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This master thesis describes analytical and numerical studies of quantum
mode parameter estimation limits. We analyze the estimation of transverse
displacements and wavelength variations using a parameter-independent quan-
tum state in different light modes. We find and evaluate systems where we
can achieve a quantum-enhanced sensitivity beyond the standard quantum
limit. Moreover, we find the modes and states in which we have to prepare the
light, as well as the measurements we have to perform in order to achieve the
maximum possible sensitivity. We compare the maximal sensitivity that can
be obtained on the estimation of a radial displacement with optimal states on
different light modes.
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1 Introduction
1.1 Classical Parameter Estimation
Consider a continuous random variable X that is modeled by a parameter depending
density function. Picture a normal distribution, for example, it depends on two parameters:
the mean µ = E(X), and the variance σ2 = var(X) = E[(X − µ)2]. By measuring N
times our variable, we will obtain a set of randomly distributed outcomes [x1, . . . , xN ].
Parameter estimation aims to accurately determine the value of the parameters that
determine the probability function from the set of outcomes.

We call an estimator a function of the set of results. For instance, the average of
a set of observed variables is an estimator of the mean µest(x1, . . . , xN ) =

∑N
i=1 xi/N , a

parameter of the normal distribution. We say that an estimator is unbiased if its expected
value coincides with the parameter we want to estimate. In the example before, this is
E(µest) = µ. We aim to find an unbiased estimator with the smallest possible variance.

The smallest variance that can be achieved in the estimation of a parameter θ, is given
by the Cramér-Rao bound var(θest) ≥ 1/I(θ) [Rao92, Cra99]. Where I(θ) is the Fisher
information (FI) [Fis22]. Given a parameter dependent distribution f(x|θ) that describes
the probability to observe the event x given θ, the FI is the amount of information that X
carries about θ, and it is defined as:

I(θ) := E

[
1

f(x|θ)2

(
∂f(x|θ)
∂θ

)2]
. (1)

1.2 Quantum Parameter Estimation
In quantum parameter estimation the parameter is encoded in a quantum state ρ̂(θ).
In order to extract information about θ we have to perform measurements. According to the
principles of quantum mechanics, the outcomes of the measurements are random variables
with probability distributions given by the Born rule: p(x|θ) = Tr[ρ̂(θ)Êx]. Where {Êx} is
a POVM (positive operator-valued measure), a set of semidefinite positive operators with
the property

∑
x Êx = 1 that characterize the measurement.

It is important to notice that, in the quantum world, the probability distribution
depends on the choice of measurement. Quantum parameter estimation aims to find the
measurement that will give us optimal data for our estimation. The quantum Fisher
information (QFI) is defined as the optimization of the FI over all possible measurements
FQ[ρ̂(θ)] := max{Ex} I(θ). In other words, each measurement gives us a probability
distribution through the Born rule, with these distributions we can calculate the Fisher
information, the maximum of the FI (achieved with the optimal measurement) will be the
quantum Fisher information.

The QFI can be expressed as FQ[ρ̂(θ)] = Tr[L̂2
θρ̂(θ)] [Hol11]. Where L̂θ is the symmet-

ric logarithmic derivative, a self-adjoint operator that fulfills the equation:

L̂θρ̂(θ) + ρ̂(θ)L̂θ
2 = ∂ρ̂(θ)

∂θ
. (2)

We can always find the optimal measurement by choosing the elements of our POVM to
be the orthogonal projectors onto the eigenstates of L̂θ [BC94].

We can define a quantum Cramér-Rao bound [Hel69] in a very similar fashion as
the classical one: var(θest) ≥ 1/FQ[ρ̂(θ)]. If we measure N copies of a state to estimate a
parameter θ, the QFI scales linearly with N , and we obtain var(θ̂) ∼ 1/N . This scaling is
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known as the standard quantum limit (SQL). However, we can improve the scaling of
the measurement error beyond the SQL when using non-classical states [PS14, GLM11].
This quantum-enhanced behaviour can achieve an improvement of up to N on the error
scaling var(θ̂) ∼ 1/N2, known as the Heisenberg limit.

1.3 Modes of the electromagnetic field
A mode of the electromagnetic field is a vector field f(r, t) that is a normalized solution of
the Maxwell equations in vacuum. ∀t it fulfills the three equations:(

∆ − 1
c2
∂2

∂t2

)
f(r, t) = 0 ; ∇ · f(r, t) = 0 and 1

V

∫
V
d3r|f(r, t)|2 = 1. (3)

With V the volume that contains the physical system. We can construct an orthonormal
mode basis {fm(r, t)} on which we can decompose any solution of the equations in 3:

1
V

∫
V
d3rf∗

m(r, t) · fn(r, t) = δm,n. (4)

We can therefore write any complex electromagnetic field as E†(r, t) =
∑
m cmfm(r, t),

where E(r, t) = E†(r, t) + (E†(r, t))∗. This implies that any given solution E(r, t) of the
Maxwell equations can be considered as a vector c = {c1, ..., cN} belonging to a Hilbert
space known as the modal space. In other words, any electromagnetic field can be
expressed as a superposition of the elements of a mode basis. We always try to choose
the most suitable mode basis for a given light source and optical system. Laguerre-Gauss
modes, for example, are used in quantum key distribution [MMLO+15]; and temporal
Hermite-Gauss modes provide a convenient orthogonal basis for light pulses [BRSR15].

Quantum light is described not only by its quantum state, but also by the electromag-
netic field modes on which the state is defined [FT20]. For example, in order to completely
describe the light coming out of a general laser, it is not enough to say "the light is in a
coherent state". We also have to say "it is on the first element of the spatial Hermite-Gauss
mode basis (which corresponds to a Gaussian beam shape)". In the same way that we can
have light in a superposition of two quantum states, we can have light in a superposition of
different modes. This latter superposition is described by the population of the elements
in a chosen mode basis.

1.4 Mode Parameter Estimation
High-precision measurements in interferometry, spectroscopy, positioning and timing use
light parameters to encode information. These parameters can be determined not only
by the state of the light (such as the number of photons or the coherence), but also by
the light-mode (such as the spatial profile or the frequency spectrum). There also exist
properties that can be considered state or mode parameters such as the phase shift.

We have seen in section 1.2 that the sensitivity on the estimation of quantum parameters
can surpass the SQL. The quantum limit on the estimation of an arbitrary mode parameter
can be determined analytically [GTF22]. In fact, [GTF22] demonstrates that any mode
parameter variation can be described as a change of the state given by an effective beam-
splitter unitary evolution. The effective beam-splitter Hamiltonian depends on the shape
of the modes:

Ĥ =
∑
jk

(fj |f ′
k)â

†
j âk, (5)
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where f ′
k is the derivative of the kth mode with respect to the parameter θ we are estimating

evaluated at θ = 0, and â(†)
i are the creation and destruction operators of the mode labeled

by the index i.
In the particular case when the parameter is imprinted by a unitary evolution generated

by a Hamiltonian ρ̂(θ) = exp
(
−iĤθ

)
ρ̂ exp

(
iĤθ

)
, the quantum Fisher information is given

by [BC94, TA14, PS14]:

FQ[ρ̂(θ̂)]θ=0 = FQ[ρ̂, Ĥ] := 4⟨Ĥ2⟩ρ̂ − 8
∑
n,m

pnpm
pn + pm

| ⟨ψn| Ĥ |ψm⟩ |2, (6)

with ρ̂(θ) =
∑
n pn |ψn⟩θ ⟨ψn|θ the spectral decomposition of ρ̂(θ). Notice ρ̂ = ρ̂(0) and

|ψn⟩ = |ψn⟩θ=0. By making a distinction between populated modes and the modes in the
vacuum, [GTF22] derives the following expression for the quantum Fisher information:

FQ[ρ̂(θ̂)]θ=0 = FQ[ρ̂, ĤI ] + 4
∑
kl∈I

(f ′
k|f ′

l ) −
∑
j∈I

(f ′
k|fj)(fj |f ′

l )

 ⟨â†
kâl⟩ρ̂, (7)

where I is the set of populated modes and

ĤI = i
∑
jk∈I

(fj |f ′
k)â

†
j âk. (8)

Notice that the first term in equation 7 can return quadratic values because of the
element ⟨Ĥ2⟩ in equation 6. This quadratic terms are the ones that can provide scaling
beyond the SQL. This means that we can only achieve quantum enhancements beyond the
SQL if FQ[ρ̂, ĤI ] ̸= 0. That is, if HI ̸= 0. Therefore, the origin of the high order terms
that enable quadratic quantum scaling lays on the population of derivative modes such
that (fj |f ′

k) ̸= 0 for some j, k ∈ I.
In other words, if there is an overlap between the populated modes and their derivatives

we may find quadratic scaling of the sensitivity on N . If the populated modes are orthogonal
to their derivatives, the first term in equation 7 vanishes and the scaling will only be
linear. Notice also that, if the derivatives of the populated modes can be written as linear
combinations of the populated modes themselves, the second term (linear) in equation 7
will disappear.

Figure 1: Visual representation of the relevant areas in the mode space
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2 Objectives
The main objective of this project is to study the quantum enhancements that can be
achieved in the estimation of a mode parameter. We know that this quantum enhancements
can be achieved on the estimation of a displacement on the x and y axis using Hermite-
Gauss modes (HG) [GTF22]. Therefore we expect to achieve similar enhancements on
the estimation of a radial displacement on a given direction. We aim to generalize the
results in the cited article and expand them by finding the state that achieves the maximal
sensitivity on the estimation. We would also like to find the optimal measurement for this
quantum estimation.

Laguerre-Gauss modes (LG) form another known and studied basis with a cylindrical
symmetry. We want to analyze different mode schemes in this basis in order to see whether
it is possible to achieve quantum enhancements beyond the SQL on the estimation of the
same parameter as the case before, a radial displacement on a given direction. We also aim
here to find the optimal state that maximizes the sensitivity and the optimal measurement.

If we achieve the previous objectives we would like to compare the characteristics of
the HG and LG modes on the estimation of a radial displacement.

Furthermore, we will explore possibilities to achieve quantum enhancements in the
estimation of other mode parameters such as the wavelength.

3 Results
3.1 Estimation of a radial displacement in a given direction α

We analyze the sensitivity that can be achieved in the estimation of a radial displacement
in an arbitrary direction α. We study and compare different mode population schemes in
two mode bases the Hermite-Gauss modes in section 3.1.1 and the Laguerre-Gauss modes
in 3.1.2. In section 3.1.3 we focus on a two-mode scenario that allows us to study the
estimation for a general case. We will find analytically a quasi-optimal state that achieves
quasi-maximal sensitivity on the estimation. In section 3.1.4 we provide an interpretation
for this quasi-optimal state through the Schwinger representation. We work numerically
in 3.1.5 to find the actual optimal state, we compare it to our quasi-optimal analytical
one, and interpret it using again the Schwinger representation. Finally, in section 3.1.6 we
apply the obtained knowledge to discern which mode basis can achieve better sensitivities
on the estimation of a radial displacement in a known and an unknown direction.

3.1.1 Estimation of a radial displacement using Hermite-Gauss modes

Hermite-Gauss modes are described by
two indices n and m that determine the
shape of the beam in the x and y direc-
tion respectively. They have a rectan-
gular symmetry along the propagation
z-axis (see figure 2), so we analyze them
in Cartesian coordinates. Notice that the
first mode HG00 is a regular Gaussian
beam.
The mathematical expression for an arbi-
trary Hermite-Gauss mode reads:

Figure 2: 12 Hermite-Gauss modes [CFB+13]
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HGnm(x, y; z, w0, k) =
√

2
π2n+mn!m!

1
w(z)Hn

(√
2x

w(z)

)
Hm

(√
2y

w(z)

)
×

exp
[
−x2 + y2

w(z)2

]
exp

[
−ikz x2 + y2

2(z2 + z2
R)

]
exp [i(n+m+ 1)ψ(z)] exp(−ikz),

(9)

where Hk(x) = (−1)kex2 dk

dxk e
−x2 is the kth Hermite polynomial, w(z) = w0

√
1 + (z/zR)2

is the beam radius and w0 the beam waist. The Gouy phase is ψ(z) = arctan(z/zR). The
wave number k depends on the wavelength λ as k = 2π/λ, and zR = πw2

0/λ.
Our aim is to achieve quantum enhancements in the estimation of a radial displacement

on an arbitrary direction α. This displacement produces a change on the Cartesian
coordinates x −→ x̃ = x+ δr cosα, and y −→ ỹ = y + δr sinα. As we saw in section 1.4,
we may achieve enhancements over the SQL if there is an overlap between the populated
modes and their derivatives. Let us start by finding a general expression for the derivative
with respect to δr evaluated at δr = 0. By using the chain rule, the basic properties of the
Hermite polynomials:

Hn+1(x) = 2xHn(x) − ∂Hn(x) and ∂Hn(x) = 2nHn−1(x), (10)

and algebraic manipulations, we can identify the derivative as:

∂HGnm(x̃, ỹ)
∂δr

∣∣∣∣∣
δr=0

=cosα
w0

[√
nHGn−1,m −

√
n+ 1HGn+1,m

]
+

sinα
w0

[√
mHGn,m−1 −

√
m+ 1HGn,m+1

]
.

(11)

This simplifies the following calculations as the inner products that are required to
determine the effective beam splitter Hamiltonian ĤI (equation 8) and the sensitivity
FQ (equation 7) can be solved trivially using the orthonormality condition of the mode
basis (HGnm|HGpq) = δnpδmq, instead of having to solve two-dimensional integrals. Let
us calculate now the effective Hamiltonian and the sensitivity limit for different strategies
based on HG modes.

a) We populate a single mode HGnm

As we can see from equation 11, there is no overlap between HGnm and its derivative.
Therefore, if all modes besides HGnm are in the vacuum, the effective Hamiltonian vanishes.
This implies that we will not be able to achieve quadratic scaling on the sensitivity:

FQ[ρ̂(δr)]δr=0 =
[4(2n+ 1)

w2
0

cos(α)2 + 4(2m+ 1)
w2

0
sin(α)2

]
⟨N̂nm⟩ρ̂, (12)

with N̂nm = â†
nmânm the number operator for the photons in the mode HGnm.

We can not obtain quantum enhancements beyond the standard quantum limit on
the estimation of a radial displacement by populating a single HGnm mode.

b) We populate all modes from HG00 up to a HGnm

5



The derivative of HGnm (equation 11) has non-vanishing overlap with its contiguous modes.
In order to take full advantage of the effective Hamiltonian, we populate all modes up
to a maximum HGnm. Notice that the larger the effective Hamiltonian ĤI , the greater
the quadratic terms will be and larger the quantum enhanced sensitivity. In this case the
effective Hamiltonian reads:

ĤI = i

w0

[
cosα

m∑
j=0

n−1∑
k=0

√
k + 1(â†

k,j âk+1,j − â†
k+1,j âk,j)+

sinα
n∑
k=0

m−1∑
j=0

√
j + 1(â†

k,j âk,j+1 − â†
k,j+1âk,j)

]
.

(13)

And the sensitivity:

FQ[ρ̂(δr)] = FQ[ĤI , ρ̂] + 4(n+ 1)
w2

0
cos(α)2

m∑
j=0

⟨N̂n,j⟩ρ̂ + 4(m+ 1)
w2

0
sin(α)2

n∑
k=0

⟨N̂k,m⟩ρ̂. (14)

The first term will provide quadratic scaling (remember equation 6). The linear scaling
of the other terms is due to losses to the vacuum from the modes HGnj and HGkm,
∀k, j ∈ I. Notice that the derivatives of these involve HGn+1,j and HGk,m+1 which are
not populated.

We can obtain quantum enhancements beyond the standard quantum limit in the
estimation of radial displacements by populating contiguous HG modes.

The results in this section generalize the ones calculated [GTF22] for a displacement
on the x or y-axis, which can be recovered as the special cases with α = 0 and α = π/2
respectively. A relevant unanswered question would be which is the state ρ̂ that maximizes
the sensitivity in this scenario. We will come back to this this in section 3.1.3.

3.1.2 Estimation of a radial displacement using Laguerre-Gauss modes

Laguerre-Gauss modes exhibit a cylin-
drical symmetry described by the gen-
eralized Laguerre polynomials (see fig-
ure 3), p ≥ 0 is the radial index and
m ∈ [−p, p] the azimuthal index. They
are expressed in polar coordinates, and
carry an intrinsic angular momentum
along the propagation z-axis. Notice
that the first mode LG00 is again a reg-
ular Gaussian beam.
The mathematical expression for an ar-
bitrary Hermite-Gauss mode reads: Figure 3: 12 Laguerre-Gauss modes [CFB+13]

LGmp (r, θ, z) =
√

2p!
π(p+ |m|)!

1
w(z)

(
r
√

2
w(z)

)|m|

L|m|
p

(
2r2

w(z)2

)
×

exp
[

−r2

w(z)2 − ikr2z

2(z2 − z2
R)

]
exp [i(2p+ |m| + 1)ψ(z)] exp(imθ) exp(−ikz).

(15)
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With Lmp (x) =
∑p
i=0(−1)i

(p+m
p−i

)
xi

i! the generalized Laguerre polynomials. All the other
terms in this equation have already been defined in section 3.1.1. If we perform a radial
displacement δr in a given direction α, the variables in the Laguerre modes change as:

r =
√
x2 + y2 −→ r̃ =

√
(x+ δr cos (α))2 + (y + δr sin (α))2

θ = arctan
(
y

x

)
−→ θ̃ = arctan

(
y + δr sin (α)
x+ δr cos (α)

)
.

(16)

Just as before, we start by calculating the derivative with respect to δr:

∂LGmp
∂δr

∣∣∣∣
δr=0

= sin(α− θ)
r

imLGmp + cos(α− θ)
r

|m|LGmp −

−cos(α− θ)e
−iθ

w0

(√
2pLGm+1

p−1 +
√

2(p+ |m| + 1)LGm+1
p

)
.

(17)

To obtain this result we have used basic trigonometry relations and the recurrence
properties of the generalized Laguerre polynomials: L(m)

n (x) = L
(m+1)
n (x) − L

(m+1)
n−1 (x) and

nL
(m)
n (x) = (n+m)L(m)

n−1(x) − xL
(m+1)
n−1 (x). Notice that in this Laguerre-Gauss case we are

not able to write the derivative of an arbitrary state as a function of other modes in the
basis with coefficients that are independent of the coordinates r and θ. This forbids us to
use the orthonormality relations to calculate inner product between modes. We are forced
to perform double integrals over r and θ.

a) We populate a single mode LGnm

The effective Hamiltonian ĤI = i(LGmp |∂LGmp )â†
pmâpm where ∂LGmp is:

ĤI =
[

−m

(
LGmp

∣∣∣∣sin(α− θ)
r

LGmp

)
− i

√
2(p+ |m| + 1)

w0

(
LGmp

∣∣∣∣ cos(α− θ)e−iθLGm+1
p−1

)
+

+ w(z)√
2
i|m|

(
LGmp

∣∣∣∣cos(α− θ)
r

LGmp

)
− i

√
2p
w0

(
LGmp

∣∣∣∣ cos(α− θ)e−iθLGm+1
p−1

)]
â†
nmânm.

(18)

Notice that now the creation and annihilation â
(†)
pm operators refer now to the LGmp mode.

Lets focus on the angular parts of the inner product integrals:

1st:
∫ 2π

0
e−imθ sin(α− θ)eimθdθ = 0

2nd=4th:
∫ 2π

0
e−imθ cos(α− θ)ei(m+1)θe−iθdθ = 0

3rd:
∫ 2π

0
e−imθ cos(α− θ)eimθdθ = 0

(19)

The radial integrals converge, therefore the Hamiltonian is ĤI = 0.

We can not achieve quantum enhancements beyond the standard quantum limit on
the estimation of a radial displacement by populating a single LGmn mode.

b) We populate a pair LG0
0 and LG1

0
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The general expression for the effective Hamiltonian reads ĤI = i
∑
j,k∈I(fj |f ′

k)â
†
j âk. We

have already seen that the inner products (LG0
0|∂LG0

0) = (LG1
0|∂LG1

0) = 0 because the
integral of the angular part is null. However, we still have to calculate (LG1

0|∂LG0
0) and

(LG0
0|∂LG1

0). We have:

∂LG0
0

∂δr

∣∣∣∣
δr=0

= − cos(α− θ)e
−iθ√2
w0

LG1
0

∂LG1
0

∂δr

∣∣∣∣
δr=0

= i
sin(α− θ)

r
LG1

0 + cos(α− θ)
r

LG1
0 − cos(α− θ)2e−iθ

w0
LG2

0.

(20)

Then the inner products can be calculated by performing the double integrals. The
first one results in:

(LG1
0|∂LG0

0) = −
√

2
w0

∫ 2π

0
cos(α− θ)e−iθdθ

∫ ∞

0
rdr

4r2

πw(z)4 e
− 2r2

w(z)2 = − e−iα
√

2w0
(21)

We know that the hermicity condition (f ′
k|fj) + (fk|f ′

j) = 0, ∀k, j ∈ I has to be fulfilled.
Then we expect (LG0

0|∂LG1
0) = eiα/

√
2w0. Lets check it explicitly:

(LG0
0|∂LG1

0) =i
∫ 2π

0
sin(α− θ)eiθdθ

∫ ∞

0
rdr

2
√

2
πw(z)3 e

− 2r2
w(z)2 eiψ+

+
∫ 2π

0
cos(α− θ)eiθdθ

∫ ∞

0
rdr

2
√

2
πw(z)3 e

− 2r2
w(z)2 eiψ−

− 2
w0

∫ 2π

0
cos(α− θ)eiθdθ

∫ ∞

0
rdr

2
√

2r2

πw(z)4 e
− 2r2

w(z)2 e2iψ =

= eiαeiψ√
2w(z)

+ eiαeiψ√
2w(z)

− eiαe2iψ
√

2w(z)
= eiα√

2w0
.

(22)

We can now write the effective Hamiltonian for this two populated modes as:

ĤI = i√
2w0

(
eiαâ†

00â01 − e−iαâ†
01â00

)
. (23)

We still need to evaluate
∑
k,l∈I

[
(f ′
k|f ′

l ) −
∑
j∈I(f ′

k|fj)(fj |f ′
l )
]

in order to calculate the
sensitivity. From the angular parts of the integrals we obtain that the only non-zero terms
are (∂LG0

0|∂LG0
0)−(∂LG0

0|LG1
0)(LG1

0|∂LG0
0) and (∂LG1

0|∂LG1
0)−(∂LG1

0|LG0
0)(LG0

0|∂LG1
0).

After performing the corresponding integrals we get:

FQ[ρ̂(δr)] = FQ[ρ̂, HI ] + 2
w2

0

(
⟨â†

00â00⟩ρ̂ + 3⟨â†
01â01⟩ρ̂

)
. (24)

Notice that the sensitivity does not depend on the angle of displacement α. This
happens because of the cylindrical symmetry of the Laguerre-Gauss modes.

We can achieve quantum enhancements beyond the standard quantum limit on the
estimation of a radial displacement by populating a pair LG0

0 and LG1
0.

As each inner product presents a different double integral, it is much more difficult to
calculate a general case with the LG modes than with the HG modes. With HG modes we
achieved to study a case with arbitrary number of modes. Here, we will restrict ourselves
to this two-mode scheme. Nevertheless, more difficult cases with more modes can be
calculated in principle.
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3.1.3 Analytical optimization of the sensitivity over all possible states

We have studied the sensitivity we can obtain in the estimation of a radial displacement
with different mode structures and whether it can in principle outperform the SQL. This
sensitivity, however is expressed always as a function of the state. Relevant questions would
now be Which is the state that achieves the maximal sensitivity? What is this optimal
value? We address these questions in this section.
Lemma 3.1. The state ρ̂ that achieves the maximum quantum Fisher information is pure.

Proof: A mixed state is a convex combination of pure states ρ̂mix =
∑
k pk |ψk⟩⟨ψk|,

with
∑
k pk = 1, and the quantum Fisher information is a convex function. Then,

maxρ FQ[ρ̂(θ)] = maxFQ[
∑
i pi |ψi⟩⟨ψi|] ≤

∑
i pi maxψi

FQ[|ψi⟩⟨ψi|] ≤ maxψ FQ[|ψ⟩⟨ψ|].
If ρ̂ is a pure state we can simplify the expression 6. Notice that in this case n = m =

pn = pm = 1:

FQ[|ψ⟩⟨ψ| , Ĥ] := 4⟨Ĥ2⟩ψ − 81
2 | ⟨ψ| Ĥ |ψ⟩ |2 = 4⟨(∆Ĥ)2⟩ψ, (25)

with (∆Ĥ)2 the variance of Ĥ. In all the studied cases where we can have quantum
enhancements, a term FQ[ρ̂, ĤI ] appears on the expression of the sensitivity. With HI the
corresponding Hamiltonian. Now, if we want to optimize the sensitivity, we can substitute
all these terms by variances:

max
ψ

FQ[|ψ(δr)⟩⟨ψ(δr)|] = max
ψ

[
4⟨(∆ĤI)2⟩ψ + ⟨linear terms⟩ψ

]
. (26)

The linear terms are the specific ones of each case. For example, in the radial displace-
ment estimation with Laguerre modes (section 3.1.2) they are 2/w2

0 ·(⟨â†
00â00⟩ψ+3⟨â†

01â01⟩ψ).
We will focus on the case where we have a constant number N of photons in our system.

Then, we can create a complete basis for the Hilbert space of the quantum state, that labels
the number of photons on each mode. This is {|k⟩}Nk=0 when we only have one populated
mode, and {|k,N − k⟩}Nk=0 when we have two.

We can write an arbitrary pure state |ψ⟩ of dimension N + 1 in this basis as |ψ⟩ =∑N
k=0 cke

iϕk |k⟩. This are 2(N + 1) parameters, but one of them is defined by the normal-
ization condition, and another one by choosing a global phase. So we actually only need
2N free parameters to describe the state. We optimize the sensitivity over all states given a
number of photons N . This is an optimization of a quadratic function over 2N parameters.

Different attempts were made to find an analytical solution for this problem with
diverse optimization methods. The optimization was actually solved for N = 2 and N = 3.
But the difficulty of the problem escalates rapidly with the number of photons and no
general expression for an arbitrary N was found.

However, there is an elegant way to bypass this problem and find a quasi-optimal state.
The idea is to optimize for all possible states only the quadratic part of the sensitivity (the
variance of the effective Hamiltonian squared) forgetting about the linear terms. We call the
state that maximizes this partial part of the sensitivity an approximate quasi-optimal state∣∣∣ψ̃opt〉. And we use it to calculate the full sensitivity in equation 26. The obtained result
will not be optimal (as we are not taking the linear part into account in the optimization),
but it will approach optimality as N increases. In this limit N ≫ 1, the optimized quadratic
term is much larger than the linear terms.

The maximum expectation value of the variance of an operator and the state that
achieves this limit are [GLM06]:

max
ψ

⟨(∆ĤI)2⟩ψ = |λmax − λmin|2

4 with |ψopt⟩ = |λmax⟩ + eiφ |λmin⟩√
2

(27)

9



Where λmax and λmin are the maximum and minimum eigenvalues of the effective Hamilto-
nian respectively and |λmax⟩ and |λmin⟩, the corresponding eigenstates. |ψopt⟩ is optimal
∀φ. This knowledge will simplify the calculations.

At this point we will focus on mode parameter estimation strategies that achieve
quantum enhancements on the estimation of a radial displacement. Notice that if we
perform the displacement in the x direction (α = 0, π) populating the pair HG00 and
HG10, or in y (α = π/2, 3π/2) populating HG00 and HG01, the Hamiltonian in equation
13 and sensitivity in 14 can be written as:

ĤI = i

w0

(
â†b̂− b̂†â

)
and FQ[ρ̂(δr)] = FQ[ρ̂, ĤI ] + 8

w2
0

⟨b̂†b̂⟩ρ̂ (28)

Where â(†) and b̂(†) are the creation and destruction operators on the ground and the exited
modes respectively. The equations in 28 are very similar to the Hamiltonian of the radial
displacement in an arbitrary direction with the first two populated LG modes (expression
23) and the corresponding sensitivity 24. They can all be written as ĤI = câ†b̂+ c∗âb̂†,
and FQ = 4⟨(∆Ĥ2

I )⟩ψ̃ + d1⟨N̂a⟩ψ̃ + d2⟨N̂b⟩ψ̃. With N̂a = â†â and N̂b = b̂†b̂ the number
operators on each mode. The displacements with HG have c = i/w0, d1 = 0 and d2 = 8/w2

0;
and with LG c = ieiα/

√
2w0, d1 = 2/w2

0 and d2 = 6/w2
0. We will optimize this general

case. Firstly, notice the Hamiltonian can be rewritten in the number of photons basis as:

ĤI =
N∑
k=0

√
(k + 1)(N − k) (c |k + 1, N − k − 1⟩⟨k,N − k| + h.c.) , (29)

with h.c. the hermitian conjugate of the first term. This Hamiltonian has to be diagonalized
in order to find the maximum possible value of its variance, and apply the quasi-optimal
procedure. We can do it in general as it is very symmetric. We obtain the set of eigenvalues
{λi}Ni=0 = {−N |c|, (2 −N)|c|, . . . , (N − 2)|c|, N |c|}. The spread is 2N |c|, so the maximum
expectation value that can be achieved according to equation 27 is N2|c|2.

In order to find the optimal state, we only need to calculate the eigenvectors corre-
sponding to the maximum and minimum eigenvalues: (HI ±N |c|1) |x⃗⟩ = 0. We find that
the eigenvectors have binomially distributed coefficients:

|λmax⟩ = 1√
2N

N∑
k=0

√√√√(c∗)k
ck

(
N

k

)
|N − k, k⟩

|λmin⟩ = 1√
2N

N∑
k=0

(−1)k
√√√√(c∗)k

ck

(
N

k

)
|N − k, k⟩ .

(30)

The superposition of these two eigenvectors with any phase will give us the quasi-
optimal state. Notice that by choosing φ = 0 in equation 27 all the odd terms cancel, so
we can write the quasi-optimal state as:

∣∣∣ψ̃opt
〉

= 1√
2N−1

⌊N/2⌋∑
k=0

√√√√(c∗)2k

c2k

(
N

2k

)
|N − 2k, 2k⟩ . (31)

With ⌊x⌋ the floor function (it takes the greatest integer smaller or equal to x). This state
has the property ⟨ĤI⟩ψ̃ = 0. We calculate now the sensitivity in equation 28. The result
will be an approximate quasi-maximal sensitivity. We find:

FQ[
∣∣∣ψ̃opt

〉〈
ψ̃opt

∣∣∣] = 4N2|c|2 + d1 + d2
2 N (32)
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Notice that this sensitivity does indeed scale quadratically with the number of photons.
We expect that it will be closer and closer to the absolute optimal as N increases. This
fact will be checked numerically in section 3.1.5 (figures 4 and 5).

Our analytical quasi-optimal state 31 achieves a quasi-maximal quantum enhanced
sensitivity 32 beyond the SQL.

3.1.4 Quasi-optimal state for transverse displacements as a rotated NOON

We have calculated explicitly an analytical quasi-optimal state 31. Now, we are going to
give a more intuitive expression for it through the Schwinger representation [CMM+06].
The main idea is to rewrite our general effective Hamiltonian ĤI = câ†b̂ + c∗âb̂† as a
spin-like Hamiltonian and manipulate it as such. The excited and ground mode will be
treated as the up and down spin using the two-mode bosonic representation of the SU(2)
algebra [Sch00]. The angular momentum operators are:

Ĵx = â†b̂+ b̂†â

2 Ĵy = â†b̂− b̂†â

2i Ĵz = â†â− b̂†b̂

2 . (33)

This allows us to write our effective Hamiltonian as ĤI = 2[Re(c)Ĵx−Im(c)Ĵy]. Defining
the normalized vector n⃗ := (Re(c),− Im(c), 0)/|c| we can write ĤI = 2|c|Ĵn⃗. With Ĵn⃗ = n⃗·J⃗ ,
and J⃗ = (Ĵx, Ĵy, Ĵz). Notice that the vector m⃗ = (Im(c),Re(c), 0)/|c| defines a Ĵm⃗ that
is orthogonal to both Ĵn⃗ and Ĵz. Therefore, a rotation Û = exp(−iπĴm⃗/2) will bring
elements from the canonical Ĵz basis to the Hamiltonian Ĵn⃗ basis.

Let us optimize now the quadratic part of the sensitivity like in the previous section.
We can do it now in a much more elegant way by working in the canonical Ĵz basis, and
then performing the above-defined rotation Û to obtain the information in the Hamiltonian
Ĵn⃗ basis. We know (equations 27) that the maximum value ⟨(∆ĤI)2⟩ψ can achieve is the
spread of the extreme eigenvalues squared divided by 4.

The rotated Hamiltonian Ĥz = 2|c|Ĵz is already diagonal so the set of eigenvalues is
trivially: 2|c|{N2 ,

N
2 − 1, . . . , 1 − N

2 ,−
N
2 }. The eigenvalues of an operator do not change

under rotation so these are actually the eigenvalues of our effective Hamiltonian ĤI . The
spread is 2N |c|, so the maximum value that the variance of the Hamiltonian can achieve is
max⟨(∆ĤI)2⟩ψ = N2|c|2. This coincides with the result in the previous section.

The eigenstates corresponding to the maximum and minimum eigenvalues of Ĵz are
|0, N⟩ and |N, 0⟩. Therefore, the quasi-optimal state for the rotated Hamiltonian Ĥz is the
NOON state in the Ĵz basis:∣∣∣ψ̃〉

z
= |NOON⟩z = |N, 0⟩z + eiφ |0, N⟩z√

2
, ∀φ. (34)

In order to get the quasi-optimal state of the original Hamiltonian ĤI we have to perform
the rotation Û . This allows us to write compactly:∣∣∣ψ̃opt

〉
= U

∣∣∣ψ̃〉
z

= U |NOON⟩z . (35)

We can interpret our quasi-optimal state as a rotated NOON state, with Û =
exp(−iπĴm⃗/2) the rotation operator.

We further checked numerically that this state is indeed equivalent to the one we
obtained in 31, they both return the same sensitivity. The code is provided in Appendix A.
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3.1.5 Numerical optimization of transverse displacements

There is a less obvious but better way to perform the optimization. It is based on the
intuition that our optimal state should have the property ⟨ĤI⟩ψ ∼ 0. This is not unfounded:
Notice that the sensitivity can be written as FQ = 4⟨Ĥ2

I ⟩ψ − 4⟨ĤI⟩2
ψ + d1⟨N̂a⟩ψ + d2⟨N̂b⟩ψ,

so it makes sense that we would want the negative term to be small (or ideally zero) if we
are trying to maximize the function. Also, we have seen that the quasi-optimal state in 31
indeed has this property.

Lemma 3.2. Let the state |ψ⟩ maximize maxφ[⟨Ĥ2
1 + Ĥ2⟩φ] = ⟨Ĥ2

1 + Ĥ2⟩ψ. Then, there is
an upper bound in the function maxφ[⟨Ĥ2

1 + Ĥ2⟩φ − ⟨Ĥ1⟩2
φ] ≤ ⟨Ĥ2

1 + Ĥ2⟩ψ. The inequality
is saturated if and only if ⟨Ĥ1⟩ψ = 0

Proof: Notice maxφ[⟨Ĥ2
1 + Ĥ2⟩φ − ⟨Ĥ1⟩2

φ] ≤ maxφ[⟨Ĥ2
1 + Ĥ2⟩φ] = ⟨Ĥ2

1 + Ĥ2⟩ψ and the
inequality is saturated if and only if ⟨Ĥ1⟩ψ = 0

If we let ĤI = Ĥ1, and d1⟨N̂a⟩ψ + d2⟨N̂b⟩ψ = Ĥ2, this lemma applies to our case. The
strategy will be to find the state |ψ⟩ that maximizes maxφ[⟨Ĥ2

I + d1N̂a + d2N̂b⟩φ] and then
calculate ⟨ĤI⟩ψ. If we find ⟨ĤI⟩ψ ̸= 0 we will have a new approximation for our sensitivity
that will be compared to the quasi-optimal one found in equation 32. If we find ⟨ĤI⟩ψ = 0,
according to the lemma 3.2, the state |ψ⟩ will maximize the sensitivity, so we will be able
to calculate the actual optimal sensitivity value.

The maximization is solved by the eigenvector corresponding to the maximum eigenvalue
of Ĥ2

I + d1N̂a + d2N̂b. However, diagonalizing this operator analytically for arbitrary
constants is a difficult task, and it gets more and more challenging when N increases. This
is the reason why this procedure has been done numerically.

The optimal state code in appendix B performs this diagonalization numerically and
checks whether the condition ⟨ĤI⟩ψ = 0 is fulfilled. We find that it is actually fulfilled for
the constants c, d1 and d2 in our problems and for all N . This means that the sensitivity
provided by the code is indeed the maximal sensitivity that can be obtained with the given
setting. The code also outputs the optimal state and the POVM that realizes the optimal
measurement in the number of photons basis we defined in section 3.1.3.

We have found numerically the maximal sensitivity that can be achieved in the
estimation of a transverse displacement in the x or y-axis when populating the first
two HG modes, and in the estimation of a radial displacement when populating the
first two LG modes. We also know the state that achieves it.

At this point two questions arise: Which is the relation between the optimal sensitivity
we have found numerically and the quasi-optimal sensitivity we have found analytically?
And which is the relation between the optimal and quasi-optimal states that achieve these
sensitivities?

In order to answer the first question let us plot the optimal and quasi-optimal sensitivities
for different values of N . This plot is shown in figures 4 and 5 with the constants of the
radial displacement estimation with two Laguerre mode. A very similar plot is obtained
for the x and y-axis displacement with the first two Hermite modes. These similar plots
and the used code can be seen in the appendix C.

In the first plot (figure 4) we see that both lines are close and actually getting closer
with increasing N . In fact, for values N > 5 the two lines can no longer be visually
distinguished on this scale. From figure 5 we observe that the difference between the
quasi-optimal and the optimal sensitivity gets smaller with an increasing number of photons
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and stabilizes in the limit N ≫ 1 around 0.5w2
0, while FQ grows quadratically. This means

that the weighted difference between the quasi-optimal and optimal sensitivity decreases
quadratically with the number of photons.

Figure 4: Comparison of the optimal and quasi-
optimal sensitivities as a function of N

Figure 5: Difference between the optimal and
quasi-optimal sensitivities as a function of N

This proves that the analytical expressions for the quasi-optimal sensitivity (expression
32) and the state (31) that achieves it are very good approximations of the absolute optimal
values.

Intuitively, we expect the numerical optimal state to be very similar to the quasi-
optimal analytical state in equation 31. We are going to make use again of the Schwinger
representation, rotating our state to the Ĵz basis. The reason why we do this is because
it will be easier to compare the optimal state with the NOON state (that has only two
elements, the extremes of the basis) than with the complex quasi-optimal state 31 with
lots of binomial distributed terms.

The results confirm the intuition: the numerical obtained optimal state is indeed a
composition of the NOON state (the rotated quasi-optimal) and other "NOON-like" states:

|ψopt⟩z = c0
|N0⟩z + |0N⟩z√

2
+c1

|N − 1, 1⟩z + |1, N − 1⟩z√
2

+c2
|N − 2, 2⟩z + |2, N − 2⟩z√

2
+. . .

(36)
With c2

i = pi the population of each of these NOON states, and the property
∑
i pi = 1. We

will call the second term Secondary NOON, the third Tertiary NOON, and so on. We see that
the population p0 of the regular NOON state grows with N and asymptotically approaches
1. Consequently, the population of the other NOONs decreases and asymptotically approach
0. Moreover, we see that p0 > p1 > p2 > . . . . The next figures show the population of the
NOON states as a function of N :

Figure 6: Population of the NOON states as a
function of N

Figure 7: Zoom on Figure 6 to appreciate the
decrease of the secondary and tertiary NOONs
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We see how, indeed, the optimal state is very similar to the quasi-optimal (the NOON),
and it gets closer to it asymptotically with increasing number of photons. We can interpret
the secondary NOONs as the corrections to the quasi-optimal state due to the linear terms.
The code used to plot these figures can be found in appendix D.

3.1.6 Application: Displacement on an arbitrary direction

Imagine that we want to estimate a radial displacement of light with quantum enhanced
sensitivity. Ideally we would prefer to use a fundamental Gaussian beam, because it is the
easiest to produce in the lab. That is, we would desire to populate the mode HG00 or LG0

0
(remember that they both represent a fundamental Gaussian mode in Cartesian or polar
coordinates respectively). However, as we have deduced in sections 3.1.1 and 3.1.2, we can
not obtain quantum enhancements on the estimation of a radial displacement populating
just a single mode.

We have to use at least a two-mode strategy. It is still desirable that one of the modes is
a Gaussian beam, so the questions to answer are: Which additional mode can we populate to
obtain quantum enhancements? From the different possible strategies, which will produce the
best sensitivity? By analyzing the derivatives of the HG modes (equation 11) we deduced
that, in order to get quantum enhancements, we need to populate at least two contiguous
modes. The only modes contiguous to HG00 are HG01 and HG10 (a superposition of these
two excited modes cosαHG10 + sinαHG01 can also produce enhancements). We also have
learned from section 3.1.2 b), that we can obtain quantum enhancements with the LG
modes by populating the pair LG0

0 and LG1
0. We investigate the following strategies:

(a) Population on the pair HG00 and HG10 (b) Population on the pair HG00 and HG01

(c) Populate a superposition of excited states (d) Population on the pair LG0
0 and LG1

0

Figure 8: Four different possible strategies.

This is just a visual representation of the superposed modes. The actual shape of
the superposed modes can be seen in appendix F. The sensitivity for the two-mode LG
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strategy is given in equation 24, with the corresponding effective Hamiltonian in equation
23. And the sensitivities for the two-mode HG strategies are particular cases of equation
14, explicitly:

FHG10
Q [|ψ(δr)⟩] = FQ[ψ, ĤHG10

I ] + 4
w2

0

(
sin(α)2⟨â†

00â00⟩ψ + (1 + cos(α)2)⟨â†
01â01⟩ψ

)
,

FHG01
Q [|ψ(δr)⟩] = FQ[ψ, ĤHG01

I ] + 4
w2

0

(
cos(α)2⟨â†

00â00⟩ψ + (1 + sin(α)2)⟨â†
10â10⟩ψ

)
,

with ĤHG10
I = i cosα

w0

[
â†

00â10 − â†
10â00

]
and ĤHG01

I = i sinα
w0

[
â†

00â01 − â†
01â00

]
.

(37)

We focus on the scenario where we do not know the direction of the displacement.
Notice that, due to the symmetry of the LG modes, the sensitivity in equation 24 is
constant ∀α. But this is not the case in the HG strategies (notice that the sensitivities in
37 depend on α). We wonder which strategy is better on average. Let us plot the different
strategies as a function of the angle. ∀N the shape of the functions is:

Figure 9: Maximal sensitivity achieved by LG and two different HG schemes

The functions have the expected behaviour. The HG strategies are better than the
LG in some intervals, but worse in some others. In fact, it can be calculated that, on
average, both strategies achieve the same sensitivity for each N . So, if we don’t have
any information about the most probable direction of displacement, both strategies are
equally good on average. If our desire is to have the best sensitivity in the worst-case
scenario, then the LG modes are better as minα FLGQ > minα FHGQ , for all HG strategies.
The code in appendix E outputs the figure 9 and compares the average sensitivity between
the strategies.

We have already seen in section 3.1.3 that the maximum sensitivity that can be obtained
with the strategy in figure 8a is achieved for a displacement along the x-axis, and the
maximum sensitivity that can be obtained with the strategy in figure 8b is achieved for a
displacement along the y-axis. The shape of both sensitivity functions is actually the same
up to a rotation of π/2 in the x-y plane and provided in equation 28. We expect there to
be a mode scheme which achieves this same maximum sensitivity for a displacement in α.
Indeed the scheme HGmix = cosαHG10 + sinαHG01 in figure 8c returns:

FHGmix
Q [|ψ(δr)⟩] = FQ[ψ, Ĥmix

I ] + 8
w2

0
⟨â†

mixâmix⟩ψ

With ĤHGmix
I = i

w0

[
â†

00âmix − â†
mixâ00

]
,

(38)
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This state will achieve the best results if we know the direction of the displacement. Actually
it is quite obvious that the schemes in 8a, 8b, and 8c would achieve the same sensitivities
for a displacement in x, y, and α respectively, because we can see this three cases just as a
rotation of the axis.

If we know the direction of displacement the best strategy is to populate HG00 and
HGmix. However, if the direction is random HG and LG strategies will give us the
same results in average. LG modes provide an advantage in the worst-case scenario
because they have a higher minimum possible sensitivity.

3.2 Estimation of a change on the wavelength
In this section we will work in the Hermite-Gauss mode basis. We will start by noticing in
section 3.2.1 that we can achieve quantum enhancements populating just a single mode. In
section 3.2.2 we will see another setting that can achieve even better sensitivities. We will
find a quasi-optimal analytical state for the single mode case in section 3.2.3, and check
that it is a good approximation to the optimal in section 3.2.4.

3.2.1 We populate a single arbitrary Hermite mode

Using the recurrence relations in 10 and some algebra1, we can express the derivative of an
arbitrary HGnm mode with respect to the wavelength as a sum of different Hermite-Gauss
modes:

∂HGnm
∂δλ

∣∣∣∣
δλ=0

= − iz

4πw2
0

[√
(n+ 1)(n+ 2)HGn+2,m +

√
(m+ 1)(m+ 2)HGn,m+2+√

n(n− 1)HGn−2,m +
√
m(m− 1)HGn,m−2

]
+
[

iz

2πw2
0

(n+m+ 1) + 2πiz
λ2

]
HGnm.

(39)

Notice that the mode is not orthogonal to its derivative due to the last term in equation
39. Therefore, the effective Hamiltonian will not vanish even if we populate a single HGnm.

ĤI = i(HGnm|∂HGnm)â†
nmânm = −z

[
n+m+ 1

2πw2
0

+ 2π
λ2

]
â†
nmânm, (40)

and we will find quadratic scaling on the sensitivity:

FQ[ρ̂(δλ)]δλ=0 = FQ[ĤI , ρ̂] + z2

2π2w4
0

[
n2 + n+ 1 +m2 +m+ 1

]
⟨N̂nm⟩ρ̂. (41)

We can achieve quantum enhancements beyond the standard quantum limit for the
estimation of the wavelength by populating a single HGnm mode.

3.2.2 We populate a pair HG00 and (HG02 +HG20)/
√

2

Even though we have quantum enhancements in the simplest case of populating a single
mode, analyzing the structure of the mode derivative with respect to the parameter,
we observe that we can get even better sensitivity by increasing the overlap between

1It is important to notice that all terms involving zR or k have to be derived as they depend on the
wavelength. This affects all terms in the mode (expression 9) except the normalization constant
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the populated modes and their derivatives (remember Figure 1). This can be done by
populating a second mode HGmix = (HG02 +HG20)/

√
2. Now, the derivatives of HG00

and HGmix both contain HG00 and HGmix terms. We have:

1. ∂HG00
∂δλ

∣∣∣∣
δλ=0

= − iz

2πw2
0
HGmix +

(
iz

2πw2
0

+ 2πiz
λ2

)
HG00

2. ∂HGmix
∂δλ

∣∣∣∣
δλ=0

=
( 3iz

2πw2
0

+ 2πiz
λ2

)
HGmix−

− iz

4πw2
0

(√
6(HG04 +HG40) + 2HG22 + 2HG00

)
.

(42)

Therefore the Hamiltonian and the sensitivity read:

ĤI = −
(

z

2πw2
0

+ 2πz
λ2

)
a†

00a00 + z

2πw2
0
a†
mixa00−

−
( 3z

2πw2
0

+ 2πz
λ2

)
a†
mixamix + z

2πw2
0
a†

00amix

FQ[ρ̂(δλ)]δλ=0 = FQ[ĤI , ρ̂] + 4z2

π2w4
0

⟨N̂mix⟩ρ̂.

(43)

This sensitivity will scale better than the one with a single populated mode (equation
41), as we have increased the term that scales quadratically.

Notice that for simplicity we have used HGnm = HG00. But we could improve the
scaling even further by choosing a pair HGnm and (HGn+2,m +HGn−2,m +HGn,m+2 +
HGn,m−2)/2. This way, we would take even better advantage of the structure of the mode
derivative.

3.2.3 Optimization of the sensitivity in wavelength variations

In the case where we only populate a single HGnm the Hamiltonian is already diagonal, in
the eigenbasis of the number operator, as the effective Hamiltonian coincides with N̂nm up
to a constant that depends on the mode indices: ĤI = −k(n,m)N̂nm. Therefore it is an
easy task to calculate the quasi-optimal state and sensitivity using equations 27:

FQ
[∣∣∣ψ̃opt

〉〈
ψ̃opt

∣∣∣] = z2N2
[
n+m+ 1

2πw2
0

+ 2π
λ2

]2
+ z2N

4π2w4
0

[
n2 +m2 + n+m+ 2

]
∣∣∣ψ̃opt

〉
= |N⟩ + eiφ |0⟩√

2
; ∀φ.

(44)

In the following, we will study the quality of this quasi-optimal state with a numerical
program.

3.2.4 Numerical analysis of the quasi-optimal procedure in the estimation of a wavelength
displacement

We note from equation 44 that as the indices of the mode increase, the constant multiplying
the quadratic factor grows faster than the constant multiplying the linear term. This
means that for excited modes, our quasi-optimal state approaches to the optimal. Let us
consider scenario of lowest quadratic scaling on the sensitivity where the populated mode
is HG00. Using λzR = w2

0π we can rewrite the quasi-optimal sensitivity as:

FQ
[∣∣∣ψ̃opt

〉〈
ψ̃opt

∣∣∣] = z2N2
[

1
4z2
Rλ

2 + 2
zRλ3 + 4π2

λ4

]2

+ z2N

2z2
Rλ

2 . (45)
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For simplicity let us call A the constant multiplying the quadratic term, and B the
constant multiplying the linear one. Let us analyze the two extreme cases. When zR ≫ λ,
we have A ≫ B. The quadratic term is much larger, then the quasi-optimal state will be
near the optimal. However, when zR ≪ λ we find 2A ≃ B. Again, let us focus on this worst
case scenario and perform a numerical process to assess the quality of our quasi-optimal
state.

The process will consist in generating 100.000 random states for N ∈ [2, 6], and calculat-
ing for each one the sensitivity. We will choose the maximum from this 100.000 calculations
and compare it with our quasi-optimal sensitivity. This process looses effectiveness when
N increases (as the probability of randomly choosing a state better than the quasi-optimal
one decreases). On the other hand, we also know that our

∣∣∣ψ̃opt
〉

gets better as N increases.
We obtain the following plot (the used code can be seen in appendix G):

Figure 10: Comparison of the quasi-optimal state 44 and the best out of 100.000 random states

Even in the scenario where the quasi-optimal state is expected to perform more poorly,
non of the 100.000 randomly generated states for each N achieves a better sensitivity.

The NOON state achieves to a very good approximation the maximal sensitivity
that can be obtained in the estimation of the wavelength (equation 44).

4 Conclusions
In this master thesis we have exhaustively studied analytically and numerically the limits
on the estimation of different quantum parameters using diverse mode bases and schemes.
Each case has been analyzed in order to determine whether it is possible to achieve
quantum enhanced sensitivity beyond the standard quantum limit. Analytical calculations
have resulted in a quasi-optimal state and the corresponding quasi-maximal sensitivity.
Numerical and analytical efforts have been deployed to demonstrate that this quasi-optimal
state is a very good approximation of the actual optimal. For some of the studied systems
the optimal state has been found and analyzed numerically. The obtained knowledge has
been applied to identify suitable strategies for the problem of beam positioning with an
unknown displacement axis. Let us sum them up this results:

a) Estimation of the sensitivity of a radial displacement on a given direction populating
a single HGnm or LGmp mode: No quantum enhancement can be found beyond the
standard quantum limit.
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b) Estimation of the sensitivity of a radial displacement populating the first two HG
and LG modes: We can have quantum enhancements beyond the SQL. We have
an analytical quasi-optimal state (equation 31), and a numerical optimal state that
can be found using the code in appendix B. Using this code we can also output an
optimal POVM.

c) Theoretical interpretation of the optimal state found in the radial displacements: The
quasi-optimal state can be interpreted as a rotated NOON state. The linear terms in
the sensitivity generate secondary NOON corrections that appear in the numerical
optimal state (equation 36) . As the number of photons increase, the population of
the primary NOON approaches rapidly to 1, and the population of the secondary
NOONs goes to 0, so our quasi-optimal state asymptotically converges to the optimal
one.

d) Optimization of the best mode scheme that can be used to estimate a radial displace-
ment: We have seen in section 3.1.6 that, if we know the direction of displacement,
an HG mode strategy will provide a better sensitivity. If the direction is random, HG
and LG strategies provide the same sensitivity in average. LG provide an advantage
for the "worst-case scenario" sensitivity, as they have a higher minimum possible
value of FQ over α.

e) Estimation of the sensitivity of wavelength variations populating a single HGnm: We
can have quantum enhancements beyond the SQL. We have calculated an analytical
quasi-optimal state and the corresponding quasi-maximal sensitivity (equation 44).
It has been checked numerically (section 3.2.4) that it is a very good approximation
of the actual optimum.

f) Estimation of the sensitivity of wavelength variation populating a pair HG00 and
(HG20 +HG02)/

√
2: We can achieve quantum enhanced sensitivity beyond the SQL

and beyond the single-mode scheme with HG00.

With these new results we can say that the objectives of the project have been fulfilled.
A particularly challenging problem turned out to be the derivative of the Laguerre-Gauss

basis. Since the orthonormality condition could not be used in the same way as in the HG
case, we were not able to identify the quantum limits with the desired level of generality.
Nevertheless, relevant results have been found for simple, low-mode scenarios and the path
has been laid to calculate more challenging schemes via the solution of demanding integrals.

Moreover, within the time frame of this Master’s thesis we were not able to find the
optimal state that maximizes the sensitivity analytically. Different arduous optimization
methods and numerical machinery were deployed to this endeavor. Results were found for
small numbers of photons, but no general solution was discovered for an arbitrary number
of photons. However, the optimal state has been obtained numerically (section 3.1.5), and
interpreted analytically. And we also provided numerical evidence suggesting that the
analytical quasi-optimal state achieves very good results.

This project opens the door to new questions that will have to be studied in the
future: Is there an analytical way to find the state that optimizes the sensitivity for an
arbitrary mode scheme? The obtained states that achieve better sensitivities are usually
very challenging to create and analyze in a laboratory, Which is the trade off between the
theory and the application? Can we find manipulable states that achieve quasi-optimal
sensitivity?.

All this questions and more will be addressed on the following months but fall beyond
this Master’s thesis.
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All the codes in the different appendix sections have been uploaded to a GitHub
repository for the reader’s convenience. It can be found in the following link:

github.com/PauColomerSaus/Quantum-enhanced-estimation-of-a-mode-parameter.git

A Schwinger code
By inputting the number of photons and the constants c, d1 and d2 and selecting the
number of photons, this code checks whether the quasi-optimal states obtained with
the diagonalization method (section 3.1.3) and the Schwinger method (section 3.1.4) are
equivalent. If they are, it outputs the quantum enhanced sensitivity that they achieve. It
can be checked that this sensitivity coincides with the equation 32.

1 import qutip as q
2 import numpy as np
3

4 #Set the number of photons
5 N=15
6

7 #The dimension of the Schwinger-space
8 Nb=N/2
9

10 #set angle of radial displacement(if needed)
11 alpha=0
12

13 #set constants
14 cte=1.0j/np.sqrt(2)*np.exp(1j*alpha)
15 d1=2
16 d2=6
17

18 #Schwinger representation
19 #Generate H as a Jn
20 H=2*(q.operators.jmat(Nb,'x')*cte.real-
21 q.operators.jmat(Nb,'y')*cte.imag)
22

23 #An orthogonal direction to both Jz and Jn
24 Jm=2*(q.operators.jmat(Nb,'x')*np.cos(alpha)-
25 q.operators.jmat(Nb,'y')*np.sin(alpha))
26

27 #A rotation around Jm brings Jz to Jn
28 angle=np.pi/2
29 R=-1j*angle/2*Jm
30 U=R.expm()
31

32 #This has to be equal to H
33 test=np.sqrt(2)*(U.dag()*q.operators.jmat(Nb,'z')*U)
34

35 #The quasi-optimal state is
36 optz=1/np.sqrt(2)*(q.basis(N+1,0)+1j*q.basis(N+1,N))
37 opt=U*optz
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38

39 #Diagonalization procedure
40 #Generate the Hamiltonian
41 H=0*q.num(N+1)
42 for k in range(N):
43 h=(np.sqrt((k+1)*(N-k))*(cte*q.basis(N+1,k+1)*q.basis(N+1,k).dag()+
44 np.conj(cte)*q.basis(N+1,k)*q.basis(N+1,k+1).dag()))
45 H=H+h
46

47 #This are the linear terms
48 Nd=d2*q.num(N+1)
49 for k in range(N):
50 Nd1=d1*(N-k)*q.basis(N+1,k)*q.basis(N+1,k).dag()
51 Nd=Nd1+Nd
52

53 #The quasi-optimal state is
54 opth=((H.eigenstates()[1])[0]+(H.eigenstates()[1])[N]).unit()
55

56 #The quasi-optimal sensitivities for the two procedures are
57 Fschw=4*q.expect(H**2,opt)-4*q.expect(H,opt)**2+q.expect(Nd,opt)
58 Fdiag=4*q.expect(H**2,opth)-4*q.expect(H,opth)**2+q.expect(Nd,opth)
59

60 Fcheckschw=np.round(Fschw,10)
61 Fcheckdiag=np.round(Fdiag,10)
62

63 if Fcheckschw==Fcheckdiag:
64 print('The two procedures get us equivalent quasi-optimal states')
65 print('The achieved sensitivity is:',Fcheckdiag)
66 else:
67 print('We do not get the equivalent states')
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B Optimal state code
By inputting the constants c, d1 and d2, and selecting a number of photons, this code
checks whether the condition ⟨HI⟩ψ = 0 is fulfilled. If it is fulfilled it outputs the maximal
sensitivity that can be obtained with the inputted system, the optimal state that achieves
it, and the elements of an optimal measurement in the number of photons basis.

1 import qutip as q
2 import numpy as np
3

4 N=5
5 Nb=N/2
6 alpha=0
7 cte=1.0j/np.sqrt(2)*np.exp(1j*alpha)
8 d1=2
9 d2=6

10

11 #Generate the Hamiltonian with Schwinger
12 H=2*(q.operators.jmat(Nb,'x')*cte.real-
13 q.operators.jmat(Nb,'y')*cte.imag)
14 Jm=2*(q.operators.jmat(Nb,'x')*np.cos(alpha)-
15 q.operators.jmat(Nb,'y')*np.sin(alpha))
16 angle=np.pi/2
17 R=-1j*angle/2*Jm
18 U=R.expm()
19 H=np.sqrt(2)*(U.dag()*q.operators.jmat(Nb,'z')*U)
20

21 #This is the linear part
22 Nd=d2*q.num(N+1)
23 for k in range(N):
24 Nd1=d1*(N-k)*q.basis(N+1,k)*q.basis(N+1,k).dag()
25 Nd=Nd1+Nd
26

27 #The sensitivity is
28 S=4*H**2+Nd
29

30 #The eigenvector corresponding to the maximum eigenvalue is
31 opt=(S.eigenstates()[1])[N]
32 Fopt=4*q.expect(H**2,opt)-4*q.expect(H,opt)**2+q.expect(Nd,opt)
33 test=np.round(q.expect(H,opt),10)
34

35 if test==0:
36 print("The optimal sensitivity is:",Fopt)
37 print('The optimal state is:',opt )
38 else:
39 print('This procedure is not optimal')
40

41 #The symmetric logarithmic derivative
42 rho=opt*opt.dag()
43 L=2j*q.commutator(rho,H)
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44

45 #The POVM elements
46 POVM=[]
47 idcheck=0
48 for k in range(N+1):
49 E= ((L.eigenstates()[1])[k])*((L.eigenstates()[1])[k]).dag()
50 POVM.append(E)
51

52 #Check it is a POVM
53 idcheck=idcheck+E
54 if idcheck == q.identity(N+1):
55 print("An optimal POVM is:")
56

57 print(POVM)
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C Comparison code
This code outputs two plots. The first one is the plot of the quasi-optimal and the optimal
sensitivities for different number of photons, the two lines are so close that it is important
to set a small range for the plot (lines 49 to 52). The second is the difference between the
optimal and the quasi-optimal sensitivities. The values of the constants c, d1 and d2 are in
this code set for the radial displacement estimation case. They can be changed to obtain
similar plots for the x and y-axis displacements wit HG modes.

1 import qutip as q
2 import numpy as np
3 import matplotlib.pyplot as plt
4

5 alpha=0
6 cte=1.0j/np.sqrt(2)*np.exp(1j*alpha)
7 d1=2
8 d2=6
9

10 x=np.linspace(2,20,19)
11

12 dataan=[]
13 datamax=[]
14

15 #Evaluate the sensitivity for different numbers of photons
16 for N in range(2,21):
17

18 #This creates our hamiltonian
19 H=0*q.num(N+1)
20 for k in range(N):
21 h=(np.sqrt((k+1)*(N-k))*(cte*q.basis(N+1,k+1)*q.basis(N+1,k).dag()+
22 np.conj(cte)*q.basis(N+1,k)*q.basis(N+1,k+1).dag()))
23 H=H+h
24 san=((H.eigenstates()[1])[0]+(H.eigenstates()[1])[N]).unit()
25

26 #This adds the linear terms
27 Nd=d2*q.num(N+1)
28 for k in range(N):
29 Nd1=d1*(N-k)*q.basis(N+1,k)*q.basis(N+1,k).dag()
30 Nd=Nd1+Nd
31

32 #The quasi-optimal sensitivity
33 Fan=4*q.expect(H**2,san)-4*q.expect(H,san)**2+q.expect(Nd,san)
34 dataan.append(Fan)
35

36 #The optimal sensitivity
37 S=4*H**2+Nd
38 smax=(S.eigenstates()[1])[N]
39 Fmax=4*q.expect(H**2,smax)-4*q.expect(H,smax)**2+q.expect(Nd,smax)
40 datamax.append(Fmax)
41
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42 #Plot both sensitivities
43 plt.plot(x,datamax,label='optimal sensitivity',linestyle='--')
44 plt.plot(x,dataan,label='Quasi-optimal sensitivity',linestyle='--')
45 plt.plot(x,datamax,'ro',color='blue',markersize=5)
46 plt.plot(x,dataan,'ro',color='orange',markersize=5)
47 plt.ylabel('Sensitivity')
48 plt.xlabel('Number of photons')
49 #Set a range so that the difference is visible
50 plt.xlim(2,5.1)
51 plt.xticks(np.arange(2,6,step=1))
52 plt.ylim(15,75)
53 plt.legend()
54 plt.show()
55

56 #Plot the difference
57 y=np.subtract(datamax,dataan)
58 plt.plot(x,y,'ro',color='blue', markersize=5)
59 plt.plot(x,y)
60 plt.xlim(2,20.1)
61 plt.ylim(0.4,1.8)
62 plt.xticks(np.arange(2,21,step=2))
63 plt.xlabel("Number of photons")
64 plt.ylabel("Sensitivity difference")
65 plt.show()

The plots we obtain by changing the constants c = i, d1 = 0, and d2 = 8 so that they
match the x and y-axis displacements with two Hermite-Gauss modes are:

Figure 11: Comparison of the optimal and quasi-
optimal sensitivities as a function of N

Figure 12: Difference between the optimal and
quasi-optimal sensitivities as a function of N
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D NOONs code
This code plots the populations of the primary, secondary, tertiary, quaternary and quinary
NOONs as a function of the number of photons. Use lines 76 to 78 to zoom in a part of
the plot and appreciate more clearly the function’s behaviour.

1 import qutip as q
2 import numpy as np
3 import matplotlib.pyplot as plt
4

5 alpha=0
6 cte=1.0j/np.sqrt(2)*np.exp(1j*alpha)
7 d1=2
8 d2=6
9 x=np.linspace(2,10,9)

10 x3=np.linspace(4,10,7)
11 x4=np.linspace(6,10,5)
12 x5=np.linspace(8,10,3)
13 datanoon=[]
14 N2=[]
15 N3=[]
16 N4=[]
17 N5=[]
18

19 for N in range(2,11):
20

21 Nb=N/2
22

23 #This generates our Hamiltonian
24 H=0*q.num(N+1)
25 for k in range(N):
26 h=(np.sqrt((k+1)*(N-k))*(cte*q.basis(N+1,k+1)*q.basis(N+1,k).dag()+
27 np.conj(cte)*q.basis(N+1,k)*q.basis(N+1,k+1).dag()))
28 H=H+h
29

30 #This adds the d1 d2 terms
31 Nd=d2*q.num(N+1)
32 for k in range(N):
33 Nd1=d1*(N-k)*q.basis(N+1,k)*q.basis(N+1,k).dag()
34 Nd=Nd1+Nd
35

36 #The optimal state in Jn
37 S=4*H**2+Nd
38 smax=(S.eigenstates()[1])[N]
39 Fmax=4*q.expect(H**2,smax)-4*q.expect(H,smax)**2+q.expect(Nd,smax)
40

41 #An orthogonal direction to both Jz and Jn
42 Jm=2*(q.operators.jmat(Nb,'x')*np.cos(alpha)-
43 q.operators.jmat(Nb,'y')*np.sin(alpha))
44
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45 #A rotation around Jm brings Jz to Jn
46 angle=np.pi/2
47 R=-1j*angle/2*Jm
48 U=R.expm()
49

50 #optimalstate in z direction
51 optH=U.dag()*smax
52

53 datanoon.append((np.sqrt(2)*np.absolute(optH[0])[0][0])**2)
54 N2.append((np.sqrt(2)*np.absolute(optH[1])[0][0])**2)
55 #Terciary NOON appears for N>=4
56 if N>3:
57 N3.append((np.sqrt(2)*np.absolute(optH[2])[0][0])**2)
58 #Quaternary NOON appears for N>=6
59 if N>5:
60 N4.append((np.sqrt(2)*np.absolute(optH[3])[0][0])**2)
61 #Quinary NOON appears for N>=8
62 if N>7:
63 N5.append((np.sqrt(2)*np.absolute(optH[4])[0][0])**2)
64

65 #Plot all NOONs
66 plt.plot(x,datanoon,linestyle='--',label='NOON state')
67 plt.plot(x,datanoon,'ro',color='blue',markersize=5,)
68 plt.plot(x,N2,linestyle='--',label='Secondary NOON')
69 plt.plot(x,N2,'ro',color='orange',markersize=5)
70 plt.plot(x3,N3,linestyle='--',label='Tertiary NOON')
71 plt.plot(x3,N3,'ro',color='green',markersize=5,)
72 plt.plot(x4,N4,linestyle='--',label='Quaternary NOON')
73 plt.plot(x4,N4,'ro',color='red',markersize=5,)
74 plt.plot(x5,N5,linestyle='--', label='Quinary NOON')
75 plt.plot(x5,N5,'ro',color='purple',markersize=5,)
76 #Set axis limits if you want to zoom in
77 #plt.xlim(4,8.1)
78 #plt.ylim(0,0.03)
79 plt.legend()
80 plt.xlabel('Number of photons')
81 plt.ylabel('Population')
82 plt.show()

This code is far from efficient but has been redacted this way in order to be more
readable.

The figures 6 and 7 in the text are ploted with the constants corresponding to the
estimation of a radial displacement with LG modes. We could add here the equivalent
plots for the x and y-axis displacements with LG modes like we did in appendix C. But
there is no visible difference between them, so they are omitted.
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E Sensitivities for different angles
This code plots the sensitivities on the estimation of a radial displacement populating HG
or LG codes as a function of the displacement angle. Notice that the shape of the plot is
the same ∀N , the only thing that changes is the range of the sensitivity.

1 import qutip as q
2 import numpy as np
3 import matplotlib.pyplot as plt
4

5 dataHG=[]
6 dataLG=[]
7 dataHGy=[]
8

9 x=np.linspace(2,15,13)
10 angles=np.linspace(0,2*np.pi,400)
11 theta = np.arange(0, 2*np.pi+np.pi/4, step=(np.pi/4))
12

13 N=2
14

15

16

17 for alpha in angles:
18 cte=[1j*np.cos(alpha),1j*np.sin(alpha),1j/np.sqrt(2)*np.exp(1j*alpha)]
19 d1=[4*np.sin(alpha)**2, 4*np.cos(alpha)**2, 2]
20 d2=[4*(1+np.cos(alpha)**2), 4*(1+np.sin(alpha)**2) , 6]
21

22 for g in range(3):
23

24 #This creates our hamiltonian
25 H=0*q.num(N+1)
26 for k in range(N):
27 h=(np.sqrt((k+1)*(N-k))*(cte[g]*q.basis(N+1,k+1)*q.basis(N+1,k).dag()+
28 np.conj(cte[g])*q.basis(N+1,k)*q.basis(N+1,k+1).dag()))
29 H=H+h
30

31 #This adds the d1 d2 terms
32 Nd=d2[g]*q.num(N+1)
33 for k in range(N):
34 Nd1=d1[g]*(N-k)*q.basis(N+1,k)*q.basis(N+1,k).dag()
35 Nd=Nd1+Nd
36

37 #The best one is the maximum eigenvalue of the operator:
38 S=4*H**2+Nd
39 lmax=(S.eigenstates()[0])[N]
40 smax=(S.eigenstates()[1])[N]
41 Fmax=4*q.expect(H**2,smax)-4*q.expect(H,smax)**2+q.expect(Nd,smax)
42

43 if g==0:
44 dataHG.append(Fmax)
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45 if g==1:
46 dataHGy.append(Fmax)
47 if g==2:
48 dataLG.append(Fmax)
49

50 #plot figure
51 plt.plot(angles,dataHG,label='$HG_{00}$ and $HG_{10}$')
52 plt.plot(angles,dataHGy,label='$HG_{00}$ and $HG_{01}$')
53 plt.plot(angles,dataLG,label='$LG_{0}^0$ and $LG_{0}^1$')
54 plt.xticks(theta, ['0','$\u03C0$/4','$\u03C0$/2','3$\u03C0$/4',
55 '$\u03C0$','5$\u03C0$/4','3$\u03C0$/2','7$\u03C0$/4','2$\u03C0$'])
56 plt.margins(x=0)
57 plt.legend()
58 plt.xlabel('Displacement angle')
59 plt.ylabel('Sensitivity $\cdot w_0^2$')
60 plt.show()
61

62 #calculate the average
63 avLG=np.round(np.average(dataLG))
64 avHG=np.round(np.average(dataHG))
65 avHGy=np.round(np.average(dataHGy))
66

67 #compare the averages
68 if avLG>avHG:
69 print('Laguerre modes give a',(avLG-avHG)*100/(avLG),
70 '% better sensitivity on average')
71 if avLG==avHG:
72 print('Laguerre and Hermite modes give the same sensitivity on average')
73 if avLG<avHG:
74 print('Hermite modes give a ',(-avLG+avHG)*100/(avLG) ,
75 '% better sensitivity on average')
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F Actual mode shape of the four strategies in figure 8
We plot in this annex the shape of the modes we superpose with four different strategies in
figure 8 in section 3.1.6. We also provide the codes used to plot the figures.

a) Shapes of the HG modes:

Shapes of the HG modes:

Figure 13: Intensity-shape of the HG00 mode Figure 14: Intensity-shape of the HG10 mode

Figure 15: Intensity-shape of the HG01 mode Figure 16: cosαHG10 + sinαHG01 mode

This figures can be obtained with the following code. We can see how the excited
modes have exactly the same shape but with rotated axis.

1 import numpy as np
2 import matplotlib.pyplot as plt
3

4 #set maximum indices
5 n = 0
6 m = 0
7 w0 = 2.0 # Arbitraryeam waist
8 k = 2*np.pi/532.0e-9 # Arbitrary wavenumber of light
9 alpha=np.pi/4

10 zR = k*w0**2.0/2; # Calculate the Rayleigh range
11

12 # Setup the cartesian grid for the plot at plane z
13 z = 0.0;
14 [xx, yy] = np.meshgrid(np.linspace(-5, 5), np.linspace(-5, 5))
15

16 def hermiteH(n, x):

31



17 if n == 0:
18 return 1;
19 elif n == 1:
20 return 2*x;
21 else:
22 return 2*x*hermiteH(n-1, x) - 2*(n - 1)*hermiteH(n - 2, x)
23

24 U00 = 1.0/(1 + 1j*z/zR)*np.exp(-(xx**2 + yy**2)/w0**2/(1 + 1j*z/zR))
25 Hn = hermiteH(n, xx)
26 Hm = hermiteH(m, yy)
27 Hm1= hermiteH(m+1, yy)
28 Hn1= hermiteH(n+1, xx)
29

30 U = U00*Hn*Hm*np.exp(-1j*(n + m)*np.arctan(z/zR)) #for HG00
31 V = U00*Hn*Hm1*np.exp(-1j*(n + m+1)*np.arctan(z/zR)) #for HG01
32 W = U00*Hn1*Hm*np.exp(-1j*(n+1 + m)*np.arctan(z/zR)) #for HG10
33 X = np.cos(alpha)*V+np.sin(alpha)*W #for sin(a)HG10+cos(a)HG01
34

35 plt.figure()
36 plt.pcolor(abs(X)**2); #Change for V, W or X to see the corresponding plots
37 plt.axis('equal')
38

39 plt.show()

a) Shapes of the LG modes:

Figure 17: Intensity-shape of the LG0
0 mode Figure 18: Intensity-shape of the LG1

0 mode

This figures can be obtained with the similar code:

1 import numpy as np
2 import matplotlib.pyplot as plt
3 import scipy
4

5 p = 0 # Degree of LG mode
6 l = 1 # Order of LG mode
7 w0 = 2.0 # Beam waist
8 k = 2*np.pi/532.0e-9 # Wavenumber of light
9

10 zR = k*w0**2.0/2 # Calculate the Rayleigh range
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11

12 # Setup the cartesian grid for the plot at plane z
13 z = 0.0
14 xx, yy = np.meshgrid(np.linspace(-5, 5), np.linspace(-5, 5))
15

16 # Calculate the cylindrical coordinates
17 r = np.sqrt(xx**2 + yy**2)
18 phi = np.arctan2(yy, xx)
19

20 U00 = 1.0/(1 + 1j*z/zR) * np.exp(-r**2.0/w0**2/(1 + 1j*z/zR))
21 w = w0 * np.sqrt(1.0 + z**2/zR**2)
22 R = np.sqrt(2.0)*r/w
23

24 Lpl = scipy.special.comb(p+l,p) * np.ones(np.shape(R))
25 for m in range(1, p+1):
26 Lpl = (Lpl + (-1.0)**m/scipy.special.factorial(m) *
27 scipy.special.comb(p+l,p-m) * R**(2.0*m))
28

29 U = U00*R**l*Lpl*np.exp(1j*l*phi)*np.exp(-1j*(2*p + l + 1)*np.arctan(z/zR))
30

31 plt.figure()
32 plt.pcolor(abs(U)**2)
33 plt.axis('equal')
34

35 plt.show()
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G Random state generation
This code creates a 100.000 random states and calculates the sensitivity they achieve in
the estimation of the wavelength when populating a single mode. The maximal of this
random state sensitivities is compared with the sensitivity obtained with the quasi-optimum
state. The code plots in orange the quasi-optimum sensitivities and in blue the maximal
sensitivities obtained with random states for N ∈ [2, 6].

1 import qutip as q
2 import numpy as np
3 import matplotlib.pyplot as plt
4

5 a=1
6 b=2
7

8 dataqF=[]
9 dataF=[]

10 x=np.linspace(2,6,5)
11

12 for N in range(2,7):
13 #Calculate the sensitivity with a random state
14 check=0
15 numoptstate=q.basis(N+1,0)
16 for k in range(100000):
17 state=q.rand_ket(N+1).unit()
18 F=a*q.variance(q.num(N+1),state)+b*q.expect(q.num(N+1),state)
19 if F>check:
20 check=F
21 numoptstate=state
22 dataF.append(F)
23

24 #the sensitivity with the NOON
25 NOON=(q.basis(N+1,0)+q.basis(N+1,N)).unit()
26 qF=a*q.variance(q.num(N+1),NOON)+b*q.expect(q.num(N+1),NOON)
27 dataqF.append(qF)
28

29 plt.plot(x,dataF,label='Best out of 100000 random',linestyle='--')
30 plt.plot(x,dataqF,label='Quasi-optimal sensitivity',linestyle='--')
31 plt.plot(x,dataF,'ro',markersize=5, color='blue')
32 plt.plot(x,dataqF,'ro',markersize=5, color='orange')
33 plt.legend()
34 plt.xlabel('Number of photons')
35 plt.ylabel('Normalized sensitivity')
36 plt.show()
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