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This paper contains a study of the synchronization by homogeneous nonlinear driving of systems that are
symmetric in phase space. The main consequence of this symmetry is the ability of the response to synchronize
in more than just one way to the driving systems. These different forms of synchronization are to be understood
as generalized synchronization states in which the motions of drive and response are in complete correlation,
but the phase space distance between them does not converge to zero. In this case the synchronization
phenomenon becomes enriched because there is multistability. As a consequence, there appear multiple basins
of attraction and special responses to external noise. It is shown, by means of a computer simulation of various
nonlinear systems, tha) the decay to the generalized synchronization states is exponéintighe basins of
attraction are symmetric, usually complicated, frequently fractal, and robust under the changes in the param-
eters, andiii) the effect of external noise is to weaken the synchronization, and in some cases to produce
jumps between the various synchronization states availpb1€63-651%96)04806-4

PACS numbeps): 05.45:+b, 47.52:+j, 84.30—r

I. INTRODUCTION to zero as time increases. This must be a nontrivial function

of the phase space positions of drive and response. Then

It has been reported by Pecora and Caifrb)P] that two ~ Synchronization of chaotic systems by homogeneous nonlin-
identical chaotic systems, characterized by exponential diear driving becomes a phenomenon richer than initially
vergence of trajectories in phase space, may be Synchr@ﬂought. In this article, | will develop these ideas for autono-

nized. By synchronization they meant that the distance beOUs nonlinear systems and present a computer simulation
tween the state points of both systems in phase space witudy of various mathematical models whose equations ex-

converge to zero as time increases. This is achieved by driibit symmetries of that type.

ing one of the systems, the response, with a convenient cha- The contents of the article are arranged as follows. In Sec.
otic signal generated by the other system, the drive. Thd. | will present a general discussion on system symmetry,

possibility of realizing such synchronization has been sucthe appearance of multiple synchronization states, and its
cessfully tested by computer simulatiofts-3] and experi- consequences. Moreover, | will present three particular clari-
ments on electronic circuit§4,5]. This phenomenon is fying examples. In Sec. IlI, I will present and discuss a nu-

known as synchronization by homogeneous nonlinear drivinerical study of the model systems proposed in the preced-
ing. Besides its theoretical importance as a different phenomid section as examples. In particular, | will pay attention to

enon, there have been arguments on its possible practicil® chaotic behavior, the synchronization behavior, the ba-
interest in fields such as communicatiof8-9], control  Sins of attraction to the several synchronization states avail-

[10,11, and neural scienci,2,13. able, and the effect of external noise on the synchronization.
Recent work in this field has drawn attention to the exist-Finally, in Sec. IV, I will discuss and summarize the main

ence of meaningful generalizations of the idea of synchronifesults presented in the paper.

zation[13,14]. In these generalizations, the variables of the

response evolve in correlation with the variables of the drive,

although they do not take the same values. Amritkar and [l. THEORETICAL CONSIDERATIONS

Gupte[13] characterize this generalization by means of con- A. Theory

venient correlation dimensions that quantitatively measure

the correlations between drive and response. Rulioal. Let us begin with a brief review of some background

[14] generalize the idea of synchronization equating vari-concepts. The drive system is a homogeneous nonlinear au-
ables from the response with a function of the variables ofonomous n-dimensional ~ system  with  variables
the drive. u=(uq,...,u,), evolving under the equations=f(u) with

In this article | will report on a particular type of nonlin- f=(f1(u),....f,(u)), which can be divided in two sub-
ear dynamical systems that exhibit synchronization behavsystemsv=(uy,...,uy) andw= (Up4,...,u,), governed by
iors of a generalized type together with the usiRgcora and the equationsy=g(v,w) with g=(fy(u),...,f,(u)), and
Carrol) synchronization. These nonlinear systems are dew=h(»,w) with h=(fy,;,(u),...,f,(u)), respectively. The
scribed by equations that hold symmetries such that a rgesponse system is a copy wf W’ =(Ug 1 ,...,Uy), which
sponse may synchronize in more than just one way to thevolves undew’=h(v,w’"), so that it is run by its own
drive. The synchronization behavior achieved is determinedariables w’'=(ug,,,,...,u;) plus the variables
by the initial conditions of drive and response. In this casev=(u4,...,u,,) of the drive, which are called the drive sig-
synchronization is to be understood in a generalized sense, aal. Pecora and Carroll define synchronization as the situa-
a state in which there is some generalized distance that goéisn in which the distance in phase space between the sub-
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systemsw andw’ Aw(t)=w’'(t)—w(t) converges to zero According to Badola, Tambe, and Kulkarfi8], when
as time increases. The evolution Afv(t), in the limit of  only the usual Pecora and Carroll synchronization state is
infinitesimal Aw, obeys the variational equatiofl]: available, the Zv—m dimensional space of initial conditions
d(Aw)/dt=D,h(v,w)Aw, where D,,h(v,w) is the Jaco- (ug,wp), is divided into two sets of initial conditions: one
bian of thew subsystem. The Lyapunov exponents resultingthat leads to synchronization and another that does not. In the
from this equation are called conditional Lyapunov expo-present case, the situation becomes even more interesting
nents and measure the average rate of divergenae 5ibm  because the space of initial conditions is to be divided in as
w for small Aw(t) [2]. The necessary and sufficient condi- many subsets, or basins of attraction, as synchronization
tion for synchronization is that the conditional Lyapunov ex-states available; to which, eventually, one must add possible
ponents must be all negativj,2]. In addition, Badola, initial conditions that do not drop down to synchronization
Tambe, and Kulkarn[3], have reported that negativity of states. From the above discussion it follows that such divi-
conditional Lyapunov exponents is only a guarantee of synsion in basins of attraction must exhibit symmetries reminis-
chronization for a subset of initial conditions, so that only incent of those of the attractor. In particular, the regions of
these cases synchronization occurs. In particular, they rgonsynchronization initial conditions must be invariant un-
ported computer simulation results of coupled lattice mapgler the coordinate transformatiofig of the equations of the
with negative conditional Lyapunov exponents, for whichdrive; whereas, such kinds of transformations, must convert
not all sets of initial conditions gave rise to synchronization.the different regions of generalized synchronization behavior

My point in this paper is that the idea of synchronizationNt© each other. , _
can be enriched in a meaningful and interesting way. Thig An important related issue is the effect of external pertur-
happens when there is a transformation of coordinatez)at'ons’ such as exFernaI hoise in the synchronizing S|gnall,
T:w—w*, such that the evolution equations feandw are on the synch_romzatlon phenomenan. In the present case, i
invariant under this change, so that=g(v,w*) and the perturbations are not too Iarge, one ca.r_l expect the_|r effect
w* =h(v,w*) hold. In this case, if there is a set of initial to be of one or both of the following typesi(i) a weakening

- ; , . . ) of the synchronization, in which none of tbe, converges to

condmons_ for Wh',ChW synchronllzes withw in the sense zero, but one of them remains small, so that its time average
thf"*t the distancev’ —w—0, then it must also happen that js 5 \vel| defined small constant, afid) a jumping behavior,
w™ —w—0 for another set of initial conditions, obtained i, \hich the response switches between the different syn-
from the first by means of the above transformation of coOr¢hyonization (or nonsynchronizationstates available. The
dinates. However, the variableg" andw can be obtained paricular effect observed and its intensity will depend on the
one from each other by means of some function relatingystem considered and on the strength and properties of the
themw* =T(w). Then, it follows that—for this second set perturbation.
of initial conditions—there is a generalized distance The weakening of the synchronization is mainly due to
D(w’,w)=T(w") —w that goes to zero as time increases. Inthe competition between the tendency of the subsystems to
a broader sense this means tWatis synchronized witlw in  synchronize, given by the conditional Lyapunov exponents,
a form different than the usuai| —w—0). So we have two and the tendency of the noise to put them apart. Therefore
different ways for the response to evolve in synchrony withone can expect different models to respond in the same
the drive; that is, two different synchronization states avail-qualitative manner. This behavior may be described by
able. Which of them is to be achieved in a particular caseaneans of a set of probability densities for the distance
will depend on the initial conditions of drive and response inP (D) each of them defined for one of the generalized dis-
that case. It is important to note that the existence of thisances involved. These probability densities are defined such
second synchronization state of the response follows fronthat P_(D)dD is the probability of finding the drive and
the symmetry of the system plus the existence of the usuaksponse at a generalized distanbe, betweenD and
synchronization state for a particular set of initial conditions.D +dD. In a weakly synchronization state, the generalized
That is, besides symmetry one needs negative conditionalistance between drive and response will fluctuate in such a
Lyapunov exponents to ensure the usual synchronizatioway that, for the value of for which there is weak synchro-
state to exisf1], at least for a subset of initial conditiofi3.  nization, the corresponding probability densRy,(D) will

This opens up a scenario in which, for attractors whichbe peaked around a value of maximum expectaflowhich
are invariant undes nontrivial symmetry transformations will be small and must increase with increasing noise
{wy =Ty(w),w3 =T,(W),...ws =T¢(w)}, one may have strength. For the distances corresponding to values foir
drive systems and signals for which there is a ses6fl  which there is no synchronization at all, the corresponding
different synchronization states availables{0,1,2,...s}, distribution function should exhibit a broad maximum
each with its own distanc® ,(w,w')=T,(w')—w that around values of the same magnitude than the attractor size.
goes to zero for properly chosen initial conditions of drive The value ofD represents a compromise between the ten-
and response. Here,=0 stands for the usual synchroniza- dency of the distance to exponentially decay to zZgiwen
tion state o(w)=w). The synchronization states discussedby the conditional Lyapunov exponeptsand the size and
here can be seen as particular cases of the idea of generalizéidtribution of the external fluctuations that act to separate
synchronization as introduced by Rulket al. [14], who the response from the drive. As for the generalized distances
understand synchronization as equality of the variables ofhat do not synchronize, they will take values corresponding
one of the subsystems to a function of the other subsystento distances between different parts of the attractor; and, this
In the present case, the functidn(w) plays this role, be- is why, they should fluctuate around values of the same order
causeD ,—0 meansw=T_(w') for time large enough. of magnitude of the attractor size.
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Otherwise, the jumping behavior between synchronizatiorbeing «, 8, and y parameters of the model, and
states is very likely to be a consequence of the particular

geometry of the attractors involved. A jump will occur when x=y+A sin(Qy),
a fluctuation is large enough to send the system from one .
synchronization state to another. For a given distribution of y=-y=(z=R)x

fluctuations the probability of such an event will depend on
how separated, in the response attractor, are the couples of

state pointsw’ andw'” which are related by a symmetry i A ) andR parameters of the model. These equations
transformation ¢'*) =T,(w’). This is something given by .« invariant under the change,y,z)—(—x,—y,z). Then,
the shape of the attractor. For example, attractors with thg 1o grive u=(x,y,z) is decomposed inv=(z) and

topology of a single loofthe type shown by the Rsler ,_(y vy they have available two possible synchronization
attractor[15]) are expected to be more robust against JUMPSstates, which correspond to the above distaizgandD ;.

than attractors with the topology of two tangent lodfi As a second illustrative example consider the case of sys-

type of the Lorenz moddfiL6]). This is because in this Sec- yomq with variablesx,y,z) that are invariant under rotations

ond case it is very likely that a quctuathn.throws_ a §ystemof thex-y plane around the axis. In this case one will have
evolving in one loop to the other when it is moving in the

) . ~as many synchronization states as the order of the rotational
neighborhood of the point of contact between the loops. Th'%ymmetry groupC,,. A case of easy study i€,; that is
m-* 1 )

situations is, however much less likely in the,*cage of th& v ariance under rotations under angles that are integer mul-
single loop because the distance betwaemndw'* will be iples of 7/2 radians. In this case we will have invariance of
of the same prder of magnitude that the attractor size. I'sh e evolution equations under the identity, plus the following
remark at this point that | do not mean that thesBler and 60 gifferent coordinate transformationst, :(x,y,2)
Lorenz models are going to exhibit the behavior preV|oust_>(_x,_y’Z)' T,:(x,y,2) —(y,—%2), and, Ts:(X,y,2)
described. | am just using the overall image of two very We”—>(—y,x,z), Therefore, given an initial condition of the
known dynamical systems to illustrate a general idea. Exyive if Dy=|x'— x|+ |y’ —y|—0 for some initial condition
amples of systems that exhibit the behavior studied in thi%]c tr,le response x{.y,), then it must occur that
paper are presented in the next subsection. Dlz|x’+x|+|y’+y|—>'00 ' for (=x5,—Y0) D,

=ly'—x|+|x'+y|]—0 for (yg,—x¢), and Dj
=|y’'+x|+|x"—y|—0 for (—yg,x). Then we will have
Consider, for example, a drive with variables:(x,y,z)  four different synchronization states available from the

such that the equation=f(u) has inversion symmetry in proper sets of initial conditions. An example of an attractor

the x-y plane; that is, it is invariant under the change that exhibitsC, symmetry, and which will be studied below

(X,¥,2)—(—X%,—Y,2). Let us takez as the driving signal and in this paper, is given by the following three dimensional

(x,y) as the response. If for some initial condition of the flyx:

drive and the initial condition of the responsg}(yy) it )

happens that Do=|x'—x|+|y’—y|—0, then D, x=€(X,y)[ —ax+ Bz sin(y) ]+ 8(x,y)[ =X+ (y—2)y],

=|x"+x|+|y’+y|—0 must occur for the same initial con- . )

dition of the drive and the initial condition of the response Y=€(X.Y)[=y+(z=y)x]+ 8(x.y)[ - ay— Bz sin(x)],

(—Xg,—Yg)- So we will have two different synchronization -

states, each available from the proper set of initial condi- 2= e(xY)[1=xy]+ 5(x.y)[1+xy], )

tions. A couple of particular examples of models holding thisbeing e(x,y) =[1+tanh(2rxy)1/2, s(x,y)=[1

type of symmetry, to which | will dedicate particular atten- —tanh(20xy) /2, anda, B, v, and o are parameters of the

tion in the numerical part of this paper, are given by the,qqel.

systems of first order differential equations | must note that the equations presented above are for
C_ : mathematical models, with no immediate physical interpre-
X ax+ Bz sinty), tation or applied motivation, that are proposed just for the

. sake of illustration. In fact, Eq$1) and(3) are modifications

z=x%-2, 2

B. Examples

y=-y+(z=7)Xx of the equations for a magneto-mechanical model proposed
by Rikitake to study the time reversal of earth’s magnetic
z=1-Xxy, (1) field [17], and Egs(2) are a mathematical model introduced

FIG. 1. Projections of the attractors defined
by the proper evolution equations onto theY()
plane for the three nonlinear systems described in
the text: (a) Al, (b) A2, and(c) A3.
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here only as an illustrative example. However, when dealingte how Al and A2, despite showing the same type of sym-
with models with direct physical motivation, the variables metry, present a different topology, i.e., Al is a double loop,
y, and z will be physical quantities whose values define awhile A2 is a single loop. In Fig. 2, there appear plots of the
particular state of the system. In particular, they may be vetn+1)th maximum ofz versus thenth for sets of 10 000
locities, electrical currents, temperature gradients, or othepoints. This shows the existence of approximately quadratic
physical quantities, so that a change of sign or numerica®' tent maps embedded in the attractors, which is clear evi-
values would mean significant changes in the correspondingence of chaos. Additional evidence is given by the power
experimental situations. Accordingly, the occurrence ofSPectrum of the variables(t), y(t), andz(t) which exhibit
D,.o—0 instead ofD,—0 would imply different physical the presence of a broad spectrum of frequencies as shown,

situations, and so it follows that what | am describing heref®" €xample, in Fig. 3 for the variabit). Moreover, | have

may manifest itself as a phenomenon with physical meaningg?m%utt:ghﬂ}:uléyggsgﬁ)\gsgﬁﬁgggner?getgﬁysﬁit%rgz é)t);aTeans

[20], and by Shimada and Nagashif#i]. The results ob-
tained are displayed in Table I. Because the theorem of
Haken [22], on the existence of at least one vanishing

] ) ] ) ) Lyapunov exponent, does hold in this case, these are to be
To illustrate the theoretical points raised above | will now yngerstood as chaotic spectra of the type0,—).

present and discuss some numerical results for the math-
ematical models used above as examples. These have been
obtained working in double precision, and integrating the
evolution equations by means of a fourth order Runge-Kutta Let us now turn to the synchronization behavior of these
algorithm. Most of the numerical results in this section cor-system undeiz driving. First of all, | have computed the
respond to the following cases(Al) Equation(1), at the  conditional Lyapunov exponents using the Benettinal.
parameter valuea=1.5, 3=2.0, andy=3.75, and an inte- [20], and Shimada and Nagashirf#l] method. The results
gration time step of 0.03(A2) Equation(2), at parameter obtained appear in Table I. In all cases | have found that both
valuesA=3.2,0=1.4, andR=5.2, and an integration step of conditional Lyapunov exponents are negative; so, the Pecora
0.01, (A3) Equation(3) at parameter values=2.0, 3=2.0, and Carroll condition for synchronization is satisfied. Then
y=3.0, ando=16.0, and an integration step of 0.03. Theseone can expect, for all three attractors, to exist a set of initial
cases will be designated throughout this paper with the coreonditions, &q,Yo,Z0,Xg,Yo), from which the response syn-
responding abbreviation Ame{1,2,3. chronizes with the drive in the sense tlita$—0. According

In the first place, to ensure that at the above parametdp the discussion in the preceding section, this implies that
values the systems considered are chaotic, | have performede should observe generalized synchronization behaviors of
a series of standard te$ts3,19. The results of some of them the proper typeD ,—0, for the initial conditions of the re-
are displayed in Figs. 1-3. In Fig. 1 there appear plots of theponse obtained from the above;(y;) by means of the
attractors which tend to fill up a section of the phase spaceoordinate transformatiom,. The discussion of the results
as corresponds to chaotic evolutions. Besides, this figurebtained for the different cases studied follows.
shows how the attractors exhibit the symmetry of the corre- For Al, | have numerically integrated the fifth order non-
sponding evolution equations. In particular, one can appreciinear system defined by equations

IIl. NUMERICAL EXPERIMENTS

A. Chaotic attractors

B. Synchronization behavior

10 T T T T T T T T T T T
102 m (a) I )] 1 7 © 7
10" _ _ _ ] _ 7 FIG. 3. Power spectra for the
) - E 1 0t 1 z signal for the three symmet-
= -6 . . .
10 ric nonlinear systems studied:
10 i 17 70T 7 (a) Al, (b) A2, and(c) A3.
10‘10 | PO l ol ool J I l | |0 O J _3. sacnnl 2, | ] 10 ol 1. s ]
10° 107 100 10" 10' 10" 10° 10" 10° 10’ 10° 107 100 10" 10
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TABLE |. Spectra of Lyapunov exponents; \;,\3) and con-  |utions towards one of the two synchronization states de-
ditional Lyapunov exponents underdriving (A P \D) for the  scribed above. In fact, | was able to observe four different
three dynamical systems studied in this article. behaviors available to the response from the appropriate sets
of initial conditions: (1) synchronization of th® ;—0 type,

(A2 A (A5 (2) synchronization of theéD;—0 type, (3) a nonsynchro-
Al (0.232, 0.000-2.732 (—0.104,—2.396 nized bounded state in which the response moves in an
A2 (0.126, 0.000-2.126 (—1.000,—1.000 ample orbit around the drive, never intersecting it, &ida
A3 (0.136, 0.000-2.98]) (—0.053,-2.790 nonsynchronized unbounded state, in which the response fol-

lows a divergent evolution, which slowly spirals outward
around the drive so that both distanddg(t) and D,(t)
X'=—ax'+ Bz siny’), diverge to infinity. These different behaviors are illustrated
in Fig. 4(b), wereD(t) is displayed as a function of tinte
V' =—y'+(z— y)X’ 4) for four different initigl cond.itions leading (_aa_qh to one _of the
’ four types of behavior available. For an initial condition in

combined with Eq.(1). In this case, the two types of syn- thepl—>0 basin of at_traction thB,(t) function decays in an
chronization behaviors mentioned abdvg—0 andD,—0,  Oscillatory exponential way to zer@urve 2. For the non-
can be obtained from the proper initial conditions. As ansynchronlz_ed unbounded case an oscillatory exponential di-
example, the time evolution @,(t) andD(t) is displayed ~ Vergence is clearly seefgurve 4. For the other two cases

in Fig. 4(a) for an initial condition in the basin of attraction (curves 1 and Bthe generalized distance fluctuates around
for the «=1 generalized synchronization state. The evolution?n average finite value which is larger in the nonsynchro-
of D,(t) shows an oscillatory exponential decay to zero,nized bounded casgurve 3. A similar plot, with the be-
while D(t) oscillates around a constant value, with a mag-navior for the cases 1 and 2 swapped, would be observed if
nitude around the size of the attractor. A plotDf(t) and  the distanced(t) were shown. For additional illustration a
D,(t), for initial conditions leading to the usual synchroni- Parametric plot ok’ (t) versusx(t) is displayed in Fig. ¢)
zation state, would look like that in Fig.(@ but with the for the nonsynchronized bounded case. This type of plot,

curves forDy(t) andD,(t) swapped. when s_ynchronization occurs, looks like a straight line seg-
For A2, | have integrated the fifth order nonlinear systemment with a slope equal to 1 for tfi#,—0 case, and equal to
defined by equations -1 f_or _the_Dlﬁo case. The W|d_e dispersion of points in Fig.
4(c) is indication of no correlation between the signals. The
X' =y’ +A sin(Qy’), overall inclination of the cloud of points, with a slope ap-
proximately equal to 3, indicates that the orbit for the re-
y'=—y' —(z—R)X’, (5 sponse is wider that the orbit for the drive. A plot wf(t)

versusy(t) would be similar to that in Fig. @).
combined with Eq(2). In this case, | have observed that not  For A3, | have numerically integrated the fifth order non-
all initial conditions of drive and response give rise to evo-linear system defined by equations

10 10 t
10 _
% 1 FIG. 4. (a) Time evolution of the generalized
10 3 distance®y(t) andD(t) for an initial condition
in the D;—0 basin of attraction for attractor Al.
10" . . i 107 . . (b) Time evolution ofD4(t) for the four different
0 150 300 0 150 300 behaviors available to the response in the case of
t t attractor A2:(1) synchronization of theDy—0
type, (2) synchronization of th®;—0 type, (3)
15.0 , 10° , i . nonsynchronized bounded state, a4yl nonsyn-
(d) 4 chronized unbounded state) Parametric plot of
o LI M e o ""'W_; ’ . .
3 D, ] x" versus x in the nonsynchronized bounded
10° £ 3]  state.(d) Time evolution of the generalized dis-
= F 1 tancesD(t) andD;(t) for an initial condition in
wo 00F 1 a 1 1 theD3—0 basin of attraction for attractor A3.
10° F D,
-150 L—— ‘ : 10" E ' —3
-5.0 0.0 5.0 0 150 300
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FIG. 5. (a) Drive attractor tra-
jectory, for attractor A1, with indi-
cation of the points taken as initial
conditions for the calculation of
the basins of attraction depicted in
this and the following two figures.
Plots of the basins of attraction of
the response to the different be-
haviors allowed to it whem driv-
ing is applied: (b) point 1, (c)
point 3, (d) point 4, (e) point 5,
and (f) point 7.

X' =e(x",y")[—ax'+ Bz siny’)]+8(x",y") described in Sec. Il, to exist. It is worth noting that Pecora
and Carroll also reported this type of oscillatory exponential
X[=x"+(y=2)y'], decay in their study of synchronization of systems with just

. the usual synchronization state availafle?]. The observa-
y'=e(x" .y ) -y +(z=y)x"]+6(x".y") tion of systems with negative conditional Lyapunov expo-

/ L nents for which some initial conditions synchronize while
>< J— —
[—ay’=pzsinx))], © others do not, gives additional illustration to the finding of

combined with Eq(3). As in the previous cases, | have beenBadola, Tambe, and KulkariB] that negativity of condi-
able to observe all the synchronization states giveBpgt),  tional Lyapunov exponents is not a guarantee of synchroni-
with @e{0,1,2,3 for initial conditions chosen conveniently Zation for all initial conditions.
(see Sec. Il B As an example, a plot d;(t) displaying the
characteristic exponential decay to zero appears in kdj, 4
for an initial condition in theD;—0 basin of attraction.
Moreover, in this plot there appeaB,(t), for the same The study of the basins of attraction in the present case is
initial condition, which fluctuates around a finite valltke  quite difficult, because we are faced with a five dimensional
same behavior will be observed B,(t) or D,(t) were space of initial conditions. To have some insight on the
showr. The corresponding plots for the other three caseshape of the basins of attraction to the different types of
would exhibit a similar look. | must note that besides thesebehaviors available to the response, | have proceeded as fol-
four synchronization behaviors available, there is the possitows. | chose some point in the attractor as initial condition
bility of no synchronization between drive and response foifor the drive, &q,Yq.20), and a grid ofN X N initial points in
initial conditions of the response close @,0). In this case the (x’,y’) subspace for the response. Then, | ran the equa-
the response evolves towards a fixed point located at théons for drive and response to see the time evolutioD Qf
origin of coordinates. for each point in the grid. A plot was prepared in which each
The plots forD ,(t) in Fig. 4 illustrate the possibility of point of the grid is colored according to the synchronization
the synchronization states of types different than the usuaktate achieved, so that one can have an image of the basins of

C. Basins of attraction

()
i FIG. 6. Plots of successive am-
plifications of a basin of attraction
of attractor A1. The initial condi-
tion for the drive point is given by
point 6 in Fig. %a), the origin of
coordinates is always at the center
of the image, and the amplification
factors are: (a) X1, (b) x10, and

(c) x100.
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FIG. 7. Plots of the basin of
attraction corresponding to the at-
tractor Al for almost the same ini-
tial condition of the drivepoint 2
of Fig. 5], and different values
of the parameter: (a) 1.50, (b)
1.60, and(c) 2.00.

attraction for the particular initial condition of the drive details of the different pictures change with changing param-
(X0,Y0.29)- In almost all the cases that follow, these pictureseters. In this figure, the shapes of the basins for close sets of
are centered at the origin of coordinates and show a region afalues of the drive initial conditionxg,yq,z) and different
phase space a bit larger than the one spanned by the attractealues of the parametere{1.5, 1.6, 2.9 appear. In particu-
In the case when the pictures represent regions not centerdat it is worth noting that fora=2.0 the basin boundaries
at the origin or with dimensions different than those of thebecome smooth and simple.
drive attractor this is explicitly stated. In this study, | have For A2, representative examples of such basins are shown
paid particular attention to the evolution of the basins within Figs. 8—11, where the grid of initial conditions for the
the values of Xq,Yq,2p) (always chosen as a point in the drive is displayed with the points in the grid colored white if
stable drive attractgyto the nature of the basin boundaries, D,—0, black if D4—0, and gray if none of these events
and to the effect of the changes in the parameters of thhappen. A small white dot indicates the position of the initial
system on the basin pictures. In this last case | have studiezbndition of the drive. The grids of initial conditions for the
attractors with parameters different than those indicated atsponse displayed contain 28239 points. Except when
the beginning of this section, chosen so that the system imdicated, the region studied has a size ok1@ and corre-
still chaotic, and the conditional Lyapunov exponents con-sponds to the phase space region shown in Fig. & all
tinue to be negative. In this case, the values of the driveplots the origin of coordinates is at the center of the image,
initial conditions &g,Yq,29) cannot be exactly the same for and the expected symmetry of the basins pictures is obvious.
all choices of parameters because they are to be points of tliéhe particular shape of the pattern observed depends on the
stable attractor which is a set of points that changes when theet of initial conditions chosen for the drive, as illustrated in
parameters change. However they have been carefully chéig. 8, Fig. 9a), and Fig. 10a). As in the previous case, one
sen to ensure that the points used for every choice of param-
eters are very close among them.

Representative examples of such basins in the case of A1
are displayed in Figs. 5, 6, and 7. There, grids of 2661 70 o
initial conditions for the response are displayed with the ’
points in the grid colored white iD;—0 and black ifD,—0.
Except when explicitly indicated, the regions studied has a > o0
size of 9.6<4.8; which corresponds to the region of phase
space shown in Fig.(8). All initial conditions give rise to
one of the two synchronization states available, with the only
exception of the origin of coordinates, which is an unstable
fixed point. Moreover, from these pictures it is clear that if
Dy—0 for (x4,¥4), then D;—0 for (—xg,—Yp), as ex-
pected. The basin shapes vary with the initial condition of
the drive. This variation is illustrated in Fig. 5, where five
basin pictures are shown with an indication of the drive point
trajectory to which they belong. Additional pictures can be
seen in Fig. 68 and Fig. 7a). The shape of the basins
evolves smoothly along the drive trajectdiyompare Fig.
5(e) with Fig. 6(a)] but experiences noticeable changes when
the point in the drive attractor are far away. In general, the o T A ] T
shapes of the basins are complicated and the two types of X X
synchronization behaviors available appear entangled. The
nature of these basins seems to be fractal as more detail is F|G. 8. (a) Drive attractor trajectory, for A2, with indication of
seen with amplification; as illustrated in Fig. 6, where suc-the points taken as initial conditions for the calculation of the basins
cessive amplifications by a power of ten of the central regiorf attraction depicted in this and Figs. 9, 10 and 11. Plots of the
of one of them are displayed. Moreover, as illustrated in Figbasins of attraction of the response to the different behaviors al-
7, the overall shape of the basin pictures appears robust utewed to it whenz driving is applied: (b) point 1,(c) point 3, and
der changes in the parameters of the attractor; although, th@) point 4.

(d
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FIG. 9. Plots of successive amplifications of the basin of attraction of the response to the different behaviors allowed to the A2 attractor.

The initial condition for the drive point is given by point 5 in Fig(a8 all the plots are centered at the origin of coordinates, and the
amplification factors are: (a) X1, (b) X10, and(c) X100.

obtains an evolution of the basin pictures with the change on Results for the basins of attraction of A3, are displayed in
the drive initial condition Xq,Yq,2p). However the overall Figs. 12—15. As for Al, the grids of points are 16161.
appearance of the basins is quite different than those of ADifferent shades of gray are used in this case with the fol-
The more significant difference is that, despite the variety ofowing code: black forD,—0, white for D;—0, light gray
behaviors available, the different basins of attraction ardor D,—0, dark gray forD;—0, and medium gray for the
wide and clearly separated. Moreover, the values of the iniiitial conditions from which the response drops towards the
tial conditions of the response coincident with those of thefixed point at the origin. Moreover, a white dot indicates the
drive always appear far from the basin boundaries. Thesposition of the initial condition of the drive. The region stud-
basin boundaries, however, still seem to be fractal as illusied, except when indicated, has a size of>6644 and corre-
trated in Fig. 9 by means of successive amplification, by asponds to the square shown in Fig.(d2 The symmetries
factor ten, of the central region of one of them. The basinassociated to th€, symmetry of the attractor are clearly
shapes appear robust under the changes in parameter valugsen through these pictures, except in Figsbiland 13c)

as shown in Fig. 10, where basin pictures are displayed fothat are not centered at the origin of coordinates. The evolu-
close drive initial conditions corresponding to different val- tion of the basins with the initial conditions, which is smooth
ues of the paramet& <{5.20, 5.15, 4.80 showing the same as in the previous cases, is illustrated in Fig. 12, and Figs.
overall shape but changes in the details. A particularity ofl3(a) and 14a). Despite having its own shape, these basins
this system is the existence of other states available to theesemble those of A2 in that there are wide regions for each
response besides to the two synchronized ones. To shoef the behaviors available in which there is no mixing among
more clearly the presence of these states, in Fig. 11, there atiee different behaviors available. This is so despite the basin
displayed basin pictures for the same drive initial conditionsboundaries seeming to be fractal as illustrated in Fig. 13 by
as those in Fig. 8, but displaying a region of 2XaD40 (i.e.,  successive amplifications by a power of ten of the central
10 times larger The light gray region indicates the initial region of one of them. The changes with the parameters of
conditions that gives rise to bounded nonsynchronized statethe system resemble those of the two previous cases in that
and the medium gray regior(far from where the attractor the overall shape of the basins does not change, while the
evolves the initial condition from which the distances di- details of the boundaries are somewhat modified. This is
verge. shown in Fig. 14 where there appear results for the parameter

(b)

-5.0 0 5.0

FIG. 10. Plots of the basin of attraction corresponding to the attractor A2 for almost the same initial condition of theaiiniv2 of Fig.
8(a)], and different values of the paramefr (a) 5.20,(b) 5.15, and(c) 4.80.
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FIG. 11. Basins of attraction for the same cases shown in Fig. 8, but showing a region 10 times adpaint 1, (b) point 3, and(c)
point 4.

o taking values if{16.0, 14.0, 12.p An interesting observa- o between 10 and 1:010° for A1, 10 and 5.x10 * for
tion, for this attractor, is that, although almost all the time theA2, and 10 and 181078 for A3. The objective is to get
numerical values corresponding to the initial condition of thesome insight on the shape and behavior of the probability
attractor are well inside th®,—0 basin of attraction, for densitiesP (D) and the rate of jumps between synchroniza-
some special points they become very close to the boundion states. To achieve this, | have computed, in that time
aries. This situations is illustrated in Fig. 15, where therewindow: (i) the histograms for the number of occurrences
appear the boundaries for two close points near a region iIAN_(D) of a generalized distanc®, betweenD and
which the attractor bifurcates between two different loops. ItD + AD, and(ii) the number of jumps between synchroniza-
deserves to be noted how different the basins are, despit®n states along the ruN;. To do this last calculation, |
points 1 and 2 being quite close. This reflects the fact thatonsider the system to be weakly synchronized when one of
point 1 is in a trajectory inside a loop, while point 2 is in a the D, is less 3, while all the others are much greater than
trajectory corresponding to a jump between loops. that quantity. A jump happens when the particular value of
The results in Figs. 5 to 15 illustrate the practical possi-for which D, is small, the others being large, changes.
bility of synchronization in a way different than usual when This choice is justified by what follows. Moreover,
we deal with symmetric systems. Moreover, they tell us that will note that, in this subsection, the histograla# (D)
each particular nonlinear system will display a set of peculiaare presented under the form for the functiohgD)
patterns that are a specific property of that system. This
means that the shapes of the basin boundaries are expected (@) )
be as diverse as the dynamical systems themselves are. Hov =~ 32 ——————— —
ever, some regularities are presenti) the basins display }
symmetries reminiscent of those of the dynamical system ta ‘ ‘
which they belong(ii) they change smoothly with the varia- ; /
tion of (xq,Y0,20) along the drive trajectory, andii) they > 00 w'ﬁ» i
appear to be robust under small changes of the parameters « | &2
the system, despite that a change in parameters implie: ‘L 1
changes in the attractor propertigxpected to be smalbs 2 |
well as in the values of the initial conditions of the drive. T2 0.0 32
Large changes in the parameters can alter in a significan X x
extent the basin boundaries. Moreover, the boundary basin 5,
seem to be fractal, although this is not expected to be the
general rule as some of the plots indichtee Fig. 7c) and
Fig. 14c)].

D
i

IS
y

(@)

D. Effect of external noise

To test the effect of external noise on the synchronization
in the models studied here, | have studied how synchroniza:- 3, S—
tion is affected by a white noise in the driving signal. To do 32 0 32 32 0 32
this | have integrated, together with the equations for the * *

drive, the corresponding equations for the response adding a |G, 12. (a) Drive attractor trajectory, for A3, with indication of
random Gaussian variablewith a standard deviatiom, 10 the points taken as initial conditions for the calculation of the basins
the drive signak. In the calculations performed, | have cho- of attraction depicted in this figure and in Figs. 13 and 14. Plots of
sen initial conditions well inside one of the basins of attrac-the basins of attraction of the response to the different behaviors
tion to one of the synchronization states involved. Then, lallowed to it whenz driving is applied: (b) point 1, (c) point 3,

ran the equations of motion for Y@me steps, for values of and(d) point 5.
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FIG. 13. Plots of successive amplifications of the basin of attraction of the response to the different behaviors allowed for A3. The initial

condition for the drive point is given by point 2 in Fig. (BL The respective centers of the figures and amplification factors #ae(0,0
and X1, (b) (0.32, 0.32 and X 10, and(c) (0.094, 0.24% and X100.

=AN_(D)/Ngps, beingNg,s the number of observations of sponse is in th® ,—0 state[Fig. 16a)] with the case when

D in the above time window, for a giveiD. In each case the response is in th®,.,—0 state[Fig. 16b)]. In the

the value ofAD has been chosen according to the range oémallD , region these functions present a well defined maxi-
definition of the functionf ,(D), to ensure that their shapes mum close to zero, which signals a state of weak synchroni-
are well resolved. The results obtained are independent of theation, in which the distance between both systems fluctuates
particular choice ofx for the basin of attraction of the initial around the distance corresponding to this maximum. The

condition. large D, regions correspond to the time when the system is
For Al | have integrated, together with the above Efjs. in the other synchronization state so that the distance fluctu-
for the drive, the following equations for the response: ates around values that are of the same order of magnitude as
- , o the attractor size. It is important to notice that the distribution
X'=—ax'+ B(z+ p)sinly’), functions for these two states have an overlapping region, as
) seen in Fig. 1@), in accordance with the idea that the sys-
y'==y' +[(z+n)—yIX, (7)  tem can easily jump between synchronization states. How-

ever, one has a well defined maximum for the times when
with 7 the above random Gaussian variable. The shape of thgeneralized synchronization occurs, so that it is possible to
histogramsf (D) for Dy(t) and D,(t) exhibits the same compute the dependence of the value of the position of the
behavior, no matter in which basin of attraction the initial maximaD, with o. The results, that appear in Fig.(t§ can
condition was set. This is illustrated by means of the resulte accurately fitted by a potential law of the type
for fo(D) andf,(D), at a particular value of;, shown for D ,(o)=Ac®, beingA=0.419+0.015,b=0.999+0.005, and
the smallD region in Fig. 16a) and for the largé® regionin  the correlation coefficient 0.999 94. The dependence of the
Fig. 160b). Both distribution functions show the same ap- number of jumps between synchronization stigsvith the
pearance and are practically put on top of each other despitamplitude of the noiser is displayed in Fig. 1@l). The
the statistics implying only a finite number of observations.function N;(o) can be approximated by a law of the type
This is an indication of repeated changes between synchriN;(o)=Ac® with A=1.10x10°+1.7x10° and b=1.039
nization states. That is, what we see in these figures, for each0.021, being the correlation coefficient 0.999 83. As the
f.(D), is the combination of the distribution functions for interval of the variation of the signal is 6.37 wide, we see
two different synchronization states: the case when the rethat above a noise as small as X8 ° of the amplitude of

©

FIG. 14. Plots of the basin of attraction corresponding to the attractor A3 for almost the same initial condition of theaiiniv of Fig.
12(a)], and different values of the parameter (a) 16.0,(b) 14.0, and(c) 12.0.
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(a) ®) , ©)

FIG. 15. (a) Drive attractor trajectory with indication of the points taken as initial conditions for the calculation of the basins of attraction
depicted in this figure; and, plots of the basins of attraction of the response to the different behaviors allowed toztdnikiewy is
applied: (b) point 1, (c) point 2.

this signal we still see jumps between synchronization statesnder a fluctuatindR parameter for the response, which in a
(at this level of noise only nine jumps were observed in thephysical situation would stand for a response system in con-
time window studiegl Anyway, the extrapolation oD ,(¢)  tact with a fluctuating environment. In the following discus-
andN;(o) to o=0 indicates that, when no noise is present,sion | will assume the noisy drive signal picture, however the
the system stays in only one of the synchronization stateganslation to the fluctuating case is straightforward. Fig-
available. The effects of adding noise is to weaken the syngres 17a) and 17b) show, respectively, the shape of the
chronization and to introduce a rate of jumps between syngjstribution functionsf,(D) and f,(D) for three different
chronization states. These effects become more and Mo(gy|yes of . The initial condition for this particular picture
intense as the level of noise is increased until synchronizag ;5 i theD,—0 basin of attraction. Those plots indicate
tion is completely lost. . that both distances fluctuate inside intervals that are well
e o o o eoar el separated: e, neiighle ovrap bedefD) fncions

' ' at different synchronization states. Fg(D), this interval is

X =y’ +A sin(Qy) narrow and close to zero, while fég(D) it is wide and far
from zero. Moreover, the values foy(D) can be scaled in a
y'=—y'—[(z+5) —R]x’, (8)  single curve when the distance is divided by the strength of

the noise. For values ef below 0.8, the average value of the
with 7 the above random Gaussian variable. One must notdistance for the weakly synchronized stdbg) is small and
that these equations also describe the behavior of the systemell defined. | have verified that for a size of the sample

0.0010 T " ; 0.0020
0.0008 0.0015 | | FIG. 16. Shape of the histo-
grams f, (D) for the distances
_.0.0006 — Do(t) and D4(t) for attractor Al
2 2 0.0010 : under a level of noise of
0.0004 0=0.000 3 in(a) the small dis-
0.0002 0.0005 1 tances region, andb) the large
3 distances region. To have the
0.0000 L L 0.0000 function shapes well defined, dif-
0.0000 0.0010 0.0020 0.0030 0.0 35 7.0 10.5 14.0 ferent intervals AD have been
D D used for the calculations if®) and

(b). (c) Dependence of the posi-

10 tions of the maxima of the distri-

107 butions with the strength of the

2 noise for the weakly synchronized

10 state.(d) Dependence of the num-

A~ 107 ber of synchronization state
“ changes with the strength of the

10 noise. In(c) and (d), the squares
10° are for numerical results and the

lines for their least squares fits.
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FIG. 17. Shape of the histogranfig(D) for attractor A2 under a level of noise of=0.005 (circles, 0=0.05 (squares and 0=0.5
(triangles: (a) f1(D) and (b) fo(D) for initial conditions in theD;—0 basin of attraction. To have the function shapes well defined,
different intervalsAD have been used for the calculations(@ and (b). Proof of the stability of the average value Bffor: (c) D4 and
(d) Dy. Circles, squares, and triangles have the same meaning(@sand (b), diamonds are the results for=5.0. (e) Dependence of the
positions of the maxima of the distributior3, (squares and the average distance for values of a weakly synchronizedd@tecircles,
with the strength of the noise. The lines are least squares fits.

large enough, its numerical value does not change when this x'=e(x",y ) —ax'+B(z+ n)sin(y’)]
size is increasefkee Fig. 1{)]. In the same way the aver-
age value of the distand®,, (D), is well defined too, but of +o(xLy' W =x"+[y=(z+tm]y'},
the same size as the attracfélig. 17d)]. When the initial
condition is chosen in th®,—0 basin of attraction these y' =e(x" .y -y +[(z+n)— y]x"}
comments would be the same but swapping indexes 0 and 1. )
| have found that foro<0.8, in the time window studied +o(x"y)[—ay' =Bzt p)sinx")], (9
there are no jumps between the different synchronized and
nonsynchronized states available. Moreover, the relation bewith 7 the above random Gaussian variable. The effect of
tween(D) and g, for the weakly synchronization state, can noise is a generalization of the results described for Al to a
be accurately fitted by a law of the typ(eE))zAab, with C, symmetry case. This is illustrated in Figs.(@8and 18b)
A=0.357+0.008,b=1.007+0.002, and the correlation coef- where thef ,(D) functions for the four generalized distances
ficient 0.999 99 see Fig. 1%)]. A similar result is obtained implied are practically indistinguishable from each other, de-
when D is studied; in this case, it i8=0.226+-0.001, and spite the limited statistics used. As in the two previous cases,
b=0.999+0.001 and the correlation coefficient is 0.999 86.weak synchronization is obtained with distributions func-
The concordance is clear between the most probable artibns peaked at a value close to zero for the synchronized
average distances. The interval of variation of #heignal is  state and broad distributions for the nonsynchronized. Al-
6.57 wide; then, below a noise as large as 12 percent of thiaough, these distributions show overlaps_with increasing
amplitude of the signal, we can have the response in one afoise, one still has a well defined maximalatthat can be
the generalized synchronization states, evolving at an avestudied as a function of the noise strenfffig. 18c)]. More-
age generalized distance of the drive of the same order afver, as in Al, jumps between synchronization states are
magnitude than the noise applied, at least in the time windovpresent and its number increases with the noise stréfigh
studied here. For values of above 0.8 the response jumps 18(d)]. The laws describing these events are potential laws.
between the several basins of attraction available. Therkor the position of the maximaqa(a)=Ao-b] one has
sooner or later, it falls into the basin of divergent initial A=0.223+0.005 andb=0.999+0.002 with correlation coef-
conditions, and the value dD,) becomes a quantity that ficient 0.99997. And for the number of jumps
increases when the interval where the time average is pefN;(o)=Ac"], A=3.93x10*+2.6x10° and b=0.454
formed is increasefkee Fig. 1%) and Fig. 17d)]. +0.005 with a correlation coefficient of 0.999 23. Being the
For A3 | have integrated, together with the above Egs. range of variation of the signal 3.23 wide, we obtain that
for the drive, the following equations for the response: above a noise as small as 8.10°° of the amplitude of the
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FIG. 18. Shape of the histo-
grams f,(D) for the distances
Do(t), Dy(t), Dy(t), and Dy(t)
for attractor A3 under a level of
noise ofc=0.003 in(a) the small
distances region antb) the large
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used for the calculations i@ and
. (b). (c) Dependence of the position
‘ ' ' Ty - 10 ' ' ' of the maxima of the distributions
5 (d) O with the amplitude of the noise for
O the weakly synchronized stat@l)
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chronization state changes with
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signal we still observed jumps between synchronizatiortion states available—and, eventually, to nonsynchronization
states in the time window consideréohly ten jumps at this ones. Moreover, two different responses to external pertur-
level of noise. bations are possible: weakening of the synchronization and
In general, the two effects of noise expected in Sec. |l argumping between synchronization states.
observed in the computer experiments: weak synchroniza- The phenomenon has been illustrated by means of a com-
tion and changes between synchronization states. These gfuter simulation study of three mathematical models of cha-
fects become more important with the strength of the noiseotic systems, two of them bearing inversion symmetry and
The mathematical laws followed are potential, so that in theone belonging to a large symmetry gro(@y,). Moreover, in
free noise cases there is full synchronization with no jumpsome parts of the computational part of the paper, different
between synchronization states. A consequence of this is thaets of parameters have been considered. From this computer
one can have one of the ,(t)~0 and no jumps between simulation results it follows that:
states in a time window as large as desired when the noise (1) When we deal with symmetric systems, it is possible
level is low enough. Moreover, the results for A2 illustrateto have synchronization states of types different that the
that, when the topology of the system is adverse for thaisual. These can be described by means of convenient gen-
jumps between synchronization states, except for extremelgralized distances, that decay to these states in an oscillatory
large fluctuation that are very improbable, one can expeotxponential fashion.
only a weakening of the synchronization with no jumps be- (2) The shapes of the basins of attraction to the different
tween synchronization states, even for quite large perturbasynchronization states available are specific to each particu-
tions. Anyway these results sustain the idea that the generdar system. Even different systems having the same type of
ized synchronization states introduced here are not artifactsymmetry will have patterns that differ qualitatively. How-
of the computer, but robust situations that may be observablever there are some regularitiesi) the basins display sym-

in an experiment. metries reminiscent to those of the dynamical system to
which they belong, andi) they change smoothly under the
IV. SUMMARY AND CONCLUSIONS change of the parameters of the system. Moreover, it has

been found that the boundary basins may be fractal in many
In this article, | have shown how the symmetries in thecases.

equations of a nonlinear dynamical system led to an exten- (3) External noise has two effects: it weakens the syn-
sion of the idea of synchronization of two chaotic systemschronization and gives rise to jumps between synchroniza-
introduced by Pecora and Carroll, to an interesting situatioriion states. The dependence with the strength of the noise for
in which the system being controlled may synchronize inboth effects can be described by means of potential laws.
more than just one way with the drive system. This repre-The weakening of the synchronization presents a behavior
sents an enrichment of the possibilities of synchronizatiorcommon to all systems characterized by a well defined char-
because, for a given system, there emerges a variety of statasteristic distance. The jumping behavior is strongly depen-
of the response, physically different among them, but in syndent on the topology of the system. In particular, for attrac-
chrony with the drive. Then, the space of initial conditions istors with toroidal topology, even under relatively large
divided in basins of attraction to the different synchroniza-perturbations, one can expect to observe only a weakening of
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the synchronization with no jumps between synchronizatiorelectronic circuits will be the easiest way to realize such
states. experimental approach. This is because the usual Pecora and

Inside the frame of the general properties just mentionedCarroll synchronization has been observed in electronic cir-
each particular nonlinear system will have its own charactercuits[4,5], and these are versatile systems able to be tailored
istic properties, i.e., generalized synchronization states avaifor specific purposes. In particular, the use of nonlinear ele-
able, shapes of the basins of attraction, and response to efents with piece-wise constitutive relatiof5] will be es-
ternal perturbations. This should not be a surprise because &§cially useful to design systems like the one defined by Egs.
important characteristic of nonlinear systems is the richnes&)-

of behaviors available. In fact, the work presented here does At & mlo_re stf)_le_culafti\;]e IE_V%" (f)ne might think thedbri]stabil-
not exhaust the possibilities of study of synchronization ofy (O multistability) of the kind of systems presented here to

symmetric chaotic systems, it only draws attention to theirbe ctxf |In'$rest In re_Iatlon to Iprob{ems In f:ommulglcatlon anld
interesting possibilities. Anyone willing to work on the syn- co?t ro eor)ﬁ' or ]:n neura tSy? ems smence.t or ex%mpt%
chronization of a particular symmetric chaotic system should?atterns resulting from a set of response systems under the
perform a particular study of that system. same dr!ve, as those shown in Sec. I, are o_bjects containing
Possible extensions of the present work may include thénfgrmatmnl. Intthe frgme Of. thle imetr_gmg \;gﬁv‘vsgfﬂn;]grons
study of the synchronization of symmetric maps, instead oft" htn%ura fqets ast tynatmcljca chaotic sysf ¢ IS d
flows. Prospective candidates for such a study will be th g | ?.of In ertgs 0 study processes of storage and re-
maps with the symmetry of am gon in the plane introduced fieval ot information. .
by Chossat and Gollubitsky in their work on symmetry- Fl_nally, : .V\."" no'Fe that _the results n the present paper
increasing bifurcations of chaotic maf3]. Other possible provide additional illustration of two important results re-
candidates for such studies will be models that are more th:P[oried by (3[trt1er aui_hors. Tr(ﬁ?c'e aIrQLI) the observation tOf .
pure mathematical entities and represent real physical sy§ys. ems with negative conditional Lyapunov exponents, in
tems. An example of such models may be the network oWh'Ch not all the_|n|t!al conditions of drive and response give
oscillators with the symmetries of an equilateral trianglerlse to s_ynchromza_\_tlon, as suggested b_y Badola, Tambe, and
used by Ashwin to model coupled oscillating neurd®4]. Kulkarn_l [3], and ii) the report of partlc_ular examp!es of
The ideas presented here have been tested only in numeﬂgenerallzed synchronization behaviors introduced in more

cal experiments with mathematical models. As it has bee'gten:arall 4terms by Amritkar and Guple3] and by Rulkov
found that the synchronization must be robust against weak' @ -[14].

external noise and small changes in the parameters of the
system, there is founded hope that it will be observable in
experiments with real systems. This observation will be the | gratefully acknowledge financial support from DGICIT
most important step forward in the issue of multiple synchro{project PB93-0780and partial computational support from
nization states and symmetry. It seems to this author thaCESCA.
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