2 = iG(TL2, param)

 NUT = quad(subintd, iG1, iG2, args = param)[0]

 return (G / kYa)*NUT

param1 = [kYa, hLa, cL, L, G, TL1, TL2, iG1, zreal]

z = z_d(param1)

The tie line in case C is described by equation 13. For case A the tie line is vertical, in that

case Ti is equal to TL. For case B the tie line is horizontal, so iGi is equal to iG.

 OPERATION LINE GRAPH

The operation line graph plots the saturation curve yeq vs xeq, the operation line yro vs xro

and 5 tie lines yru1 vs xru1, yru2 vs xru2, etc. The saturation curve is obtained by Equations 5,

6 and 7; the operation line by Equation 8; and the tie lines by Equation 13.

The code of this graphic is shown because is the most complex. Other graphs have been

done in a similar way.

fig1, ax = plt.subplots(2, 2, figsize = (7.5, 6), sharey =
False)

if pend1 == -float("inf"):

xru1 = TL1, TL1

yru1 = iG(TL1, param1), iGi(TL1)

[…]

elif pend1 == 0:

Ti1 = fsolve(lambda T: iG(TL1, param1) - iGi(T), TL1)[0]

xru1 = TL1, Ti1

22 Terés Labrid, Marc

yru1 = iG(TL1, param1), iGi(Ti1)

[…]

else:

Ti1 = fsolve(lambda T: (iG1 - iGi(T)) - pend1*(TL1 - T),
TL1)[0]

xru1 = TL1, Ti1

yru1 = iG(TL1, param1), iGi(Ti1)

[…]

if pend1 == -float("inf"):

xeq = np.linspace(TL1, TL2, 1000)

else:

xeq = np.linspace(Ti1, Ti5, 1000)

yeq = iGi(xeq)

xro = np.linspace(TL1, TL2, 1000)

yro = iG(xro, param1)

ax[0, 0].plot(xeq, yeq, color = "black", label = "Saturation
curve")

ax[0, 0].plot(xro, yro, color = "blue", label = "Operation
line")

ax[0, 0].plot(xru1, yru1, color = "red", label = "Tie line")

[…]

leg = ax[0, 0].legend(loc="best", shadow=False, ncol=1,
fontsize = "small")

ax[0, 0].set_title("Operation line", fontsize = "large")

ax[0, 0].set_xlabel("Temperature [ºC]", fontsize = "medium")

ax[0, 0].set_ylabel("iG [kJ/kg]", fontsize = "medium")

[…]

plt.tight_layout()

canvas = FigureCanvasTkAgg(fig1, master=window)

canvas.draw()

canvas.get_tk_widget().grid(row=1, column=5, rowspan=9)

In that fragment of the code ax[0, 0] determine the row and column position of the graph,

because 4 graphs are displayed in the same figure. The final part displays the 4 graphs in the

tkinter main window.

Software to design a cooling tower 23

 LIQUID TEMPERATURE PROFILE

The water temperature along the tower is calculated in a similar way of z calculation.

Equation 15 is solved for case A and C (Figure 6). However, this time integrates from iG1 to iGx,

where iGx are a thousand values equally spaced from iG1 to iG2. Function np.linspace creates the

thousand equally spaced values. Function z_v_g calculates the integral from iG1 to iGx for case

A, and z_d_g calculates for case C. Finally, the water temperature is calculated with the

operation line (Equation 8).

y_iG = np.linspace(iG1, iG(TL2, param1), 1000)

x_z = z_v_g(y_iG, param1)

y_TL = TL(y_iG, param1)

Equation 14 is solved for case C in the same way as cases A and C, with the difference that

the function z_h_g calculates the integral from TL1 to TLx.

The plot y_TL vs x_z is represented as the water temperature profile. The graphs is

represented in ax[1, 0].

 HUMIDITY AND GAS TEMPERATURE PROFILES

The humidity and gas temperature along the tower is obtained by the simultaneously

resolution of differential Equations 9 and 11. To solve these differential equations

simultaneously odeint function is used.6

First the temperature in the interface is obtained by the tie line (Equation 13). Then

Equations 9 and 11 are solved by odeint. Equations 9 and 11 cannot be solved for case B

(Figure 6), because the transfer in the liquid film is the only controlling step and kYa coefficient

tends to infinity.

However, if the transfer in the liquid film is the only controlling step, the gas has no

resistance, and it pass directly to the condition in the interface. That is why for a tie line slope of

0, the air temperature and humidity are from the air-water interface.

pend1 = -hLa / kYa

H_TG0 = [H1, TG1]

24 Terés Labrid, Marc

if pend1 == -float("inf"):

Ti = y_TL

elif pend1 == 0:

Ti = [fsolve(lambda T: iGi(T) - a, TL1)[0] for a in y_iG]

else:

Ti = [fsolve(lambda T: (a - iGi(T)) - pend1*(b - T),
TG1)[0] for a, b in zip(y_iG, y_TL)]

Hi = [fsolve(lambda H: iGi(a) - iG_H_TG(H, a), H1)[0] for a in
Ti]

if pend1 == 0:

H = Hi

TG = Ti

x_z0 = 0, 0

y_H1 = H1, H[0]

y_TG1 = TG1, TG[0]

else:

H = np.empty_like(x_z)

TG = np.empty_like(x_z)

H[0] = H_TG0[0]

 TG[0] = H_TG0[1]

 for i in range(1,1000):

 zspan = [x_z[i-1],x_z[i]]

H_TG = odeint(perfils_H_TG, H_TG0, zspan,
args=(Hi[i], Ti[i], param1))

 H[i] = H_TG[1][0]

 TG[i] = H_TG[1][1]

 H_TG0 = H_TG[1]

The plot of humidity and gas temperature are represented respectively in position ax[0, 1]

and ax[1, 1].

Software to design a cooling tower 25

4. RESULTS

The objective of this part is to see the results of the software. The python code has been

converted into an executable application by pyinstaller. When it is executed, the main window

appears (Figure 10). This window let the user click and write in any of the parameter textbox.

The application got an image of the cooling tower scheme. This image is shown in Figure 11.

The window also got a textbox to show the result, and a space to display the graphs.

When the Clear all button is pressed it delete all information in all textboxes and clear the

space of the graphs. When the Solve button is pressed, depending on the data introduced,

different things happen. This program is going to be tested in different situations.

Figure 10. Main window.

26 Terés Labrid, Marc

Figure 11. Enlargement of the left part of the principal window.

 COOLING TOWER

The first situation to test is a water cooling (or air humidification). The parameters of the

problem have been obtained from a list of problems4. The solution of that problem is a height of

9.35 m, and the parameters are these:

- TL2 = 55 ºC

- TL1 = 30 ºC

- TG1 = 30 ºC

Software to design a cooling tower 27

- H1 = 0.0164 kg/kg

- L/S = 1.667 kg/(s·m2)

- G’/S = 2.460 kg/(s·m2)

- kYa = 0.2778 kg/(s·m3)

- hLa = inf (because the transference of heat in the liquid film is negligible)

After introducing the parameters and pressing solve the software generate window with a

messagebox shown in Figure 12. In the main window at the textbox of z appears the result of

9.35, this is shown in Figure 13.

Figure 12. Messagebox when z has been solved.

Figure 13. Parameters and result for a cooling.

28 Terés Labrid, Marc

When the messagebox is closed some graphics appear in the graph space. These graphics

are the operation line graph, and the humidity, gas temperature and liquid temperature profiles

along the height of the tower. They are shown in Figure 14. The operation line is below the

saturation curve because it is a cooling tower. The tie lines are vertical like case A from Figure

6.

These graphs show that the variation of humidity, air temperature and water temperature at

the bottom of the tower is lower than in the top. This is because the operation line is closer to

the saturation curve in the bottom. The tie line shows the separation from the operation to the

saturation (equilibrium). So, if the tie line is longer, the driving force is bigger, and the variation

of humidity and temperature increases.

Figure 14. Graphs for a cooling.

Software to design a cooling tower 29

For this case the program has calculated the height of the tower and shows some graphs. If

some parameter is wanted to be changed, the user can press that parameter and change it,

without having to introduce all parameters again. The result textbox is not changeable for the

user. The user can press solve to calculate the new height and generate the new graphs. It also

let the user delete all information with the button Clear all.

 DEHUMIDIFICATION TOWER

In this case, a dehumidification is tested. The parameters are from a list of problems.4 The

problem wants to find the temperature of the outlet water for a tower of 3 meters with the next

parameters:

- TL2 = 15 ºC

- TL1 = ?

- TG1 = 50 ºC

- H1 = 0.037 kg/kg

- L/S = 1.323 kg/(s·m2)

- G’/S = 1.148 kg/(h·m2)

- kYa = 0.889 kg/(h·m3)

- hLa = 3 kJ/(s·ºC·m3) (this parameter has been changed from the original problem in

order to show the software works for tie lines from case C in figure 6).

To solve this problem, the user has to check different numbers in parameter TL1 until the

result is a height of 3 m. After some attempts, TL1 value is 26.96 ºC, and with this TL1 the height

of the dehumidification tower is 3.00 m. The graphs obtained are shown in Figure 15. Since it is

a dehumidification tower, the operation line is above de saturation curve.

The resolution of this kind of problems shows that this software can also be used to

determine other parameters for a certain height. To do it the user has to iterate different values.

The fact that the software quickly calculates the height, and the easy way to change

parameters, shows the utility of the software.

30 Terés Labrid, Marc

Figure 15. Graphs for a dehumidification.

 OPERATION LINE INTERSECTS THE SATURATION CURVE

When the operation line intersects the saturation curve, the operation is not possible. For

the next parameters that happens:

- TL2 = 50 ºC

- TL1 = 25 ºC

- TG1 = 25 ºC

- H1 = 0.01 kg/kg

- L/S = 2 kg/(s·m2)

- G’/S = 1 kg/(s·m2)

Software to design a cooling tower 31

- kYa = inf (because the mass transfer resistance in the gas film is negligible)

- hLa = 1.5 kJ/(s·ºC·m3)

After pressing the solver button, a warning messagebox appears (Figure 16). This

messagebox contain the minimum air flow (G’min) and the maximum water flow (Lmax) for the

operation to be possible. A graph of the intersection also appears (Figure 17). Textbox of z

result is blank because the operation is not possible.

Figure 16. Messagebox with (G’/S)min and (L/S)max

Figure 17. Graph of the intersection.

32 Terés Labrid, Marc

If the user change G’/S for (G’/S)min or L/S for (L/S)max, the result for this case is the limit

case shown in Figure 8, where the tower height tends to infinity. In that case, if it is replaced

G’/S for 1.09 kg/h·m2, the result obtained is a tower of 764 m, it is an extremely large number for

a tower (is not infinite because the (G’/S)min is rounded). Otherwise, if a G’/S is quite bigger, for

example 1.6 kg/(s·m2), the result is 25 meters. It is still a big number because the operation is

difficult, but it is much better. The graphs obtained for this operation are in Figure 18.

The operation is difficult because the operation line is close to the saturation curve. It can be

seen in Figure 18 that the tie lines are short in comparison to the other operations.

Figure 18. Graphs for a cooling.

These graphs of figure 18 are from a cooling operation where the tie lines are horizontal

(case B of Figure 6). The jump of the gas temperature and humidity to the interface conditions

can be appreciated.

Software to design a cooling tower 33

5. CONCLUSIONS

The software has created an executable application for the design of cooling towers and

dehumidification towers. The design is though for a tower that operates with the system air-

water in countercurrent.

The software is useful because it calculates the height of the tower from most common

parameters of design. It also generates additional information like the operation line and, water

temperature, gas temperature and humidity profiles along the tower. It also let the user find

other parameters when the height is known by iteration (trying values until the height is the one

sought). It also helps the user by showing warnings, graphs and limit values, when the operation

is impossible or there is something wrong.

The software is much faster and more accurate than the resolution made by ordinary

handmade.

The application is easy and friendly to be used, because of its simplicity. It only has two

buttons, one to solve, the other to clear all. The application has a little scheme to explain which

are the parameters. It let the user change parameters with facility without having to introduce all

the parameters again. It is also well visually pleasing and organized because every zone has his

own purpose.

The software is compatible because .exe files can be used in many different devices without

the requirement of the user to have installed python in his device.

The software does all its objectives, but it can continue developing with the addition of other

utilities.

To conclude, python is an intuitive and powerful programming language, that can do

innumerable things.

Software to design a cooling tower 35

REFERENCES AND NOTES

1. Warren L. McCabe; Julian C. Smith; Peter Harriott. Unit Operation of Chemical Engineering.
Fifth Edition. 1993. New York, McGraw-Hill

2. Robert H. Perry; Don W. Green. Perry’s Chemical Engineers’ Handbook. Seventh Edition.
2008. New York, McGraw-Hill.

3. John C. Hensley. Cooling Tower Fundamentals. Second Edition. 2009. Kansas, SPX
Cooling Technologies, Inc.

4. C. Fité P. Psicometria I Operacions d’Humidificació. Class notes of Ampliació Operacions
de Separació UB. 2021

5. SciPy v1.8.1 Manual --- scipy.optimize.fsolve
https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.fsolve.html (accessed
12/06/2022)

6. Solve Differential Equations with ODEINT
https://apmonitor.com/pdc/index.php/Main/SolveDifferentialEquations (accessed
12/06/2022)

7. Python python.org (accessed 12/06/2022)

Software to design a cooling tower 37

ACRONYMS

TL2 - Temperature of inlet water at the top of the tower, ºC

TL1 - Temperature of outlet water at the bottom of the tower, ºC

TG1 - Temperature of inlet air at the bottom of the tower, ºC

H1 - Humidity of inlet air at the bottom of the tower, kg/kg

L/S - Water flow velocity, kg/(s·m2)

G’/S - Air flow velocity in dry basis, kg/(s·m2)

kYa - Volumetric mass-transfer coefficient in the gas film, kg/(s·m3)

hLa - Volumetric heat-transfer coefficient in the liquid film, kJ/(s·ºC·m3)

iG - Humid enthalpy, kJ/kg

z – height of the tower, m

Software to design a cooling tower 39

APPENDICES

Software to design a cooling tower 41

APPENDIX 1: FULL PYTHON CODE
import tkinter as tk

import PIL.Image

from PIL import ImageTk

from tkinter import messagebox

from scipy.integrate import quad

from scipy.integrate import odeint

from scipy.optimize import fsolve

import matplotlib.pyplot as plt

from matplotlib.backends.backend_tkagg import FigureCanvasTkAgg

import numpy as np

def is_valid_float(element: str) -> bool:

 try:

 float(element)

 return True

 except ValueError:

 return False

def cs(H_):

 return 1.005 + 1.884*H_

def iG_H_TG(H_, TG_):

 return cs(H_)*TG_ + 2502*H_

def iG(TL_, param):

 kYa, hLa, cL, L, G, TL1, TL2, iG1, zreal = param

 return iG1 + (L*cL / G)*(TL_-TL1)

def TL(iG_, param):

 kYa, hLa, cL, L, G, TL1, TL2, iG1, zreal = param

42 Terés Labrid, Marc

 return TL1 + ((iG_ - iG1) * G) / (L*cL)

def iGi_aux(Ti_):

 if Ti_ < 7.6562545:

iGi = (9.36 + 1.613*Ti_) / (1 - 0.01265*Ti_ + 6.0e-
5*Ti_**2)

 elif Ti_ > 50.390373:

iGi = (2.28*Ti_ - 16.9) / (1 - 0.015862*Ti_ + 5.88e-
5*Ti_**2)

 else:

iGi = (10.42 + 1.37*Ti_) / (1 - 0.019*Ti_ + 9.5e-
5*Ti_**2)

 return iGi

def iGi(Ti_):

 if type(Ti_) is list:

 iGi_ = [iGi_aux(a) for a in Ti_]

 elif type(Ti_) is np.ndarray:

 iGi_ = np.array([iGi_aux(a) for a in Ti_])

 else:

 iGi_ = iGi_aux(Ti_)

 return(iGi_)

def pendiGi(Ti_):

 h = 1e-6

 return (iGi(Ti_ + h) - iGi(Ti_ - h)) / (2*h)

def subintv(iG_, param):

 kYa, hLa, cL, L, G, TL1, TL2, iG1, zreal = param

 Tsub = TL(iG_, param)

 return 1 / (iGi(Tsub) - iG_)

def subinth(TL_, param):

 kYa, hLa, cL, L, G, TL1, TL2, iG1, zreal = param

 iGsub = iG(TL_, param)

Software to design a cooling tower 43

 Ti = fsolve(lambda T: iGsub - iGi(T), TL_)[0]

 return 1 / (TL_ - Ti)

def subintd(iG_, param):

 kYa, hLa, cL, L, G, TL1, TL2, iG1, zreal = param

 pend = -hLa / kYa

 TLsub = TL(iG_, param)

Ti = fsolve(lambda T: (iG_ - iGi(T)) - pend*(TLsub - T),
TLsub)[0]

 return 1 / (iGi(Ti) - iG_)

def z_v(param):

 kYa, hLa, cL, L, G, TL1, TL2, iG1, zreal = param

 iG2 = iG(TL2, param)

 NUT = quad(subintv, iG1, iG2, args = param)[0]

 return (G / kYa)*NUT

def z_v_g_aux(iG_, param):

 kYa, hLa, cL, L, G, TL1, TL2, iG1, zreal = param

 NUT = quad(subintv, iG1, iG_, args = param)[0]

 return (G / kYa)*NUT

def z_v_g(iG_, param):

 if type(iG_) is list:

 z_ = [z_v_g_aux(a, param) for a in iG_]

 elif type(iG_) is np.ndarray:

 z_ = np.array([z_v_g_aux(a, param) for a in iG_])

 else:

 z_ = z_v_g_aux(iG_, param)

 return(z_)

def z_h(param):

 kYa, hLa, cL, L, G, TL1, TL2, iG1, zreal = param

 NUT = quad(subinth, TL1, TL2, args = param)[0]

 return (L*cL / hLa)*NUT

44 Terés Labrid, Marc

def z_h_g_aux(TL_, param):

 kYa, hLa, cL, L, G, TL1, TL2, iG1, zreal = param

 NUT = quad(subinth, TL1, TL_, args = param)[0]

 return (L*cL / hLa)*NUT

def z_h_g(TL_, param):

 if type(TL_) is list:

 z_ = [z_h_g_aux(a, param) for a in TL_]

 elif type(TL_) is np.ndarray:

 z_ = np.array([z_h_g_aux(a, param) for a in TL_])

 else:

 z_ = z_h_g_aux(TL_, param)

 return(z_)

def z_d(param):

 kYa, hLa, cL, L, G, TL1, TL2, iG1, zreal = param

 iG2 = iG(TL2, param)

 NUT = quad(subintd, iG1, iG2, args = param)[0]

 return (G / kYa)*NUT

def z_d_g_aux(iG_, param):

 kYa, hLa, cL, L, G, TL1, TL2, iG1, zreal = param

 NUT = quad(subintd, iG1, iG_, args = param)[0]

 return (G / kYa)*NUT

def z_d_g(iG_, param):

 if type(iG_) is list:

 z_ = [z_d_g_aux(a, param) for a in iG_]

 elif type(iG_) is np.ndarray:

 z_ = np.array([z_d_g_aux(a, param) for a in iG_])

 else:

 z_ = z_d_g_aux(iG_, param)

 return(z_)

def perfils_H_TG(H_TG_, z_, Hi_, Ti_, param):

Software to design a cooling tower 45

 kYa, hLa, cL, L, G, TL1, TL2, iG1, zreal = param

 dHdz = (Hi_ - H_TG_[0])/(G/kYa)

 dTGdz = (Ti_- H_TG_[1])/(G/kYa)

 dHTGdz = [dHdz, dTGdz]

 return dHTGdz

def answer():

 z_w.configure(state="normal")

 z_w.delete(0, tk.END)

 z_w.configure(state="readonly")

 fig1 = plt.figure(figsize=(7.5, 6))

 canvas = FigureCanvasTkAgg(fig1, master=window)

 canvas.draw()

 canvas.get_tk_widget().grid(row=1, column=5, rowspan=9)

 plt.close()

 if is_valid_float(TL2_w.get()) == False:

messagebox.showwarning(message="TL2 is not a number",
title="Warning")

 elif is_valid_float(TL1_w.get()) == False:

messagebox.showwarning(message="TL1 is not a number",
title="Warning")

 elif is_valid_float(TG1_w.get()) == False:

messagebox.showwarning(message="TG1 is not a number",
title="Warning")

 elif is_valid_float(H1_w.get()) == False:

messagebox.showwarning(message="H1 is not a number",
title="Warning")

 elif is_valid_float(L_w.get()) == False:

messagebox.showwarning(message="L/S is not a number",
title="Warning")

 elif is_valid_float(G_w.get()) == False:

messagebox.showwarning(message="G'/S is not a number",
title="Warning")

 elif is_valid_float(kYa_w.get()) == False:

messagebox.showwarning(message="kYa is not a number",
title="Warning")

46 Terés Labrid, Marc

 elif is_valid_float(hLa_w.get()) == False:

messagebox.showwarning(message="hLa is not a number",
title="Warning")

 else:

 kYa = float(kYa_w.get())

 hLa = float(hLa_w.get())

 L = float(L_w.get())

 G = float(G_w.get())

 TL1 = float(TL1_w.get())

 TL2 = float(TL2_w.get())

 H1 = float(H1_w.get())

 TG1 = float(TG1_w.get())

 zreal = None

 if kYa/hLa > 100000:

 kYa = float("inf")

 if hLa/kYa > 100000:

 hLa = float("inf")

 cL = 4.18

 iG1 = iG_H_TG(H1, TG1)

 param1 = [kYa, hLa, cL, L, G, TL1, TL2, iG1, zreal]

 pend1 = -hLa / kYa

 if TL1 >= 70 or TL2 >= 70:

messagebox.showwarning(message="Water temperature
must be below 70ºC.", title="Warning")

 elif TL1 <= 5 or TL2 <= 5:

messagebox.showwarning(message="Water temperature
must be above 5ºC.", title="Warning")

 elif TL2 == TL1:

messagebox.showwarning(message="TL1 and TL2 can't
be the same.", title="Warning")

 elif TG1 < -15:

messagebox.showwarning(message="The temperature of
air shouldn't be that low.", title="Warning")

 elif TG1 > 90:

Software to design a cooling tower 47

messagebox.showwarning(message="The temperature of
air shouldn't be that high.", title="Warning")

 elif H1 < 0:

messagebox.showwarning(message="Humidity can't be
negative.", title="Warning")

 elif H1 > 1.42:

messagebox.showwarning(message="Humidity must be
lower.", title="Warning")

 elif L > 10:

messagebox.showwarning(message="L/S must be
lower.", title="Warning")

 elif L < 0.05:

messagebox.showwarning(message="L/S must be
higher.", title="Warning")

 elif G > 10:

messagebox.showwarning(message="G'/S must be
lower.", title="Warning")

 elif G < 0.05:

messagebox.showwarning(message="G'/S must be
higher.", title="Warning")

 elif kYa < 0.05:

messagebox.showwarning(message="kYa must be
higher.", title="Warning")

 elif hLa < 0.05:

messagebox.showwarning(message="hLa must be
higher.", title="Warning")

 elif iG1 > iGi(TG1):

messagebox.showwarning(message="iG1 can't be above
the saturation point.", title="Warning")

 elif TL2 > TL1 and iG1 >= iGi(TL1):

warntext = "For this humidification iG1 is to high,
iG1max = " + str(round(iGi(TL1), 2)) + " kJ/kg."

messagebox.showwarning(message=warntext,
title="Warning")

 elif TL2 < TL1 and iG1 <= iGi(TL1):

warntext = "For this dehumidification iG1 is to
low, iG1min = " + str(round(iGi(TL1), 2)) + "
kJ/kg."

48 Terés Labrid, Marc

messagebox.showwarning(message = warntext, title =
"Warning")

 elif hLa == float("inf") and kYa == float("inf"):

messagebox.showwarning(message="hLa and kYa can't
be both infinite.", title="Warning")

 else:

TLintersection, infodict, ier, msg = fsolve(lambda
TL: iGi(TL) - iG(TL, param1), x0=TL1,
full_output=True)

if ier == 1 and (TL1 - TLintersection)*(TL2 -
TLintersection) < 0:

 if TL2 > TL1:

 pendromax = (iGi(TL2) - iG1) / (TL2 - TL1)

 if pendromax < pendiGi(TL2):

TLpendiguals = fsolve(lambda TL:
pendiGi(TL) - (iGi(TL) - iG1)/(TL -
TL1), TL2)[0]

pendromax = (iGi(TLpendiguals) - iG1) /
(TLpendiguals - TL1)

 else:

 pendromax = (iG1 - iGi(TL2)) / (TL1 - TL2)

 Gmin = L*cL / pendromax

 Lmax = pendromax*G/cL

warningtext = "The operation line intersect the
saturation curve, (G'/s)min = " +
str(round(Gmin, 2)) + " kg/(h·m^2) or (L/S)max
= " + str(round(Lmax, 2)) + " kg/(h·m^2)."

messagebox.showwarning(message=warningtext,
title="Warning")

 fig1, ax = plt.subplots(figsize = (7.5, 6))

 x = np.linspace(TL1, TL2, 1000)

Software to design a cooling tower 49

 yeq = iGi(x)

 yro = iG(x, param1)

ax.plot(x, yeq, color = "black",
label="Saturation curve")

ax.plot(x, yro, color = "blue", label =
"Operation line")

leg = ax.legend(loc="best", shadow=False,
ncol=1)

 plt.xlabel("Temperature [ºC]")

 plt.ylabel("iG [kJ/kg]")

 canvas = FigureCanvasTkAgg(fig1, master=window)

 canvas.draw()

canvas.get_tk_widget().grid(row=1, column=5,
rowspan=9)

plt.close()

 else:

 if pend1 == -float("inf"):

 z = z_v(param1)

 elif pend1 == 0:

 z = z_h(param1)

 else:

 z = z_d(param1)

 z_w.configure(state="normal")

 z_w.insert(tk.END, round(z, 2))

 z_w.configure(state="readonly")

messagebox.showinfo(message="z has been
succesfully solved.", title="Information")

fig1, ax = plt.subplots(2, 2, figsize = (7.5,
6), sharey = False)

 if pend1 == -float("inf"):

 xru1 = TL1, TL1

50 Terés Labrid, Marc

 yru1 = iG(TL1, param1), iGi(TL1)

 xru2 = TL1+(TL2-TL1)/4, TL1+(TL2-TL1)/4

yru2 = iG(TL1+(TL2-TL1)/4, param1),
iGi(TL1+(TL2-TL1)/4)

 xru3 = TL1+2*(TL2-TL1)/4, TL1+2*(TL2-TL1)/4

yru3 = iG(TL1+2*(TL2-TL1)/4, param1),
iGi(TL1+2*(TL2-TL1)/4)

 xru4 = TL1+3*(TL2-TL1)/4, TL1+3*(TL2-TL1)/4

yru4 = iG(TL1+3*(TL2-TL1)/4, param1),
iGi(TL1+3*(TL2-TL1)/4)

 xru5 = TL2, TL2

 yru5 = iG(TL2, param1), iGi(TL2)

 elif pend1 == 0:

Ti1 = fsolve(lambda T: iG(TL1, param1) -
iGi(T), TL1)[0]

 xru1 = TL1, Ti1

 yru1 = iG(TL1, param1), iGi(Ti1)

Ti2 = fsolve(lambda T: iG(TL1+(TL2-TL1)/4,
param1) - iGi(T), TL1+(TL2-TL1)/4)[0]

 xru2 = TL1+(TL2-TL1)/4, Ti2

yru2 = iG(TL1+(TL2-TL1)/4, param1),
iGi(Ti2)

Ti3 = fsolve(lambda T: iG(TL1+2*(TL2-
TL1)/4, param1) - iGi(T), TL1+2*(TL2-
TL1)/4)[0]

 xru3 = TL1+2*(TL2-TL1)/4, Ti3

yru3 = iG(TL1+2*(TL2-TL1)/4, param1),
iGi(Ti3)

Ti4 = fsolve(lambda T: iG(TL1+3*(TL2-
TL1)/4, param1) - iGi(T), TL1+3*(TL2-
TL1)/4)[0]

 xru4 = TL1+3*(TL2-TL1)/4, Ti4

yru4 = iG(TL1+3*(TL2-TL1)/4, param1),
iGi(Ti4)

Ti5 = fsolve(lambda T: iG(TL2, param1) -
iGi(T), TL2)[0]

Software to design a cooling tower 51

 xru5 = TL2, Ti5

 yru5 = iG(TL2, param1), iGi(Ti5)

 else:

Ti1 = fsolve(lambda T: (iG1 - iGi(T)) -
pend1*(TL1 - T), TL1)[0]

 xru1 = TL1, Ti1

 yru1 = iG(TL1, param1), iGi(Ti1)

Ti2 = fsolve(lambda T: (iG(TL1+(TL2-TL1)/4,
param1) - iGi(T)) - pend1*(TL1+(TL2-TL1)/4
- T), TL1+(TL2-TL1)/4)[0]

 xru2 = TL1+(TL2-TL1)/4, Ti2

yru2 = iG(TL1+(TL2-TL1)/4, param1),
iGi(Ti2)

Ti3 = fsolve(lambda T: (iG(TL1+2*(TL2-
TL1)/4, param1) - iGi(T)) -
pend1*(TL1+2*(TL2-TL1)/4 - T), TL1+2*(TL2-
TL1)/4)[0]

 xru3 = TL1+2*(TL2-TL1)/4, Ti3

yru3 = iG(TL1+2*(TL2-TL1)/4, param1),
iGi(Ti3)

Ti4 = fsolve(lambda T: (iG(TL1+3*(TL2-
TL1)/4, param1) - iGi(T)) -
pend1*(TL1+3*(TL2-TL1)/4 - T), TL1+3*(TL2-
TL1)/4)[0]

 xru4 = TL1+3*(TL2-TL1)/4, Ti4

yru4 = iG(TL1+3*(TL2-TL1)/4, param1),
iGi(Ti4)

Ti5 = fsolve(lambda T: (iG(TL2, param1) -
iGi(T)) - pend1*(TL2 - T), TL2)[0]

 xru5 = TL2, Ti5

 yru5 = iG(TL2, param1), iGi(Ti5)

 if pend1 == -float("inf"):

 xeq = np.linspace(TL1, TL2, 1000)

 else:

 xeq = np.linspace(Ti1, Ti5, 1000)

 yeq = iGi(xeq)

52 Terés Labrid, Marc

 xro = np.linspace(TL1, TL2, 1000)

 yro = iG(xro, param1)

ax[0, 0].plot(xeq, yeq, color = "black",
label="Saturation curve")

ax[0, 0].plot(xro, yro, color = "blue", label =
"Operation line")

ax[0, 0].plot(xru1, yru1, color = "red", label
= "Tie line")

 ax[0, 0].plot(xru2, yru2, color = "red")

 ax[0, 0].plot(xru3, yru3, color = "red")

 ax[0, 0].plot(xru4, yru4, color = "red")

 ax[0, 0].plot(xru5, yru5, color = "red")

leg = ax[0, 0].legend(loc="best", shadow=False,
ncol=1, fontsize = "small")

ax[0, 0].set_title("Operation line", fontsize =
"large")

ax[0, 0].set_xlabel("Temperature [ºC]",
fontsize = "medium")

ax[0, 0].set_ylabel("iG [kJ/kg]",fontsize =
"medium")

 if pend1 == -float("inf"):

y_iG = np.linspace(iG1, iG(TL2, param1),
1000)

 x_z = z_v_g(y_iG, param1)

 y_TL = TL(y_iG, param1)

 elif pend1 == 0:

 y_TL = np.linspace(TL1, TL2, 1000)

 x_z = z_h_g(y_TL, param1)

 y_iG = iG(y_TL, param1)

 else:

y_iG = np.linspace(iG1, iG(TL2, param1),
1000)

 x_z = z_d_g(y_iG, param1)

 y_TL = TL(y_iG, param1)

Software to design a cooling tower 53

ax[1, 0].plot(x_z, y_TL, color = "red",
label="TL")

leg = ax[1, 0].legend(loc="best", shadow=False,
ncol=1)

 ax[1, 0].set_title("TL profile")

 ax[1, 0].set_xlabel("z [m]")

 ax[1, 0].set_ylabel("TL [ºC]")

 H_TG0 = [H1, TG1]

 if pend1 == -float("inf"):

 Ti = y_TL

 elif pend1 == 0:

Ti = [fsolve(lambda T: iGi(T) - a, TL1)[0]
for a in y_iG]

 else:

Ti = [fsolve(lambda T: (a - iGi(T)) -
pend1*(b - T), TG1)[0] for a, b in
zip(y_iG, y_TL)]

Hi = [fsolve(lambda H: iGi(a) - iG_H_TG(H, a),
H1)[0] for a in Ti]

 if pend1 == 0:

 H = Hi

 TG = Ti

 x_z0 = 0, 0

 y_H1 = H1, H[0]

 y_TG1 = TG1, TG[0]

 else:

 H = np.empty_like(x_z)

 TG = np.empty_like(x_z)

 H[0] = H_TG0[0]

 TG[0] = H_TG0[1]

 for i in range(1,1000):

 zspan = [x_z[i-1],x_z[i]]

H_TG = odeint(perfils_H_TG, H_TG0,
zspan, args=(Hi[i], Ti[i], param1))

 H[i] = H_TG[1][0]

54 Terés Labrid, Marc

 TG[i] = H_TG[1][1]

 H_TG0 = H_TG[1]

ax[0, 1].plot(x_z, H, color = "blue",
label="H")

 if pend1 == 0:

 ax[0,1].plot(x_z0, y_H1, color = "blue")

leg = ax[0, 1].legend(loc="best", shadow=False,
ncol=1)

 ax[0, 1].set_title("H profile")

 ax[0, 1].set_xlabel("z [m]")

 ax[0, 1].set_ylabel("H [kg/kg]")

ax[1, 1].plot(x_z, TG, color = "red",
label="TG")

 if pend1 == 0:

 ax[1,1].plot(x_z0, y_TG1, color = "red")

leg = ax[1, 1].legend(loc="best", shadow=False,
ncol=1)

 ax[1, 1].set_title("TG profile")

 ax[1, 1].set_xlabel("z [m]")

 ax[1, 1].set_ylabel("TG [ºC]")

 plt.tight_layout()

 canvas = FigureCanvasTkAgg(fig1, master=window)

 canvas.draw()

canvas.get_tk_widget().grid(row=1, column=5,
rowspan=9)

plt.close()

def clear():

 kYa_w.set("")

 hLa_w.set("")

 L_w.set("")

 G_w.set("")

 TL1_w.set("")

Software to design a cooling tower 55

 TL2_w.set("")

 H1_w.set("")

 TG1_w.set("")

 z_w.configure(state="normal")

 z_w.delete(0, tk.END)

 z_w.configure(state="readonly")

 fig1 = plt.figure(figsize=(7.5, 6))

 canvas = FigureCanvasTkAgg(fig1, master=window)

 canvas.draw()

 canvas.get_tk_widget().grid(row=1, column=5, rowspan=9)

 plt.close()

window = tk.Tk()

window.title("Water cooling or air dehumidification tower")

kYa_w = tk.StringVar()

hLa_w = tk.StringVar()

L_w = tk.StringVar()

G_w = tk.StringVar()

TL1_w = tk.StringVar()

TL2_w = tk.StringVar()

H1_w = tk.StringVar()

TG1_w = tk.StringVar()

tk.Label(window, text = "Parameters", font=(20)).grid(row = 0,
column = 0, columnspan = 2)

tk.Label(window, text = "Result", font=(20)).grid(row = 0,
column = 2, columnspan = 3)

tk.Label(window, text = "Graphs", font=(20)).grid(row = 0,
column = 5)

tk.Label(window, text = "kYa [kg/(s·m^3)]", width=15).grid(row
= 7, column = 0)

tk.Label(window, text = "hLa [kJ/(s·ºC·m^3)]").grid(row = 8,
column = 0)

tk.Label(window, text = "L/S [kg/(s·m^2)]").grid(row = 5,
column = 0)

56 Terés Labrid, Marc

tk.Label(window, text = "G'/S [kg/(s·m^2)]").grid(row = 6,
column = 0)

tk.Label(window, text = "TL1 [ºC]").grid(row = 2, column = 0)

tk.Label(window, text = "TL2 [ºC]").grid(row = 1, column = 0)

tk.Label(window, text = "H1 [kg/kg]").grid(row = 4, column = 0)

tk.Label(window, text = "TG1 [ºC]").grid(row = 3, column = 0)

tk.Label(window, text = "z [m]", width=15).grid(row = 1, column
= 3)

tk.Entry(window, textvariable = kYa_w, justify="center",
width=15).grid(row = 7, column = 1)

tk.Entry(window, textvariable = hLa_w, justify="center",
width=15).grid(row = 8, column = 1)

tk.Entry(window, textvariable = L_w, justify="center",
width=15).grid(row = 5, column = 1)

tk.Entry(window, textvariable = G_w, justify="center",
width=15).grid(row = 6, column = 1)

tk.Entry(window, textvariable = TL1_w, justify="center",
width=15).grid(row = 2, column = 1)

tk.Entry(window, textvariable = TL2_w, justify="center",
width=15).grid(row = 1, column = 1)

tk.Entry(window, textvariable = H1_w, justify="center",
width=15).grid(row = 4, column = 1)

tk.Entry(window, textvariable = TG1_w, justify="center",
width=15).grid(row= 3 , column = 1)

z_w = tk.Entry(window, justify="center", width=15)

z_w.grid(row= 1 , column = 4)

z_w.configure(state="readonly")

png0 = PIL.Image.open("app_image.png")

pngr = png0.resize((500, 450), resample=4)

pngf = ImageTk.PhotoImage(pngr)

labelphoto = tk.Label(window, image = pngf).grid(row = 9,
column = 0, rowspan = 2, columnspan = 5)

fig1 = plt.figure(figsize=(7.5, 6.2))

canvas = FigureCanvasTkAgg(fig1, master=window)

canvas.draw()

Software to design a cooling tower 57

canvas.get_tk_widget().grid(row=1, column=5, rowspan=9)

plt.close()

clear_but = tk.Button(window, text = "Clear all", font=(15), fg
= "white", bg = "red", padx = 35, pady = 5, command =
clear).grid(row = 3, column = 2, rowspan = 3, columnspan = 3)

solve_but = tk.Button(window, text = "Solve", font=(15), fg =
"white", bg = "green", padx = 46, pady = 5, command =
answer).grid(row = 6, column = 2, rowspan = 3, columnspan = 3)

window.mainloop()

