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In recent years research has been carried out on algorithms to simulate
quantum many body systems in current NISQ devices. In particular, for the
ground state finding problem, known to be QMA-complete, a quantum adia-
batic algorithm can be used. On the other hand, the Bose-Hubbard model
has gained impact lately because of the prediction of exotic phases of matter
and because its experimental realisation in a set up with cold atoms in optical
lattices. In this work, an adiabatic quantum algorithm is designed to obtain
the ground state of a one-dimensional Bose-Hubbard model. The three parts of
the algorithm are presented: initial state preparation, adiabatic evolution and
measurement. The results presented correspond to a system of 2 sites and NP

particles, although the algorithm has been tested for systems with more sites.
The algorithm has been tested by performing simulations.
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A.1 Ground state of ĤC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
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1 Introduction
Quantum simulation of physical systems with a quantum computer has gained importance
during the last few years. Simulating a quantum many-body system on a classical computer
requires a number of operations that grows exponentially with the number of degrees of
freedom of the system but it is believed that quantum computers can solve them more effi-
ciently [SOKG03]. Scientific progress has led to the first noisy intermediate-scale quantum
NISQ devices [BCLK+21]. Although they have limitations (number of qubits available,
gate fidelity, circuit depth) and are still a long way from being efficient problem solvers,
algorithms are being developed to see if they would provide a quantum advantage [STC22].

The ground state finding problem belongs to the QMA-complete class, which is the
analogue of NP-complete for a quantum computer. However, there are some promising
heuristics. First, there is the quantum approximate optimization algorithm (QAOA). This
method is within the variational algorithms (VQA), which are based on one of the most
used principles in physics: the variational principle. Another is the quantum adiabatic
algorithm (QAA). This consists of starting from the ground state of a known Hamiltonian
and slowly varying its parameters to obtain the desired Hamiltonian. If this evolution is
done in a sufficiently long time T , the ground desired is reached. Recently a new method
has been proposed that combines the two previous ones, the variational quantum quantum
adiabatic algorithm (VQAA) [STC22]. However, in this work we will focus on the quantum
adiabatic algorithm.

Most algorithms for solving the many-body problem have focused on spin 1/2 or
fermionic systems, to simulate chemical electronic structure, nuclear structure and con-
densed matter physics. Qubit-based quantum computation is the most widespread and
that is why these are the systems that have been studied the most. However, there are
many physical problems of interest with d-level particles (qudits): bosonic fundamental
particles, vibrational modes, spin-s particles, or electronic energy levels in molecules and
quantum dots. In order to map a system of d levels to a set of qubits, an integer is assigned
to each of the d levels so that one has an integer-to-bit mapping. Possible encodings include
Standard binary, Gray code and unary encoding [SMK+20].

The Bose-Hubbard model (BH), originally introduced to describe condensed matter
problems, has gained high impact with its experimental realization in a set up with cold
atoms in optical lattices [RGLJD17]. In addition, recent experiments have shown the
creation of a state of matter where ordered material can flow without friction, an exotic
phase known as supersolid [SMK+20]. Although different techniques are able to capture
ground state properties of the Bose-Hubbard Hamiltonian, with classical techniques it is
intractable to solve its full spectrum. This can be done with exact diagonalization (EC)
techniques, but restricted to small many-body systems [RGLJD17]. Simulating BH models
on a quantum computer can help to study the behavior of these systems near quantum
phase transitions, a very complicated regime to study with a classical computer, as well as
to predict unknown phases [SMK+20].

In this work, an adiabatic quantum algorithm is proposed to find the ground of a
one-dimensional Bose-Hubbard model. The Bose-Hubbard model is described in Section
2 by way of introduction. Section 3 shows a description of the algorithm: first algorithms
for the preparation of the initial state are proposed, then the adiabatic evolution using
Trotterization is presented and finally a measurement strategy is explained. In all these
subsections, the scaling of each of the algorithms is analyzed. In addition, a shortcuts to
adiabaticity (STA) method is proposed to accelerate the evolution process and reduce the
depth of the circuit. In Section 4 we develop the numerical results obtained and compare
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the simulations without STA and with STA for some examples, discussing the possible
advantages of this method. We conclude with a summary of the work and the possible
future lines of research it leaves open.

2 Bose-Hubbard model
The Hamiltonian of the one dimensional Bose-Hubbard model can be written as:

ĤBH = U

2

NS∑
i=1

n̂i(n̂i − 1)︸ ︷︷ ︸
interaction term

−t
∑
⟨ij⟩

(
â†

i âj + â†
j âi

)
︸ ︷︷ ︸

hoppping term

−µ
NS∑
i=1

n̂i, (1)

where â†
i and âi are creation and annihilation operator respectively, n̂i = â†

i âi is the particle
number operator and NS is the total number of the sites.

The first part is the interaction (Coulomb) term, ĤC , which describes the on-site in-
teraction of the boson. It has the same form as the electrostatic energy of NS electric
charges. In the second part, â†

i âj means that one boson is annihilated at site j and then
created at site i, so the net effect is this boson “moves” from j to i. That’s why we call it
hopping (kinetic) term, ĤK . Summation indices ⟨ij⟩ means that only neighboring lattice
sites are considered, since the particles can’t move too far. Periodic boundary conditions
are assumed. The chemical potential µ in the last part essentially sets the total number of
particles. If the number is fixed, then it will become a constant and we can simply ignore it.
For more details about the ground state of the Coulomb and kinetic terms, see Appendix
A.

A convenient finite basis, with a fixed number of particles NP , is given by the states of
the Fock space restricted to NP particles,

|n1, n2, . . . , ni, . . . , nNS
⟩ , (2)

where NS is the number of sites and NP =
∑NS

i=1 ni. The number of ways of placing NP

particles in NS sites is (see Table 1) [RGLJD17],

N NS
NP

=
(
NP +NS − 1

NP

)
= (NP +NS − 1)!

NP !(NS − 1)! . (3)

The large growth of the size of the Hilbert space with NP and NS is a motivation to
search for new methods to study this problem. In this work we present results for two-site
systems (NS = 2), for which the Hamiltonian is explicitly written as

ĤBH(NS = 2) = U

2 [n̂1(n̂1 − 1) + n̂2(n̂2 − 1)] − t
(
â†

1â2 + â†
2â1
)
. (4)

Restricting ourselves to two sites influences the preparation of the initial state, but
the remaining parts of the algorithm are easily generalizable. We can fix t without losing
generalization and leave U as a parameter. Furthermore, we take U = 1 arbitrarily. The
algorithm does not depend on this choice and simulations would only change at a qualitative
level.
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NS
NP 1 2 3 4 5 6 7 8 9 10 11 12 13
1 1 2 3 4 5 6 7 8 9 10 11 12 13
2 1 3 6 10 15 21 28 36 45 55 66 78 91
3 1 4 10 20 35 56 84 120 165 220 286 364 445
4 1 5 15 35 70 126 210 330 495 715 1001 1365 1820
5 1 6 21 56 126 252 462 792 1287 2002 3003 4368 6188
6 1 7 28 84 210 462 924 1716 3003 5005 8008 12376 18564
7 1 8 36 120 330 792 1716 3432 6435 11440 19448 31824 50388
8 1 9 45 165 495 1287 3003 6435 12870 24310 43758 75582 125970
9 1 10 55 220 715 2002 5005 11440 24310 48620 92378 167960 293930

10 1 11 66 286 1001 3003 8008 19448 43758 92378 184756 352716 646646
11 1 12 78 364 1365 4368 12376 31824 75582 167960 352716 705432 1352078
12 1 13 91 455 1820 6188 18564 50388 125970 293930 646646 1352078 2704156
13 1 14 105 560 2380 8568 27132 77520 203490 497420 1144066 2496144 5200300

Table 1: Size of the Hilbert space for NP bosons in NS sites for NP , NS = 1, · · · , 13.

3 Description of the algorithm
In this work we study how to implement a Bose-Hubbard model in a quantum computer.
The algorithm consists of three parts: first, the problem is mapped to a quantum computer,
in this case using the Gray code. Second, a state is generated that will act as the initial
state for its subsequent adiabatic evolution (IGSP ). Then, this initial state undergoes
adiabatic evolution (AE) until it approaches the target state with high fidelity. Following
this evolution, the necessary basis changes are applied to measure the final energy in the
most efficient way possible.

q0

IGSP AE

q1

q2

qn

Figure 1: Circuit implementation for the digitized adiabatic evolution. First, the initial state is prepared
(IGSP ). Then it is subjected to adiabatic evolution (AE). Finally, measurements are made to obtain
expected values.

3.1 Gray code mapping
The first step of the algorithm is to map the Fock basis states to qubits in a quantum
computer. Each state is written in terms of integers defining the number of particles in
each site, see Ec(2). There are many ways to map integers with Nq bit strings such as
Standard Binary, Gray or Unary. The particularity of the Gray code is that between two
consecutive numbers only one bit changes; that is, the Hamming distance dH (number
of mismatched bits between two bit strings) between two consecutive integers is 1. In
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other words, moving between adjacent integer requires only one bit flip (see Table 2).
This encoding is suitable for tridiagonal operators, since all non-null elements have dH = 1
[SMK+20]. Hopping terms such as ĤK are tridiagonal operators (first neighbors approach),
i.e, containing terms like |I⟩ ⟨I + 1| + |I + 1⟩ ⟨I|. Each integer is encoded as

|I⟩ → |xnq−1⟩ · · · |x0⟩ , xi ∈ {0, 1}.

One then converts each qubit-local term |xi⟩ ⟨x′
i| to qubit operators using the following

four expressions:

|0⟩ ⟨0| = 1
2 (I + Z) ≡ σ̂0, |1⟩ ⟨1| = 1

2 (I − Z) ≡ σ̂1

|0⟩ ⟨1| = 1
2 (X + iY ) ≡ σ̂+, |1⟩ ⟨0| = 1

2 (X − iY ) ≡ σ̂−. (5)

Operators â†
i and âi appearing in Ec.(1) can be written in terms of σ̂j , see Ec.(5) and,

therefore, in terms of Pauli strings: â†
i âj =

∑
k ckA0⊗A1⊗· · ·⊗ANq

, where Al = {Xl, Yl, Zl}
∪ {I}. The number of qubits Nq needed to represent a system of NS sites and NP particles
in Gray is given by Nq = NSnq, where nq = ⌊1 + log2NP ⌋ is the number of qubits
representing one site.

For any mismatched qubit i, i.e, any qubit for which xi ̸= x′
i the qubit-local term

contains two Pauli operators. For matched qubits (xi = x′
i), instead has one identity

and one Pauli operator (in this work the set of Pauli matrices is defined to exclude the
identity). The more Pauli operators there are, the more operations to implement. That is
what motivates us to use this encoding [SMK+20].

3.2 Initial state preparation
The initial state preparation consists of constructing a circuit by applying unitary gates in
such a way that the ground state of the initial Hamiltonian Ĥi is obtained. The Hamilto-
nian has two terms of which we know how to compute the ground state theoretically, see
Appendix A. The Coulomb term ĤC is diagonal when expressed in Fock basis and ĤK is
diagonal when expressed in momentum basis, see Ec.(A.12). Each term of the Hamiltonian
commutes with particle number operator, i.e

[
ĤC , N̂

]
=
[
ĤK , N̂

]
= 0, which means that

the number of particles is conserved 1. As a result the whole evolution will happen within
a subspace within the full Hilbert space.

1Particle number operator N̂ is defined as N̂ =
∑NS

i=1 n̂i.
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Decimal SB Gray Unary
0 0000 0000 000000000001
1 0001 0001 000000000010
2 0010 0011 000000000100
3 0011 0010 000000001000
4 0100 0110 000000010000
5 0101 0111 000000100000
6 0110 0101 000001000000
7 0111 0100 000010000000
8 1000 1100 000100000000
9 1001 1101 001000000000
10 1010 1111 010000000000
11 1011 1110 100000000000

Table 2: The standard binary (SB), Gray code, and unary encodings.

In this section we will present an algorithm for the preparation of the initial state in
Gray if we take ĤC as the initial Hamiltonian, as well as another to prepare the ground
state of ĤK . We will see that if we choose the former the state is easy to prepare, especially
for an even number of particles. However, if we choose the latter instead, the preparation
becomes a complicated task.

Ground state of ĤC

The ground state of ĤC in the Fock basis is

|ΨC(NP )⟩ =


∣∣∣NP

2
NP
2

〉
, if NP is even

1√
2

(∣∣∣NP
2 − 1

2
NP
2 + 1

2

〉
+
∣∣∣NP

2 + 1
2

NP
2 − 1

2

〉)
, if NP is odd.

(6)

Although the ground state for an odd number of particles is degenerate, by doing first-
order perturbation theory it can be seen that this superposition state of Eq.6 is the one
that allows to obtain the target state after adiabatic evolution, see Appendix A.

For the case of an even number of particles it is only necessary to apply an X gate on
qubits that have to be in |1⟩ and the depth of the circuit is always constant and equal to
1. For instance,

|ΨC(NP = 12)⟩ = |66⟩ , |Ψ(G)
C (NP = 12)⟩ = |101101⟩ ,

and only one X gate has to be applied on qubits q0, q2, q3 and q5.
For the case of and odd number of particles the circuit construction is slightly different

as a superposition state has to be prepared. The algorithm to be applied is as follows:

• (Step 1): Qubits that are in the same state (qCi
) are identified for the two product

states. Note that the Gray code makes all but one state common, i.e. the number of
uncommon states (qUj

) will be equal to 2 (for NS = 2).

|qC1
qC2

· · · qCn−2
⟩ ⊗ 1√

2

(
|qU1

qU2
⟩ + |qU2

qU1
⟩
)
.
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• (Step 2): X gates are applied to common qubits in state |1⟩.

• (Step 3): A Hadamard gate is applied on the first non-common qubit, qU1
.

• (Step 4): A CNOT gate is applied, with qU1
being the control qubit and qU2

the
target qubit.

• (Step 5) An X gate is applied on the non-common qubit not in the desired state.

For instance,

|ΨC(NP = 5)⟩ = 1√
2

(|23⟩ + |32⟩) , |Ψ(G)
C (NP = 5)⟩ = 1√

2
(|1110⟩ + |1011⟩) .

The state is separated as follows

|q0 : 1 q2 : 1⟩ ⊗ 1√
2

(|q1 : 1 q3 : 0⟩ + |q1 : 0 q3 : 1⟩) .

In step 2 we have (following the order of qubits just left in the previous equation)

|11⟩ ⊗ |00⟩ .

When applying the Hadamard gate on q2,

|11⟩ ⊗ 1√
2

(|00⟩ + |10⟩) .

After step 4 we have,

|11⟩ ⊗ 1√
2

(|00⟩ + |11⟩) .

Finally, with step 5 we get

|11⟩ ⊗ 1√
2

(|10⟩ + |01⟩) .

After rearranging the qubits, we have the desired state.
With this algorithm the depth of the circuit is always constant and equal to 3 (for

NS = 2).

Ground state of ĤK

The (unnormalized) ground state of ĤK for NS = 2 in the Fock basis is, see Ec.(A.16)

|ΨK⟩ =
NP∑
i=0

(
NP

i

)
√
i!
√

(NP − i)! |i NP − i⟩ . (7)

An algorithm has been designed to prepare such states in Gray.
Ultimately, we have to prepare a state of the form

|ΨK(NP )⟩ =
NP∑
i=0

ci |i,NP − i⟩ . (8)
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The idea is to prepare the first part of the state (to prepare the state by ignoring the
qubits corresponding to the second site), i.e

|Φ⟩ =

NP∑
i=0

ci |i(G)⟩

 |00 · · · 0⟩︸ ︷︷ ︸
nq

, (9)

working with nq qubits and to have nq additional qubits to complete the second part. For
this task, we add several n-qubit Toffoli gates. Control qubits are those describing the state
of the first site and target qubits those corresponding to the second site. It is then a task
of adding as many n-qubit Toffoli gates as necessary to obtain the desired superposition
state.

The algorithm is as follows. First nq − 2 controlled-Ry gates are applied on the first
nq − 2 qubits: one rotation in q0, two rotations on q1 controlled by q0, four rotations on
q2 controlled by q0 and q1 and so on. Then 2nq−1 circuits like the one in Fig.13 controlled
by the nq − 2 qubits are concatenated. Finally, as many (nq + 1)-qubit Toffoli gates are
added as many qubits of the second site have to modify their state from |0⟩ to |1⟩ (for all
the states that make up the initial state).

For the reader’s clarity, a specific example has been explained in detail in appendix C.
An explanation of the scaling of this algorithm with the number of particles is also given
in the appendix.

The depth of this circuit as a function of the number of particles NP is given by (see
Appendix C),

D(IGS)
K ≤ 227 − 239NP + 4 log2NP [(−16 + 27NP ) + 2NP log2NP ] , (10)

i.e, it scales polinomially with the number of particles NP .
The reason for the faster depth growth for this algorithm is because n-qubit Toffoli

gates can be decomposed into two-qubit controlled-rotation gates, having a depth of 8n−20
[SP13].

It is evident then that it is more convenient to choose ĤC as the initial Hamiltonian
since it involves a significantly simpler initial state preparation with constant depth with
NP .

Starting from ĤC or ĤK implies, in addition to a different initial state preparation, a
more or less efficient adiabatic evolution. This depends strongly on the overlap of the initial
state with the target state. Starting from ĤK the initial overlap is quite high, which will
be advantageous for adiabatic evolution. Starting from ĤC there is a difference between
the case of even and odd particles. In the former the state is quite far from the final one,
which will slow down the subsequent evolution. In the latter it gets better.

In the following section it will be the choice of ĤK as the initial Hamiltonian that
will be the most advantageous option, thus showing the pros and cons of considering both
choices. At the end of this section a new way of dealing with adiabatic evolution will be
proposed by introducing shortcuts to adiabaticity (STA) in such a way that it will be easier
to choose one of them.
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Starting from ̂C with NP odd
Starting from ̂C with NP even

Figure 2: Overlap between the initial state and the target state starting from the ĤC ground state in
purple with an odd number of particles (dashed line) and with an even number of particles (dotted
line), and starting from the ĤK ground state in orange (solid line). The initial fidelity is computed as
Fi = | ⟨ψi|ψf ⟩ |2.

3.3 Adiabatic evolution
The way we want to obtain the ground state energy of the one-dimensional Bose-Hubbard
Hamiltonian is by adiabatic evolution. As stated by Born and Fock (1928) in the adia-
batic theorem: “a physical system remains in its instantaneous eigenstate when a given
perturbation is acting on it slowly enough and if there is a gap between the eigenvalue and
the rest of the Hamiltonian’s spectrum” [TIMG+13]. Therefore, if we know the ground
state of a given Hamiltonian, we can slowly modify the latter until we finally obtain the
Hamiltonian we want to study. If the evolution is slow enough, at the end of the process
we will have reached the ground state of the target Hamiltonian with high fidelity. The
evolution time must be at least O(g2) where g is the gap between the ground and first-
excited states [POPSSR+22]. For a truly adiabatic process we require the evolution time
T satisfies T → ∞.

It is important to choose the initial Hamiltonian well: we must try to prevent its ground
state from being degenerate. The ground state of the kinetic term, ĤK is non-degenerate
for any number of sites and particles, see Appendix A. However, the ground state of the
Coulomb term, ĤC is degenerate for an odd number of particles, see Appendix A.
Following the general method for Adiabatic Quantum Computing (AQC), we express the
Hamiltonian at time t as a combination of two time-independent parts:

Ĥ(t) = (1 − λ(t))Ĥi + λ(t)Ĥf , (11)

where Ĥi and Ĥf are time-independent with ground states |ψi⟩ and |ψf ⟩, respectively. The
time dependence of the system is introduced through the parameter λ(t). AQC allows λ(t)
to be a function that varies from 0 to 1 and drives the system from |ψi⟩ to |ψf ⟩. Let’s
choose it as a linear function, λ(t) = t/T , with T being the total evolution time.
To perform the state evolution, the Schrödinger equation with the above time-dependent
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Hamiltonian is applied2

|ψ(T )⟩ = T̂ e−i
∫ T

0 H(t)dt |ψ(0)⟩ . (12)

We can approximate this solution if we discretize the evolution,

|ψ(T )⟩ ≈
N∏

j=0
e−iH(jδt)δt |ψ(0)⟩ , (13)

where δt = T/N is the time taken in each step.
So that adiabatic evolution does not involve very long times, it is interesting to start

from an initial state that is not too far from the target state. As mentioned at the end of
the previous section, it will be ĤK that will be suitable for reducing the number of trotter
steps. It is also important to know how to set the parameters T , N and δt (one depends
on the other two) to obtain the highest possible fidelity in the smallest number of N steps.

For the algorithm to work on a quantum computer, operators of the form e−iH(jδt)δt

have to be decomposed into available operations. In order to apply each adiabatic step
in the quantum circuit we use Trotterization, which consists of applying each term of the
Hamiltonian separately [POPSSR+22]

e−iĤt = e−iĤCte−iĤKt + O(
[
ĤC , ĤK

]
, δt2). (14)

If Ĥi = ĤC

e−iĤ(jδt)δt ≈ e−iĤCδte−iĤK
j
N

δt, (15)

and if Ĥi = ĤK then:

e−iĤ(jδt)δt ≈ e−iĤKδte−iĤC
j
N

δt. (16)

Since ĤC and ĤK can be written in terms of Pauli matrices, in the end we are left
with a product of exponentials of Pauli strings for each Trotter step. In each of these the
coefficients accompanying each Pauli string varies.

According to [SMK+20], although there are several methods to approximate Ec.(13)
including Suzuki-Trotter methods, recent results suggest that simple first-order Trotteriza-
tion will have lower error for near- and medium-term hardware, even if the other methods
are asymptotically more efficient.

· · ·

e−iĤCδt e−iĤK
j
N

δt

· · ·
· · · · · ·
· · · · · ·
· · · · · ·

(a)

· · ·

e−iĤKδt e−iĤC
j
N

δt

· · ·
· · · · · ·
· · · · · ·
· · · · · ·

(b)

Figure 3: Implementation of the jth trotter step in a quantum circuit with (a) Ĥi = ĤC and (b)
Ĥi = ĤK . Note that each of these Nq-qubit gates is the concatenation of circuits as shown in Fig.4.

2We define |ψ(T )⟩ ≡ |ψf ⟩ and |ψ(0)⟩ ≡ |ψi⟩.
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The next step consists of translating each Pauli strings exponential into small quantum
circuits that we will later concatenate. These unitary operators are implemented in the
circuit model.

One needs 2(p−1) two-qubit gates for such an operation, where p is the number of Pauli
operators in the term [SMK+20] and p ≤ Nq. Therefore n(CNOT ) ≤ 2(Nq − 1). There
is also a rotation gate Rz(θ). Depending on whether there are X or Y Pauli matrices,
Hadamard and phase gates must be added at the beginning and end of the circuit (a
Hadamard gate is added in both cases while a phase gate is only added if there is an Y
Pauli matrix). Assuming there is at least one X or Y Pauli matrix, we have an additional
depth of 2 (the Hadamard gate can be combined with the phase gate in a single one-qubit
gate). Taking into account that for NS = 2 we have Nq = 2⌊(1 + log2NP ⌋), we have an
upper limit for the depth of any such circuit,

D(P S) ≤ 5 + 4 log2NP . (17)

We now estimate an upper bound for the number of Pauli strings that make up the
Hamiltonian. In the BH model for two sites, we have four terms that can be expressed in
terms of kronecker products of σ̂k matrices, i.e, â†

1â1, â
†
2â2, â

†
1â2, â

†
2a1. Each of these terms

contain NP number of kronecker products. The kronecker products are given between
Nq number of matrices. Each of the matrices is decomposed into a sum of two Pauli
matrices, see Eq.(5). Therefore, the number of Pauli strings will be given by 4NP 2Nq . But
2Nq ≤ 4N2

P . Hence,

n(PS) ≤ 16N3
P . (18)

q0

q1 • •

q2

q3 Rz(θ)

(a) e−iθI0Z1I2Z3

q0 H • • H

q1 • •

q2 H • • H

q3 Rz(θ)

(b) e−iθX0Z1X2Z3

q0 • •

q1 S† H • • H S

q2 • •

q3 S† H Rz(θ) H S

(c) e−iθZ0Y1Z2Y3

Figure 4: Some examples of the implementations of unitary operators with the form e−iθA0A1A2A3 ,
where Aj = {Xj , Yj , Zj} ∪ {I}. One needs 2(p− 1) two qubit-gates for such an operation [SMK+20],
where p is the number of Paui operators in the term.

With this we can also know an upper dimension for the depth of a trotter step
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D(T S) ≤ 16N3
P (5 + 4 log2NP ). (19)
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Figure 5: (a) Number of Pauli strings that make up the Hamiltonian and (b) their associated depth of a
trotter step for different number of particles. In blue are the points corresponding to the theoretically
calculated upper limit and in green are the values extracted directly from (a)the explicit expressions and
(b) the constructed circuits.

The discrepancy for the number of Pauli strings is actually due to term cancellations
when developing the kronecker products of the form σ̂k

0 ⊗· · ·⊗σ̂l
Nq

into products of Pauli ma-
trices. In addition, concatenating circuits like the one in Fig.4 results in gate cancellation,
which leads to a decrease in the depth of a trotter step.

STA with approximate counter-diabatic driving

The idea of this subsection is to implement an STA to make the adiabatic evolution
faster and thus achieve a lower number of trotter steps. Moreover, if it is fast enough
we could use ĤC as the initial Hamiltonian and thus avoid the complicated initial state
preparation if we take ĤK .

Counterdiabatic (CD) driving is a way to generate adiabatic dynamics without the need
for long times: excitations due to non-adiabaticity are accurately compensated by adding
an extra term to the Hamiltonian. However, although this term is known and is given by
the adiabatic gauge potential3, obtaining it for many-body systems is complicated since it
requires knowing the spectrum of the instantaneous Hamiltonians [CPSP19]. Recently, a
new way to obtain this gauge potential has been proposed by using the nested commutator
(NC) [HPD+21],

Â(l)
λ = i

l∑
k=1

αk(t)
[
Ĥ,
[
Ĥ, · · ·

[
Ĥ, ∂λĤ

]]]
, (20)

where l determines the order of the expansion and there are 2k− 1 nested commutators in
each term. The exact gauge potential is obtained in the limit l → ∞. Instead, we consider
a finite value of l and treat the expansion coefficients as variational parameters, which can
be obtained by minimizing the action Sl:

3Adiabatic gauge potentials are generators of the unitary transformations relating the eigenstates |m(λ)⟩
of Ĥ(λ) for different values of λ [KSMP17].
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Sl = Tr
[
Ĝ2

l

]
, Ĝl = ∂λĤ − i

[
Ĥ, Â(l)

λ

]
.

If we consider ony the first-order term, our ansatz will be Â(l)
λ = iα1(t)

[
Ĥ, ∂λĤ

]
, and

the effective Hamiltonian can be written as

Ĥeff = Ĥ(λ) + ĤCD, (21)

where ĤCD = λ̇Â(1)
λ is the relevant CD term.

· · ·

e−iĤC,Kδt e−iĤK,C
j
N

δt e−iĤCDδt

· · ·

· · · · · ·

· · · · · ·

· · · · · ·

Figure 6: Implementation of the jth trotter step in a quantum circuit using CD driving with. Note that
each of these Nq-qubit gates is the concatenation of the circuits in Fig.4.

Using this method, the final ground state is achieved with very few trotter steps com-
pared to digitized adiabatic evolution, which drastically reduces the number of gates re-
quired as well as the total simulation time. The price to pay is the increased depth of each
trotter step, see Fig.6, as we are adding a new term to the Hamiltonian.

3.4 Measurement
The main objective of the simulation of this system is to calculate the energy of its ground
state. To do this, once the adiabatic evolution is performed, we need a measurement
procedure to obtain the expected value of the energy (⟨ĤC⟩f + ⟨ĤK⟩f ). A minimal set
of measurements is obtained by grouping the different parts of the Hamiltonian into terms
that commute with each other, so that they can be measured simultaneously.

All Coulomb terms commute with each other and are diagonal. Therefore, obtaining
⟨ĤC⟩ is straightforward: just measure all the qubits in the z-basis.

⟨ĤC⟩f = U

2

NP∑
j=0

jP (j,NP − j) [jP (j,NP − j) − 1]

+ (NP − j)P (j,NP − j) [(NP − j)P (j,NP − j) − 1] , (22)

where P (j,NP − j) denotes the probability of obtaining the Fock state |jNP − j⟩, i.e,
P (j,NP − j) = ⟨jNP − j|Ψf ⟩2.

Hopping terms are not diagonal in the computational basis, so a change of basis is nec-
essary to obtain their mean values. In order to reduce the number of measurements to be
performed, as well as the depth of the circuits to be introduced for this purpose, we take ad-
vantage of the fact that [X ⊗X,Y ⊗ Y ] = [X ⊗ Y, Y ⊗X] = 0. Note that if we use Gray en-
coding, the Pauli strings defining ĤK can only have two X or Y matrices. Strings that have
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both matrices in the same positions commute. In this way it is possible to simultaneously
measure {⟨· · ·Xi · · ·Xj · · · ⟩, ⟨· · ·Yi · · ·Yj · · · ⟩} and {⟨· · ·Xi · · ·Yj · · · ⟩, ⟨· · ·Yi · · ·Xj · · · ⟩}.

The basis in which X ⊗X, Y ⊗ Y and X ⊗ Y , Y ⊗X are simultaneously diagonal are

|Ψ±⟩ = 1
2 (|00⟩ ± |11⟩) , |ϕ±⟩ = 1

2 (|01⟩ ± |10⟩) ,

and

|Ψ′±⟩ = 1
2 (|00⟩ ± i |11⟩) , |ϕ′±⟩ = 1

2 (|01⟩ ± i |10⟩) ,

respectively.

qi • H

qj

(a)

qi • S† H

qj

(b)

Figure 7: Circuit introduced to make measurements of (a) {⟨· · ·Xi · · ·Xj · · · ⟩, ⟨· · ·Yi · · ·Yj · · · ⟩} and
(b) {⟨· · ·Xi · · ·Yj · · · ⟩, ⟨· · ·Yi · · ·Xj · · · ⟩}.

For each term in ĤK , the following probabilities will be obtained P00, P01, P10, P11,
where the subscripts refer to the bits of the positions where there are X and/or Y Pauli
matrices (i.e. positions i, j). The average value of the terms that make up ĤK , will be
calculated as c00P00 + c01P01 + c10P10 + c11P11, where coefficients cij depend on the change
of basis. For the one corresponding to Fig.7a, c00 = c01 = +1 and c10 = c11 = −1 and for
the one corresponding to Fig.7b, c00 = c11 = −1 and c01 = c10 = +1.

The number of measurements required is bounded at the top by the number of qubits
1 + Nq, see Appendix B, and for each of these measurements the maximum depth of the
measurement circuit to be implemented is 2 (again we can combine the Hadamard gate
with the phase gate of Fig.7b).

4 Simulation and Results
The statevector simulation with Cirq is used in this work to perform the circuit evolution
of the desired systems.

A code has been built to prepare the initial state according to the algorithms presented
in the previous section. Then a circuit corresponding to a Trotter step has been defined,
which we concatenate N times depending on the parameters T and δt chosen. Finally, the
measurement procedure has been automated by identifying the mean values that can be
measured simultaneously and creating accordingly the circuits to be implemented for each
measurement. The proposed basis changes for this part have been tested.

To obtain the results presented below, we proceeded as follows. T and δt values have
been fixed. For that pair of values we have a number of Trotter steps N to be performed.
We start with the state |0 · · · 0⟩ and with the function cirq.final_state_vector() of Cirq
we obtain the state after the evolution: first the state |0 · · · 0⟩ goes through the preparation
circuit of the initial state and then through the N Trotter steps. Once this state is obtained,
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the BH Hamiltonian is diagonalized and the overlap between the state obtained through
the circuit and the state obtained after diagonalization is calculated. With this we obtain
the fidelity. With a quantum computer we do not have access to fidelities, only to energies.
To simulate these results we have chosen to represent the fidelities for illustrative purposes,
although the behavior of the energies is similar.

The first results here presented comprise the adiabatic evolution from the ground state
of ĤC and ĤK to the full BH model. This evolution can be simulated by applying evolution
steps with the full Hamiltonian matrix (adiabatic) for each time step or by decomposing
the matrix in simple terms corresponding to one- and two-qubit quantum gates (circuit).
The comparison between both methods for several examples is shown in Fig.8. In each
case, two periods and two number of steps N are considered.

Figs. 8a, 8b, 8c show the evolution t = 0 → 1, U = 1 of NP = 2, NP = 3 and
NP = 7 respectively for periods T = {1, 3} for N = {40, 100}. By inspecting the adiabatic
evolutions with different periods it is clear that this parameter plays an important role in
the evolution. On the other hand, the Trotterization is affected by the number of steps: as
N increases, the Trotterized evolution is more similar to the adiabatic one.

The same behaviour is observed in Figs. 8d, 8e and 8f showing the evolution U = 0 → 1,
t = 1 of NP = 2, NP = 3 and NP = 7 respectively. The only difference is that in this case,
the fidelities throughout the evolution are much higher because it starts from an initial
state very close to the target one.
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(a) Ĥi = ĤC , NP = 2.
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(b) Ĥi = ĤC , NP = 3.
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(c) Ĥi = ĤC , NP = 7.
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(d) Ĥi = ĤK , NP = 2.
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(e) Ĥi = ĤK , NP = 3.
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(f) Ĥi = ĤK , NP = 7.

Figure 8: Comparison between adiabatic evolutions and trotter evolutions for different Ĥi and NP

detailed in each subcaption. For each example, comparison for two different periods T and number of
steps N are displayed.

It should be noted that for all cases a fidelity greater than 95% is achieved at least with
an evolution period of T = 3, except for the first one, see Fig.8a. This case corresponds
to an evolution starting from ĤC with an even number of particles. As mentioned above,
this is the most unfavorable case.

Fig.9 shows the fidelity achieved for different examples depending on T and δt. Fig.9a
explores the T , δt space for the example t = 0 → 1, U = 1 with NP = 2. In this example
a maximum of ≈ 85% is achieved. This low fidelity is due to the fact that, as mentioned
above, when Ĥi = ĤC and the number of particles is even, the starting state has an overlap
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of ≈ 62% with the target state. This is why a very high fidelity is not obtained with a
reasonable number of steps. Fig.9b analyzes the case of t = 0 → 1, U = 1 with NP = 3.
Since there is an odd number of particles, we do not have the problem of the previous case
since the initial overlap is of ≈ 88%. For practically all pairs of T and δt values the fidelity
achieved is high for T > 2.0. However, a fidelity of ≈ 100% is not reached at any time for
these values.

In Fig.9c and Fig.9d the calculation is performed for the problem U = 0 → 1, t = 1
with NP = 2 and NP = 3, respectively. After a certain period T = 1, the fidelity reaches
100%, but oscillations occur, so that it does not remain at 100% for all values of T , but
oscillates between ≈ 97% and 100%. In addition, it can be seen that for smaller δt values
fidelities are higher. This pattern of oscillations is presented in a similar way in both figures.
However, Fig.9c shows higher overall fidelities than Fig.9d. This may be because the initial
overlap is ≈ 99% and ≈ 97% respectively.

In order to improve the fidelity of Fig.9a so that it is comparable to the rest, larger
periods and shorter time steps are required, and therefore also many more steps N . This
obviously implies a considerable increase in the depth of the circuit. This is the main
motivation for introducing shortcuts to adiabaticity. A comparison between using and not
using STA is shown below.

Figs.10a and 10b show the fidelity achieved as a function of the number of trotter steps
N for δt = 0.01, 0.1, 0.5. As N increases, the value of T increases. Fig.10a shows that the
fidelity grows slowly with N and cannot reach ≈ 100% fidelity with N < 40 and δt < 0.5.
In Fig.10b higher fidelities are reached because of the odd number of particles. Even so, at
least 20 Trotter steps would be needed for δt = 0.5 to reach ≈ 100% fidelity.

Fig.10a also shows the fidelity achieved when using STA considering only the first-order
term in Ec.(20). The result is a fidelity of ≈ 100% for only 4 trotter steps. In Fig.10b it
is considered up to second-order term in Ec.(20). For l = 1 the adiabatic potential is not
accurate enough and reaches fidelities that are exceeded by the curve without STA with
δt = 0.5. However, with l = 2 the results improve significantly.

Although the results shown are for 2 sites, the entire algorithm is generalized for any
number of sites except for the initial state preparation. That is why it has also been tested
to work for systems of more sites with several particles. Cirq allows to create a circuit that
evolves an arbitrary state different from |0 · · · 0⟩. We use this function to test the adiabatic
evolution and the measurement for an initial state calculated with exact diagonalization.

15



0.65

0.70

0.75

0.80

0.85

0.90

0.95
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Figure 9: Fidelity achieved in the circuit evolution for problems with (a,b) Ĥi = ĤC and (c,d) Ĥi = ĤK

considering systems of different sizes.

Despite the better results obtained using STA, the price to pay by introducing the
counterdiabatic term is reflected in an increase in the circuit depth of a trotter step. For
example, in the case of NP = 2 the number of extra Pauli strings to consider in the
Hamiltonian is 16. That means an added depth to a trotter step of 128. With what we
have already commented we have a total depth in the evolution to reach ≈ 100% of 6240
without using STA and 1136 using STA. In the case of NP = 5 without using STA we have
a depth of 29000. While if we use STA we have 8964 (for l = 1), 12128 (for l = 2). In view
of this results, it is more advantageous (for these cases) then to use STA, both in terms of
fidelity and in terms of circuit depth.
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Figure 10: Fidelity achieved as a function of the number of trotter steps N for a fixed δt without using
STA. Note that as N increases, T is increasing. The fidelity when using STA is also plotted. For NP = 2
we have taken l = 1 and for NP = 5 we have taken l = 1, 2. All points corresponding to STA have been
calculated with δt = 0.01.

5 Conclusions
In this work, an adiabatic quantum algorithm has been constructed to obtain the ground
state of the one-dimensional Bose-Hubbard Hamiltonian. The code used to describe all the
circuits is the Gray code. First, a circuit has been constructed to prepare the ground state
of both the Coulomb term ĤC and the kinetic term ĤK , seeing a great advantage for the
case of the former in terms of depth. Then the evolution operator has been Trotterized and
a concatenation of circuits has been implemented, one for each exponential Pauli string.
For each Trotter step we have analyzed the scaling as a function of the number of particles.
Since the farther the initial state is from the target state the more trotter steps will be
needed to reach a given fidelity, we have concluded that the best case is to start from the
ĤK ground state, which is closer to the target one. In the measurement part we have
proposed a strategy to simultaneously measure commuting terms by implementing circuits
with a constant depth with the number of particles.

An STA method has been implemented to improve the adiabatic evolution of the system
when Ĥi = HK . For this purpose the approximate CD driving has been calculated using
the nested commutator method. With this, an improvement in both the evolution time
and the required circuit depth has been seen for some examples, thus demonstrating the
advantages of using this method. In addition, it has been shown that as the number of
qubits increases, the fidelity can be further improved with higher-order terms at the cost
of depth. These examples highlight the significant improvement that occurs when STA is
introduced, decreasing quantum resources and execution time (more in line with device
coherence time) [HPD+21].

One pending point is to study the scaling of a Trotter step when the counterdiabatic
term is added, in order to make a comparison of the advantages and disadvantages of
introducing STA in the algorithm for any number of sites and particles.

All results presented in this manuscript correspond to systems of NP particles at two
sites. For this particular case we have found that all steps involved in the simulation (i.e.
the preparation of the initial state, evolution and measurement) can be performed with
polynomial complexity: the depth in each part of the circuit scales polynomially with the
system size. However, both adiabatic evolution and measurement are implemented for any
number of sites. What is not easily generalizable for NS is the preparation of the initial
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state, but we can say that the depth of the circuit will be increased by having to prepare
more complicated states. Future work remains to implement these circuits and to analyze
the scaling of the complete algorithm as a function of NP and NS .

As explained in the main text, the motivation for using the Gray code is that it is
suitable for representing the kinetic term. However, according to [SMK+20], in the BH
model, the number operator n̂ is usually more efficient in SB, while the hopping term,
â†

i âi+1 + â†
i+1âi is usually more efficient in the Gray coding. As a future work, it could

be studied if changing the encoding in each Trotter step implies more or less depth in the
circuit than using always the same encoding.
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A Bose-Hubbard derivations
In this Appendix the ground state of each term of the Hamiltonian of the one-dimensional
Bose-Hubbard model will be derived in detail for a general case of NS sites and NP parti-
cles. The expressions obtained will be referenced by the main text.

A.1 Ground state of ĤC

When t = 0, the surviving term in Ec.(1) is,

ĤC = U

2

NS∑
i=1

n̂i(n̂i − 1). (A.1)

The eigenstates of this Hamiltonian are the Fock basis states as it is diagonal in that
basis. When U ≥ 0, the interaction between particles is repulsive and it follows that
they are arranged in the most dispersed way possible, i.e, when the number of particles is
divisible by the number of sites, each site contains NP /NS particles and the eigenvalues
are non-degenerate. When this is not the case, there is degeneracy. In the specific case of
two sites, we have

|ΨC(NP )⟩ =
∣∣∣∣NP

2
NP

2

〉
, (A.2)

for an even number of particles, and

|ΨC(NP )⟩ = α

∣∣∣∣NP

2 − 1
2
NP

2 + 1
2

〉
+ β

∣∣∣∣NP

2 + 1
2
NP

2 − 1
2

〉
, (A.3)

for an odd number of particles. α2 + β2 = 1 is verified. Starting from this state, in the
adiabatic evolution the kinetic term will slowly turn on. Specifically, in the first Trotter
step the Hamiltonian is given by

Ĥ = ĤC + ϵĤK , (A.4)

where ϵ = δt/N = 1/T . The matrix to be diagonalized is as follows〈NP −1
2

NP +1
2

∣∣∣ ĤK

∣∣∣NP −1
2

NP +1
2

〉 〈
NP −1

2
NP +1

2

∣∣∣ ĤK

∣∣∣NP +1
2

NP −1
2

〉〈
NP +1

2
NP −1

2

∣∣∣ ĤK

∣∣∣NP −1
2

NP +1
2

〉 〈
NP +1

2
NP −1

2

∣∣∣ ĤK

∣∣∣NP +1
2

NP −1
2

〉 . (A.5)

By calculating these elements we have(
0 −tNP +1

2
−tNP +1

2 0

)
, (A.6)

whose eigenvalues are ∓t(NP + 1)/2. Its eigenvectors are

|±⟩ = 1√
2

(∣∣∣∣NP − 1
2

NP + 1
2

〉
±
∣∣∣∣NP − 1

2
NP + 1

2

〉)
, (A.7)

respectively.
Considering |+⟩ as the initial state, when the first Trotter step is applied, we have

e−iĤCδt−iĤKδt/N |+⟩ . (A.8)



If δt/N is small, according to first-order perturbation theory, |+⟩ is an eigenstate of
e−iĤCδt−iĤKδt/N and that is why we can consider it as our initial state.

A.2 Ground state of ĤK

When U = 0, the surviving term in Ec.(1) is,

ĤK = −t
∑
⟨ij⟩

(
â†

i âj + â†
j âi

)
. (A.9)

In the first neighbors approach we have

ĤK = −t
NS−1∑

i=0

(
â†

i âi+1 + â†
i+1âi

)
, (A.10)

and periodic boundary conditions are imposed such that âNS
≡ â0.

The Fourier transform can be performed on the operators â†
j and âk, so that

â†
j = 1√

NS

NS−1∑
j′=0

e
−ijj′ 2π

NS b̂†
j , âk = 1√

NS

NS−1∑
k′=0

e
ikk′ 2π

NS b̂j , (A.11)

where b̂†
j , b̂j are momentum operators: they create/annihilate a particle with momentum

j.
Substituting both expressions in Ec.(A.10)

ĤK = −t
NS−1∑
j=0

1
NS

NS−1∑
j′,k′=0

e
i[(j+1)k′−jj′] 2π

NS b̂†
j′ b̂k′ + h.c.

= − t

NS

NS−1∑
j′,k′=0

NS−1∑
j=0

e
i 2π

NS
j(k′−j′)

︸ ︷︷ ︸
NS ·δk′j′

e
i 2π

NS
k′
b̂†

j′ b̂k′ + h.c.

= −t
NS−1∑
j′=0

e
i 2π

NS
j′
b̂†

j′ b̂k′ + h.c.

= −t
NS−1∑
j=0

2 cos
( 2π
NS

j

)
b̂†

j b̂j , (A.12)

where

b̂†
j = 1√

NS

NS−1∑
j′=0

e
ijj′ 2π

NS â†
j , b̂k = 1√

NS

NS−1∑
k′=0

e
−ikk′ 2π

NS âj . (A.13)

In view of Ec.(A.13) we have that the eigenstates are of the form
(
b̂†

j

)NP |00 · · · 0︸ ︷︷ ︸
NS

⟩, with

eigenvalues −2t cos(2πj/NS). The ground state corresponds to j = 0. Therefore, for any
number of sites and particles the ground state is non-degenerate. Its energy is −2t and its
(unnomalized) eigenvector is given by



(
b̂†

0

)NP |00 · · · 0︸ ︷︷ ︸
NS

⟩ =
NP∑

k1,k2···k
NS

(
NP

k1k2 · · · kNS

)√
k1!
√
ks! · · ·

√
kNS

! |k1k2 · · · kNS
⟩ , (A.14)

where k1 + k2 + · · · + kNS
= NP , and b̂†

0 is given by

b̂†
0 = 1√

NS

NS−1∑
j′=0

â†
j′ . (A.15)

In the specific case of two sites, we have the (unnormalized) state

|ΨK⟩ =
NP∑
i=0

(
NP

i

)
√
i!
√

(NP − i)! |i NP − i⟩ . (A.16)

For instance,

|ΨK(NP = 4)⟩ = 1
4 |04⟩ + 1

2 |13⟩ +
√

6
4 |22⟩ + 1

2 |31⟩ + 1
4 |40⟩ . (A.17)

B Number of measurements
In this Appendix we estimate an upper bound for the number of measurements needed to
obtain one value of the final state energy, i.e., the number of groups of Hamiltonian terms
that can be simultaneously measured.

As mentioned in Section 3.4, only one measurement is needed to compute one single
value of the energy due to the Coulomb term, ⟨ĤC⟩. However, for the kinetic term we can
only simultaneously measure {⟨· · ·Xi · · ·Xj · · · ⟩, ⟨· · ·Yi · · ·Yj · · · ⟩} and
{⟨· · ·Xi · · ·Yj · · · ⟩, ⟨· · ·Yi · · ·Xj · · · ⟩}. Note that in the case ofNS = 2, Kronecker products
σ̂(k) ⊗ · · · ⊗ σ̂(k′)︸ ︷︷ ︸

nq

σ̂(l) ⊗ · · · ⊗ σ̂(l′)︸ ︷︷ ︸
nq

have only one sigma matrix σ̂(+) or σ̂(−) at the position

of one of the first site qubits and another at the same position of one of the second site
qubits. This is because in Gray only one digit changes between consecutive states (those
appearing in ĤK). Therefore, there will be at most 4nq terms to measure (the 4 comes
from the possible combinations XX, XY , Y X, Y Y ). But since we have two groups that
can be measured simultaneously, we are left with Nq = nq/2 measurements. In total, then,
a maximum of 1 +Nq measurements will be required.

C ĤK ground state preparation
In this Appendix we present a possible algorithm to prepare the ground state of the kinetic
term of the Bose-Hubbard Hamiltonian with a quantum circuit. The coding used to prepare
the state is the Gray code. First, a way to prepare any two-qubit state will be presented
[PLOPO21] and then it will be explained how to use it to prepare the ground state of the
kinetic term with any value of NP and NS = 2. Finally, we will study how the depth of
this circuit scales as a function of the number of particles.



C.1 Preparing any two-qubit state
If we want to obtain |00⟩ from any two-qubit state, the quantum circuit is given by the
following scheme:

q0 • W2

q1 W1 • W3

Figure 11: Circuit that transforms any two-qubit state |Ψ0⟩ into |00⟩. Only three one-qubit gates and
one controlled-Z are required.

With this circuit the state |00⟩ is obtained from any state

|Ψ0⟩ = ξ0 |00⟩ + ξ1 |01⟩ + ξ2 |10⟩ + ξ3 |11⟩ .

W1, W2 and W3 are one-qubit gates defined from three unitary matrices of the form:

W (x, y) = 1√
x2 + y2

(
x y

−y∗ x∗

)
.

First, let’s define two vectors A1 and A2 which are given by

A1 = (ξ0, ξ1), A2 = (ξ2, ξ3),

and parameter k:

k =


A2
A1

if ⟨A1|A2⟩ = 0,

−A2
A1

⟨A1|A2⟩
⟨A1|A2⟩ if ⟨A1|A2⟩ ≠ 0.

Unitary matrix W1 is defined as

W1 = W (ξ3 − kξ1, ξ
∗
2 − k∗ξ∗)T ,

so that after the application of W1 and controlled-Z in |Ψ0⟩, we have

|Ψ1⟩ = CZ · (I ⊗W1) |Ψ0⟩ = η0 |00⟩ + η1 |01⟩ + η2 |10⟩ + η3 |11⟩ .

Unitary matrix W2 is defined as

W2 = W (η∗
1, η

∗
3),

and after its application to |Ψ1⟩, we have

|Ψ2⟩ = (W2 ⊗ I) |Ψ1⟩ = γ0 |00⟩ + γ1 |01⟩ + γ2 |10⟩ + γ3 |11⟩ .

W3 is defined as

W3 = W (γ∗
0 ,−γ∗

1)T ,

finally obtaining after its application the state |Ψ3⟩ = |00⟩.



If we implement this circuit in reverse, with the unitary matrices defining the gates
now being their corresponding inverses (we use the notation W−1 ≡ U), we can prepare
any two-qubit state.

q0 U2 •

q1 U3 • U1

Figure 12: Circuit that prepares any two-qubit state. Only 3 gates of one qubit and one controlled-Z are
required.

Let us now see how to prepare any two-qubit state if we have m−2 control qubits. The
idea is that now all gates shown in Fig.12 are controlled by these qubits.

q0 • • • •
q1 • • • •

...
...

...
...

...
qm−3 • • • •
qm−2 U2 •

qm−1 U3 • U1

Figure 13: Circuit to prepare any two-qubit state with qubits qm−2 and qm−1 controlled by m − 2
qubits. The state obtained is |q0 q1 · · · qm−2⟩ (ξ0 |00⟩ + ξ1 |01⟩ + ξ2 |10⟩ + ξ3 |11⟩). If we want one of
the control qubits to be in |0⟩ just add an X gate at the beginning and end of the circuit in that qubit.

In general any gate controlled by m− 1 qubits (m-controlled gate) can be decomposed
into two one-qubit gates and two m-qubit Toffoli gates. An m-qubit Toffoli gate can be
decomposed into two-qubit controlled-rotation gates in such a way that its circuit depth is
8m− 20 [SP13]. Circuit in Fig.14b then has a depth of 2 + 2(8m− 20) = 16m− 38.

q0 •
q1 •

...
...qm−2 •

qm−1 U

(a)

q0 • •
q1 • •

...
...

...qm−2 • •
qm−1 V V †

(b)

Figure 14: (a) An m-controlled U gate can be decomposed into (b) two m-qubit Toffoli gates and two
one-qubit gates V and V †, where V is the square root of U .

Let us then calculate the depth of the circuit in Fig.13. There are three (m − 1)-
controlled U gates and one m-controlled Z gate. Therefore, we have 3 [16 (m− 1) − 38] +
16m− 38 = 64m− 200.



C.2 Algorithm
The (unnormalized) ground state of ĤK is given

|ΨK(NP )⟩ =
NP∑
i=0

(
NP

i

)
√
i!
√

(NP − i)! |i,NP − i⟩ , (C.1)

where |i,NP − i⟩ belongs to the Fock basis {|n1, n2⟩}.
Ultimately, we have to prepare a state of the form

|ΨK(NP )⟩ =
NP∑
i=0

ci |i,NP − i⟩ . (C.2)

The idea is to prepare the first part of the state (to prepare the state by ignoring the
qubits corresponding to the second site), i.e

|Φ⟩ =

NP∑
i=0

ci |i(G)⟩

 |00 · · · 0⟩︸ ︷︷ ︸
nq

, (C.3)

working with nq qubits and to have nq additional qubits to complete the second part. For
this task, we add several n-qubit Toffoli gates. Control qubits are those describing the state
of the first site and target qubits those corresponding to the second site. It is then a task
of adding as many n-qubit Toffoli gates as necessary to obtain the desired superposition
state.

To help the reader, we explain in detail below how the algorithm works for the case of
NP = 6.

The initial state we have to prepare is

|Ψ(G)
K (NP = 6)⟩ = 1

8 |000⟩ |101⟩ + 1
4

√
3
2 |001⟩ |111⟩ +

√
15
8 |011⟩ |110⟩

+
√

5
4 |010⟩ |010⟩ +

√
15
8 |110⟩ |011⟩ + 1

4

√
3
2 |111⟩ |001⟩

+ 1
8 |101⟩ |000⟩ (C.4)

To prepare the first part of the state

|ϕ0⟩ =
(

1
8 |000⟩ + 1

4

√
3
2 |001⟩ +

√
15
8 |011⟩ +

√
5

4 |010⟩

+
√

15
8 |110⟩ + 1

4

√
3
2 |111⟩ + 1

8 |101⟩
)

|000⟩ (C.5)

we proceed as follows4:

• (Step 1) An Ry gate is applied in qubit q0,

|000⟩ → α |000⟩ + β |100⟩ .

4Qubits to be worked with in each step are shown in blue.



• (Step 2) With the last two qubits, we move to a new state emerging from |000⟩ (q0
as a control qubit, in red), for which the gates U1, U2 and U3 are defined in such a
way that,

α |000⟩ → 1
8 |000⟩ + 1

4

√
3
2 |001⟩ +

√
5

4 |010⟩ +
√

15
8 |011⟩ .

• (Step 3) With the last two qubits, we move to another new state emerging from |100⟩
(q0 as a control qubit, in red), for which the gates U1, U2 and U3 are defined in such
a way that,

β |100⟩ → 1
8 |101⟩ +

√
15
8 |110⟩ + 1

4

√
3
2 |111⟩ .

Step 2 Step 3
q0 Ry(θ) • • • • • • • • · · ·

q1 U2 • U2 • · · ·

q2 U3 • U1 U3 • U1 · · ·
q3 · · ·
q4 · · ·
q5 · · ·

Figure 15: Circuit that prepares |ϕ0⟩. Note that in step 2 a gate X is added at the beginning and end
of the circuit since the control qubit q0 is in |0⟩.

000

100

111110101

Step 3 →
000

011010001000

Step 2 →

Step 1 →

Figure 16: Diagram that helps to visualize the designed algorithm. Qubits worked in each step are shown
in blue and control qubits in red. Applying the Ry gate to q0 in the first step generates a superposition of
two states, |000⟩ and |100⟩. In the second step one of them, |000⟩, becomes a 4-state superposition. In
the third step |100⟩ becomes a 3-state superposition. Finally we have the desired 7-state superposition,
Ec.(C.4).

Then, in order to modify the qubits of the second site, we have to do the following
mapping:



|000⟩ |000⟩ → |000⟩ |101⟩ (a)
|001⟩ |000⟩ → |001⟩ |111⟩ (b)
|011⟩ |000⟩ → |011⟩ |110⟩ (c)
|010⟩ |000⟩ → |010⟩ |010⟩ (d)
|110⟩ |000⟩ → |110⟩ |011⟩ (e)
|111⟩ |000⟩ → |111⟩ |001⟩ (f)
|101⟩ |000⟩ → |101⟩ |000⟩ (g)

There seems to be no simple way to build a generalizable circuit for NP particles that
does this type of mapping. That is why we use n-qubit Toffoli gates. In red are the control
qubits, which correspond to those at the first site. In green appear the qubits of the second
site on which the gates are applied, i.e, those that have to change their state from |0⟩ to
|1⟩. As many gates of this type are applied as qubits that have to change state. X gates
are also added in the qubits of the first site with state |0⟩. In this case 11 4-qubit Toffoli
gates are needed.

(a) (b) (c) (d) (e) (f)
q0 • • • • • • • • • • •
q1 • • • • • • • • • • •
q2 • • • • • • • • • • •
q3

q4

q5

Figure 17: Circuit that completes the second part by adding 11 4-qubit Toffoli gates. Two X gates
acting in succession on the same qubit are cancelled. However, they have been put in the figure for
illustrative purposes and to facilitate understanding.

The general scheme of the algorithm for any number of particles can be inferred from
this example. Let Nq = NS · nq be the total number of qubits, where nq is the number of
qubits needed to represent one site. First nq −2 controlled-Ry gates are applied on the first
nq − 2 qubits: one rotation in q0, two rotations on q1 controlled by q0, four rotations on
q2 controlled by q0 and q1 and so on. Then 2nq−2 circuits like the one in Fig.13 controlled
by the nq − 2 qubits are concatenated. Finally, as many (nq + 1)-qubit Toffoli gates are
added as many qubits of the second site have to modify their state from |0⟩ to |1⟩ (for all
the states that make up the initial state).



Figure 18: Diagram that helps to visualize the designed algorithm. Qubits worked in each step are shown
in blue and control qubits in red. Applying the Ry gate to q0 in the first step generates a superposition
of two states, |000⟩ and |100⟩. In the second step, a rotation gate in q1 controlled by q0 in state |0⟩
and another rotation gate in q1 controlled by q0 in state |1⟩ are applied. In the third step, 2nq−2 circuits
as shown in Fig.13 are applied to obtain the desired superposition state.

Let us estimate how the depth of the circuit scales as a function of the number of
particles. Applying the controlled rotations we have 1+4+

∑nq−2
n=3 2n−1(16n−38). With the

application of the 2nq−2 circuits as shown in Fig.13 we have
(
2nq−2 − 1

)
· [2 + 64nq − 200]+

2nq−2 · (64nq − 200). This calculation is an upper bound for the depth of this part since
for a fixed number of qubits, depending on the number of particles, sometimes fewer such
circuits are needed to build the state. To simplify the calculation when adding the (nq +1)-
qubit Toffoli gates let us assume that all qubits in the second site have to change their
state from |0⟩ to |1⟩, i.e., as if the mapping example were like this

|000⟩ |000⟩ → |000⟩ |111⟩ (a)
|001⟩ |000⟩ → |001⟩ |111⟩ (b)
|011⟩ |000⟩ → |011⟩ |111⟩ (c)
|010⟩ |000⟩ → |010⟩ |011⟩ (d)
|110⟩ |000⟩ → |110⟩ |011⟩ (e)
|111⟩ |000⟩ → |111⟩ |001⟩ (f)
|101⟩ |000⟩ → |101⟩ |001⟩ (g)

It would then be necessary to apply
∑NP

n=1 nq(n) (nq +1)-qubit Toffoli gates at the most.
At most 2NP layers of X gates are also added. The depth of this part is then calculated
as 2NP + [8(nq + 1) − 20]

∑NP
n=1 nq(n).

If we add it all up, and write it as a function of the number of particles we get

D(IGS)
K ≤ 227 − 239NP + 4 log2NP [(−16 + 27NP ) + 2NP log2NP ] , (C.6)

that is, it scales polynomially with the number of particles.
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