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Properties of resonant activation phenomena
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The phenomenon of resonant activation of a Brownian particle over a fluctuating barrier is revisited. We
discuss the important distinctions between barriers that can fluctuate among “up” and “down” configurations,
and barriers that are always “up” but that can fluctuate among different heights. A resonance as a function of
the barrier fluctuation rate is found in both cases, but the nature and physical description of these resonances
is quite distinct. The nature of the resonances, the physical basis for the resonant behavior, and the importance
of boundary conditions are discussed in some detail. We obtain analytic expressions for the escape time over
the barrier that explicitly capture the minima as a function of the barrier fluctuation rate, and show that our
analytic results are in excellent agreement with numerical reg91963-651X98)11304-1

PACS numbefs): 05.40+j, 02.50—r, 82.20.Mj

[. INTRODUCTION another and are thus unable to explicitly capture the occur-
rence of a minimum in the escape rate. A minimum in the
Noise-induced nonequilibrium phenomena in nonlinearescape rate usually arises from these approximations only by
systems have recently attracted a great deal of attention iniaference, and the approximations provide no way to locate
variety of contextg1]. In general, these phenomena involve the minimum specifically, except as an intersection point of
a response of the system that is not only produced or ertwo unrelated approximations. They also do not provide a
hanced by the presence of the noise, but thaptgmizedfor ~ way to determine the dependence of the minimum on the
certain values of the parameters of the noise. One example &ystem parameters.
the phenomenon of stochastic resonarewherein the re- In this paper we accomplish our goal, that is, we obtain a
sponse of a nonlinear system to a signal is enhanced by thmimber of analytic results for moments of the first passage
presence of noise and maximized for certain values of théime over a fluctuating barrier for the particular model sys-
noise parameters. Another involves nonequilibrium ratchets¢em (a triangular potential barrier subject to dichotomous
wherein intrinsically unbiased Brownian motion in stochasticfluctuation$ used in a number of studies of resonant activa-
asymmetric potentials leads to a systematic drift motiortion. In particular, we obtain analytic approximations that
whose magnitude and even direction can be tuned by thexplicitly capture not only the minimum in the escape rate
parameters of the noig8&,4]. A third is the recent discovery but that allow us to study the variability of the escape rate in
of a re-entrant noise-induced phase transition in a nonlinegsarameter space, that is, the depth and width of this mini-
coupled array, that is, a transition that is only observed fomum.
certain finite ranges of noise parametgs$ A fourth such In the process of obtaining these results, we have also
phenomenon, the one of interest to us in this paper, has beatcomplished a number of important clarifications on the
called “resonant activation,” and was first identified by Do- nature of models that have been presented under the common
ering and Gadou#6] and further studied by a number of “resonant activation” rubric, and on the nature of resonant
other authors. Here the mean escape time of a particle driveactivation itself. Some of these models in fact differ from
by (usually white noise over a barrier of randomly fluctuat- one another in essential respects. We discuss these clarifica-
ing height exhibits a minimum as a function of the param-tions and differences in some detail, and thus shed some light
eters of the barrier fluctuations. on the role played by the interplay of the white noise and the
Our interest in this problem first arose because it seemeHarrier fluctuations on the escape process. We anticipate
to us that for sufficiently simple potentials it should be pos-some of our findings.
sible to findanalytic dependences of the escape rate on the (i) A distinction must be made between situations in
system parametelsr at least good approximations to them which the fluctuating barrier can be “up” or “down’(i.e.,
and, more specifically, that it should be possible to find anaean go from being a barrier to being flat or even a yyelhd
lytic expressions for the parameter combinations that lead teituations in which there is always a barrier. Although reso-
the minimum in the escape rate. Some analytic results amneant behavior can be observed in all cases, the physical pic-
available[6—11], including those in the original work of Do- ture underlying this behavior is different in different cases.
ering and Gadoua that apply to a very specific circumstance (ii) Boundary conditions play an extremely important role
discussed in more detail below. In general, however, mosin the problem.
available results are numericfl1]. Analytic results are (iii) The qualitative physical description of the resonance
scarce, and usually apply only to one parameter regime in the fluctuating barrier problem is as follows. When the
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barrier fluctuates extremely slowly within a range<9,,, ®
<1=<uyay. the mean first passage time to the top of the bar-
rier is extremely long because it is dominated by those real-
izations for which the barrier starts in the high position. The ;
mean first passage time is then proportionatw<'®, where -/
D is the intensity of the white noise. Indeed, if the barrier :
fluctuation rate is smaller than the inverse of the mean first
passage time to the highest barrier, the barrier is essentially :
guasistatic throughout the process. At the other extreme, if 0 L 2L
the barrier fluctuates very rapidly, the mean first passage
time is determined by the average barrigr, i.e., it is pro-
portional toe*’®. Between these extremes, and over a broa% . - .

. . . between the potential minima remains constant — only the
range of barrier fluctuation rates, passage over the barrier

S o . _Dbarrier height fluctuates. This is to be contrasted with the
occurs primarily when the barrier is low, and the mean first : .

L . D phenomenon of stochastic resonance, where the energy dif-
passage time is then proportionalgéin™. This dependence

is quite robust, and the prefactor determines the actual mimf_erence is modulated by a small periodic signal.
q ! P We adhere to the overdamped regime, and hence the pro-

mum within this broad range. cessy(r) evolves according to the Langevin equation
(iv) This behavior does not require that the barrier fluctu- Y 9 9 q

ate; an oscillatory variation of the barrier height yields es- . , ,
sentially the sam)é results. oy y(r)==V'(y)=g'(y) n(7)+ &(7). 1)

In Sec._ . we provide a detguled statement of the reso.'Hereg(r) is zero-centered Gaussian white noise with corre-
nance activation problem. Section Il discusses the analyti

solution of the “up-down” case; we show that the resonance?atlon function

flipping rate and the resonance activation in this case are NN — o
independent of the white noise intensity. In Sec. IV the sig- (E(m)é(7"))=2D8(7—17"). 3]

nificance of the white noise and of the boundary conditionsy 4 can think of the white noise as arising from a heat bath,

in this “up-down™ problem are discussed in detail. Section i, \ hich case the diffusion coefficiem is proportional to
V deals with the case of barrier fluctuations when the barner§he bath temperatur&. Time is measured in units of the

are always high. We obtain a single analytic expression fofriction coefficient, which has been set to unity in E).

the mean first passage time that exhibits a minimum as a The potential/(y) is a bistable potential, typically with

I_l:n;_:tloln of tkle barg]er quctuattllc))nhrat_e and that mtfa?t quan'isoenergetic minima. Doering and Gadd6aintroduced the
ltatively captures the correct behavior over most o param’[riangular potential shown in Fig. 1. The potential barrier is

FIG. 1. Schematic of the fluctuating potential barrier problem.

eter space, as determined by comparison with numerical refined by

sults. With this result we are able to determine the resonance

frequency analytically, and also the range of barrier fluctua- woy/L o=y<L

tion rates over which the mean first passage time is essen- V(y)= ®)
tially flat. In Sec. VI we discuss the case of a barrier that —vy/L+2vy, Lsys<2L,

oscillates (rather than fluctuatés This case also exhibits o o
resonant activation, although some of the quantitative detaild"d the potential rises to infinity 3t=0 and aty=2L. In

of the problem are slightly modified. Finally, we conclude the absence of the contributiag (y) 7(7) in Eq. (1), this
with a summary and some final points in Sec. VIL. represents a standard problem where the xa& which the

process crosses the barriexatL is related to the mean first
passage tim& ; from the bottom of one of the wells, say the

one aty=0, to the top of the barriek =1/2T,. To calculate
Consider a process that evolves in a bistable potential anithe mean first passage time one assumes a reflecting bound-
is driven by weak Gaussian white noise, so that the procesary condition aty=0 and an absorbing boundary condition
is occasionally able to cross from one minimum of theaty=L.
bistable potential to the other. If the parameters of the system In the resonant activation problem we have, in addition,
are fixed in time, the rate at which the process crosses frorthe contributiong’ (y) n(7). Here () is a nonequilibrium
one well to the other under a variety of conditions is well noise that, coupled tg’(y), causes the potential barrier to
known (e.g., the Kramers rateSuppose now that the height fluctuate. It is a nonequilibrium noise because there is no
of the barrier separating the two minima of the bistable po-dissipative contribution in the equation of motion associated
tential fluctuates in time. We wish to explore the effect of thewith this fluctuating term, and hence the system is open. The
barrier fluctuations on the rate of passage of the process fromise 7(7) is usually taken to be exponentially correlated,
one well to the other. More specifically, it is known that the most ubiquitous choices being Ornstein-Uhlenbeck noise
there is an optimal barrier fluctuation rate that minimizes thg9—11] and Markovian dichotomous noig&,11]. Here we
passage time from one well to the other for given parametedeal only with the latter»(r) takes on the values 1, and
values[6—11]. This minimum identifies the phenomenon of the change from one to the other is distributed in time ac-
resonant activationWe are interested in the analytic prop- cording to the exponential density function
erties of the resonant activation phenomenon. Note that the
barrier fluctuations here are such that the energy difference d(1)=ve 77, (4)

Il. STATEMENT OF THE PROBLEM
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so that the flipping rate of the dichotomous noiseyisThe We shall present our analysis and results in terms of the
fluctuating barrier is accomplished by picking fgty) the  dimensionless variables
function _
=7D/L?, x=y/L, T,=T,D/L? (6)
/L, Osy<L . .
gy)= “ Y (5)  and the dimensionless parameters

—aylL+2a, Lsy<2L,
a=alD, Vo=v,/D, A=yL?D. (7
and zero otherwise. The addition of the random potential i i i ] )
termg(y) 7(7) causes the potential barrier to switch between,_ 1he differential equation for the mean first passage time
the two valuess, = vp+ @ andv_ = vy— a. in all cases considered in this paper is given by

We wish to calculate the rate at which the process crosse

S
the pointy=L, which Lr1 turn is related, as before, to the ﬂ_ZVOdSTlJF(Vg_az_Z)\)dZTl +2)\Voﬂ=2)\,
mean first passage tinig, from y=0 to y=L when a re-  dx* dx® dx? dx
flecting boundary is located gt=0 and an absorbing bound- (8)
ary aty=L. (The distortions in the potential profile that may with the boundary conditions
be caused by multiplicative noise, and the implications on
the appropriate definition of an escape time, are well known dT,
and have been widely discussed in the literature; see, e.g., ax =0, 9
Ref.[11]. The potentials used here do not exhibit such dis- x=0
tortions) In particular, we wish to establish analytically the )
dependence of ; on ttle flipping ratey, and to identify the d T21 =1 (10)
flipping rate for whichT; is a minimum. dx X=0

Doering and Gadougg] calculated the mean first passage
time for this model in the absence of the poten¥iéy), that  at the reflecting boundary, and
is, when the “barrier” flips between being a true barrief T,(x=1)=0, (1)

height+ «) to being a well ¢ «), and they obtained a reso-

nance phenomenon, that is, the mean first passage time from

0 to L exhibits a minimum at a particular value of the flip-

ping ratey. Doering and Gadoua also presented simulation

results for the casey= «, that is, when the “barrier” flips

between being a true barriéneight 2«) and there being no at the absorbing boundary. A brief description of how this

barrier. Bier and Astumianh7] considered the true barrier equation and boundary conditions arise is given in the Ap-

case, that is, the case where there is always a baimiéact,  pendix.

they tookvy> «), and obtained numerical results that show a

resonance. Their analytic barrier crossing rate results are ob- 1. ANALYTICAL SOLUTION

tained separately for low flipping ratésmall y) and for high OF THE DOERING-GADOUA MODEL

flipping rates(large y). Neither result in itself exhibits a ) i )

minimum, although one can infer the existence of a mini- Consider the mean first passage timexts 1 (y=L)

mum (but not its dependence on the system parameters; s¥d1en the mean barrier height ¥,=0. The solution as a

also Ref[11]) from their combination. functio_n of the initial positionx can in this case be given

With this general statement of the problem we can beanalytically:

more precise about the results that we present in this paper. ) _

First, we consider the: o barrier-well case of Doering and iy 2 a®  up—sinh(u)
; ) e 11(X)=(x—1)

Gadoua, reproduce their analytic results for the mean first

passage time, and also obtain analytic results for the resonant

mean first passage time, the resonant flipping rate, and the 2a? sint u(x—1)/2]

second moment of the first passage time distribution. We TN

argue that the: o barrier case represents a situation that is w7 a2\ coship)

completely different from the “true barrier” case considered + 2N\ sinf w(x—1)/2]+2u\ cosh u(x+1)/2]},

by Bier and Astumian. Both exhibit resonance behavior, but

via different mechanisms. We explore these differences and (13

interpret the Doering-Gadoua case on the basis of an evefnere we have introduced the symbol

simpler model. Furthermore, we obtain analytic results for

the high barrier case considered by Bier and Astumian that w=a’+2\. (14

yield anexplicitminimum in the mean first passage time as a

function of the flipping rate. We present analytic results forThis result has been previously reported for the particular

the mean first passage time at resonance, for the resonanitial value x=0 [6]. We know from Ref.[6] that T,(x

flipping rate, and we analyze the behavior of the system=0)=T, exhibits a resonance with respectNpwe wish to

away from this point to assess how sharp this resonancestablish the resonance flipping ratg, and the behavior of

might be. the mean first passage time at this resonance point.

dx® dx?

d3T d’T dT
L OVy—— + (V2 az)d—xl] =V, (12

x=1

A
— = (x+1)
w® a%+2\ cosiu) w?

{a? sin w(x+1)/2]
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The expression for the mean first passage time simplifies 2.0
considerably when the dimensionless quaniityis large
(u>1), which is the physically interesting weak-white-
noise regime. Indeed, the only way thatcould be small is 1.5 1
if « and\ are small, that is, ifin dimensioned uniisthe
white noise intensityD is greater than the barrier height
and greater thanL.2. The first condition renders the prob- 1.0 1
lem uninteresting — if barriers are on average lower than the
noise then one has an essentially free diffusion problem. The
second condition requires a small system with a low flipping
rate, again a very specific situation that is not particularly
interesting in this context. The customarily interesting physi-
cal situation occurs when the white noise is weak compared 0.0 -
to the barrier height, that is, whex® 1 and this in turn leads
to u>1. We use these two statements of the “interesting
regime” interchangeably. 05 .
When p is sufficiently large, the following approxima- T T T T T 1
tions are valid: -3 -2 -1 0 1 2 3

l0g5(A)

T)

g
—_— 0.5 .

: . 1
coshu—1~ coshu~ sinhu—u~ sinh u~ Ee”' FIG. 2. Mean first passage time as a function of barrier fluctua-

(15)  tion rate for the Doering-Gadoua model. The barrier fluctuates be-
tween the up and down positions with slopesnd —a, respec-
If, in addition, tively. Solid curve with circles: exact mean first passage time
obtained numerically. Solid curve with squares: our analytical result
)\>a2e‘a, (16) (18). Dotted curve: the low-frequency approximati®). The pa-
rametera=_8.
then the result simplifies even further, and one finally obtains

the following much simpler approximate expression: 1 3 7 \1
Mes™ —=a+| 1+ —=|+ 5| 3+ —=|=, a>1. (20
g T2 | af2mx) M1 V2 V2] 27 \2)a
X ~
! 2 (a%+20)2  (af+20)%2  a?+2n Note that the condition >a2e~2 is thus satisfied. The value
+O(aZe ), 17 of T, at the resonant flipping rate is
It can be shown that this expression as a function dias a TiA= A ed =T~ (2+1/2) i (4+342) 1
minimum at a finite value\ s that to leading order is of the a a’
form \es~a. This minimum is identified among the roots of
dT1(x)/dx=0 as the one that coincides with the minimum 3 1\1
of the complete expression df;(x) [Eq. (13)] as a— . + §+E 3 (21)

Explicitly, following Ref. [6], we setx=0 to simplify the

analysis further: . . _
y provideda is large. For small values of (A<a%e %) one

readily finds from Eq(13) with x=0 that

(a®?—2\)a? 2a? -
2 (a“+2\) (a®+2\) a‘+2\ 1 Y A2 A3
(18 T~ —ed— —e?+ —e3+ 0| —e* (22
2a2  2a* 2a° a® )
The extrema off ; as a function o obey the equation
whena> 1.
A2 2\ 1 In Fig. 2, the exact expression df; is compared with
—(@%+20)— —(@°=2)\)— E(a2+ 2\) approximation22) when\ — 0, and with approximatiofil8)
a a when\ — oo,
2 The second-order moment of the first passage time distri-
_ Gi(az_,_ 20)Y2=0 (19) bution, T,, also exhibits a resonance. However, the resonant
> .

frequency of T, does not coincide with that of ;. This
means that there does not exist a unique resonant frequency
This equation can be solved perturbatively by taking or universal scaling associated with the first passage time
~a(ho+tNa 1+ N,a2), an expansion consistent with the distribution. T, can be calculated in a similar waglbeit
fact thata>1. Once this expansion is substituted into Eg.even more expansivelysT,. However, the full expression
(19), the following result is obtained for the resonant flipping for T,(X) is too long to be included here. Instead, we only
rate as a function oé: reproduce the expression fop at x=0 whena>1,
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=~ = L2
T1— Tuhie= 2De_ff’ (26)
as seen from Eq18). Here
a2
DeﬁzD+2yL2. (27)

109,0(T,)

This is the well-known result for the mean first passage time
from O to L for a freely diffusing particle with diffusion
constantD . In this limit the flipping barrier behaves sim-
ply as an additional source of white noise of intensity
a?/2yL2. At the other extreme, when the flipping rate is very
low, A\—0, the barrier never flips as the process moves from
0 to L. If the barrier is initially “down” [ (0)=—1], then

it remains down and the process is simply diffusively driven
toward the absorbing barrier by a constant force;adP
—oo, the motion of the system becomes increasingly ballis-
log1o(A) tic. If the barrier is initially “up” [ »(0)=1], on the other
hand, it remains up and the process moves between the re-

FIG. 3. Second moment of the first passage time distribution for,

the Doering-Gadoua model as a function of barrier fluctuation rat flectwe barrier aty=0 and the absorbing barrier gt=L

with a=8. Solid curve with circles: exact second moment obtainede}ga'nSta constant opposing force. The mean first passage

numerically. Solid curve with squares: our analytical re$®. time for Suczh a process grows exponentially with the barrier
height asD“e**/a* [12]. In our calculations either initial

configuration is equally likely. The average of these two pos-

at(a*+a’\—4N\?) 4a’(a®—\? 2a%(4a’—\)

_ sibilities is the leading term in Eq22) (the ballistic contri-
T, > 8 + - + 5 L S
N A n bution is negligible:
20>\azJr 5)\2+0( - 23 7 LD, 28
- a‘e . — -=—e“ .
3#5 3#4 1 static 2a2

In Fig. 3, this approximate result is compared with the exacBetween these two limits lies a regime in which the mean
expression fofT, whena=8. The behavior of the resonant first passage time is a minimum. The minimum value occurs
frequency\ s, of T, can be obtained from the expression at the resonant flipping rate whose leading term for large
for T, whena—. The calculation yields values ofa/D is

)\res,f‘ b0a+b1+o(a_l)- (24) @

Yres™ W
where b, is the positive real solution of the equatiorbé‘: ] o ] _
+1003—6b,—3=0. Numerical solution of this equation 'n€ leading contribution to the mean first passage time at
leads to the valud,=0.825 72 ... . With this value, the this flipping rate is
coefficientb; can also be evaluated numerically, and one L2
obtainsb;=3.560 57. Note thah s>\ es. Finally, T, at T e (2+1/2) —, (30)
the resonant frequency behaves & Whena— o: a

(29

o ¢ and thus decreases with increasing This result has thé&
0., = -4 dependence of a diffusive process, but the effective diffusion
To(Nresd a2+ a3+0(a ), (25 coefficient here isa and notD. Note that the product
YresT res= O(1).
with ¢;=20.952L ... andc,=—104.24 ... .
Equationg(18), (20), (21), and(22) are the main results of IV. A SIMPLER MODEL SHOWING RESONANT

this section — they give the mean first passage time as a ACTIVATION
function of the barrier heightor well depth a, provideda
<e?, for all values ofx. The resonant behavior of the mean A surprising observation about the results of the Doering-
first passage time as a function of the flipping rate of theGadoua model is that the resonant frequengy and the
barrier is clear and dramatic. It is useful to exhibit explicitly mean first passage time at this resonant frequengy, do
the limiting results in the original units so that the depen-not depend on the white noise intendiyto leading order in
dence on system parameters is clear. When the flipping rate. This means that as/D—, the resonant properties be-
is large (\>a? or y>a?/DL?) the mean first passage time come increasingly independent of the white noise intensity.
fromy=0 toy=L grows as Indeed, the resonance therefore appears unaffected by and
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unrelated to the white noise; in particular, the minimum in y(®
the mean first passage time in the Doering-Gadoua model 1
appears not to arise from the coupling usually invoked be-
tween the white noise and the random dynamics of the po-
tential. s
We have used somewhat equivocal language in this de- ,
scription because the situation is in fact somewhat subtle. //
The resonance in the Doering-Gadoua model arises from two \/ ’
features:(1) the random dynamics of the potentid@hat is, d
the random switching between barrier up and barrier down T
and, in particular, the initial average over these dynamics, Reflecting Boundary
and(2) the nature of the reflecting boundaryxat 0. It is this ) ) _ )
latter feature, subtly influenced by the white noise, that is FIC- 4. Typical trajectories near the reflecting boundary for the
especially noteworthy: the resonance characteristics of thi/© types of boundaries discussed in the text. Dashed lines: "im-
Doering—Gadoua result whed—0 arenot reproduced by mediate rejection” boundary. Solid lines: “natural” boundary.
simply settingD=0 to begin with in the model equations. the one approached by the Doering-Gadoua model ithian

To pursue this issue in more detail, let us consider th%et to zero in the solution of the latter.

same model equations as did Doering and Gadoua but now ; . .
] . : There is another way to think of a reflecting boundary,
in the absence of white noise from the outset. In place of Eq, o ;
. . namely, to assume that the boundary only limits the region of
(1), the system thus evolves according to the simpler Lange- . : . )
vin equation movement of the system without interfering with the dynam-
q ics of the dichotomous barrier fluctuations. The dichotomous
o 31 noise evolves according to its own dynamics, and changes its
y(1==9g"(y)n(7). (31 yalue at random times that are independent of where the

rocessy(r) happens to be. Thus, if the system reaches the

The. solution of this _mgarﬂwst _passage time problem is mo%oundaryyzo when the noise happens fo he-— 1, the
easily found by splittingT(y) into two component§13]:  hoise may retain this value according to its own statistical
T'(y), the mean first passage time ye-L when »(0)=  properties. The process simply waits at the boundary, until
+1, andT ~(y), the mean first passage timeye-L when the noise switches tgy=1 in the natural course of events.
7(0)=—1. The convenience of this representation lies in theWe call this condition a “natural” reflecting boundary con-
ease of expression of the boundary conditions in terms oflition. This behavior is implemented via the following

T= boundary condition for the mean first passage time compo-

The boundary conditiorf9) is completely equivalent to N€Nts:
the so called “immediate reinjection” conditigri4,15

]

~ ~ 1
~ - T (y=0)=T"(y=0)+_, (35
T (y=0)=T (y=0). (32 Y

In this case, whenever the system reaches the boundary & in terms ofT(y),

y=0, the velocity immediately changes its sign, that is, the ~

driving noise(7) changes its value from 1 to + 1. Note dity)| _ L 36
that here the boundary condition directly affects the dynam- dy y=0 a

ics of the dichotomous barrier fluctuations since arrival at the

boundary causes the noise to change its value. It is easy fohe solution for the mean first passage time is now

ascertain that in terms oF(y)=(T"+7)/2, the “imme-

4 2
diate reinjection” reflecting boundary condition indeed "1 :£ £+ i (37)
translates to the Doering-Gadoua conditi® i.e., a2 a 2y
dT(y) It is easily seen thal;, has a minimum aty,e= a/+2L2
ay =0. (33 [see Eq(29)]. In Fig. 4, we plot a realization of the process
y=0 y(7) for the two reflecting boundary conditions, the “imme-

diate reinjection” and “natural.” From this figure, it is clear
that the two boundary conditions lead to different results for
the mean first passage time.

The interesting point to note is that tBe— 0 limit of the

With this boundary conditioritogether with the absorbing
condition aty=L), the mean first passage time frgm0 to
y=L if the initial valuesn(0)= =1 are equally probable is

[14] mean first passage time in the Doering-Gadoua model is
Lt L2 T,,, that of the “natural boundary,” andot Ty, , although
Tojr =—+—. (34) the reflecting boundary condition used for the solution of the

@ Doering-Gadoua model is Eq9). In the Doering-Gadoua
_ model, no matter how weak the white noise, its effects be-
Note thatT,;, is a monotonically increasing function gf  come dominant near the reflecting boundary. The white noise
and thus exhibits no resonance. Clearly, this solutionas  allows reversal of the trajectory even infinitesimally close to
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barriers {/o>1) that does lead to a minimum, and hence can
be used to describe the resonance phenomenon analytically.
We return to the Langevin equatiq) with Egs. (2)—(5).

Now, however, we takevg*=a>D or, in dimensionless
guantities, Vo+a>1. The barrier thus flips between two

large values.
The general solution to Eq8) is

1
T(x)= V—O(x— 1)+ A (e —el1) + A,(el2X—e2)

+ Ag(e9*—el3), (38

where the coefficients; are the three roots of the polyno-
mial equation

a®—2Vea?+(V5—a?—2\)q+2 V=0, (39

-3 -2 -1 0 1 2 3 and the constantd,; have to be found from the boundary
logs(Y) conditions(9)—(12). It can be demonstrated that fo%>a
the roots of Eq(39) are all real, two of them positive and the
FIG. 5. Mean first passage timelte=1 as a function of barrier ~other one negative. The full expressions for the constants
fluctuation rate for the two types of reflecting boundaries discussedre complicated and too long to be included here. However,
in the text. Dashed curve with squares: “immediate rejection” it is possible to derive shorter useful expressions for them as

boundary. Solid curve with circles: “natural” boundary. a series in\. In this case, the roots; can be written as
the reflecting boundary without triggering a flip of the bar- 2V, 4Vo(a2+V(2))
. . o __ 2 3
rier, thus removing the dynamical interference between the q1= V.V + AYEE A+ O(N7),
_ Vo

boundary and the dichotomous flipping process. There is
therefore a profound difference between the situation in
which white noise is present, albeit as weak as one wishes A Vi 1o 3

(e HOE . » @t s xS L 1es, G=V_+——— A2+0O(\%), (40)
and the situation in which there is no white noise in the first V_ 23V
place — the limitD—0 is discontinuous. In the Doering-
Gadoua model there is a resonance in the mean first passage \ B
time to absorption because, through the action of the white gz=V,+ V—+ 3
noise (no matter how weagkthe processan delay (increas- + 2aVi
ingly as the white noise intensity decreagsasrival at the here
absorbing state if the barrier is up and does not flip of its own”
dynamics. However, the characteristics of the resonant flip- V.=V,*a. (42)
ping rate and the mean first passage time at resonance do not
explicitly depend on the intensity of the white noise. In Fig. When these expressions are introduced into B§), the
5, we exhibit the two mean first passage tim&s;, and following result is obtained for the mean first passage time to

A2+0O(\D),

T, order\?:
NleV7 + NzeV+ + N362V0
V. BIER-ASTUMIAN MODEL T(x=0)= , (42
. i X i D1+ Dze\/f‘f'Dg)eV+
The main conclusion that follows from the discussion of
the preceding sections is that the resonant effect in the “toy’where the coefficients in the numerator are
model of Doering and Gadoua is not of the same nature as
the resonant activation in systems where the activation pro- ) V_V, Vé 3aVv, a?v,
cess is exclusively due to the presence of white néise, Ni=Vi-M—~—~av " v "vv
0 a — — 0 —_
nonzero temperatuyeln order to study the resonant process
in this latter situation, we return to the full model introduced a(Vy—5a)
by Doering and Gadoua but now withy>a, so that there is -
always a barrier. This problem was first analytically studied Ve
by Bier and Astumiarj7]. The approximation developed by
these authors coincides with the so called kinetic approxima- 5 V_V, V3 3av. a?v_
tion introduced in Ref[16]. The main limitation of this Np=VZ—=A v v Y; YAV,
. . ) 0 av, + oVv+
method for the present purposes is that it leads to a mean first
passage time that does not exhibit a minimum. a(Vy+5a)
We have developed an approximation for the mean first — | 43
passage time to the absorbing boundary for high average Vi
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{ (2Vo—1) 432 If X becomes so small that the time scale of barrier fluctua-
N3=4N{ 1+\ - , tions is much slower than the escape time, then this further
VaVo (vyvo)? simplifies to
and those of the denominator are 1/1 1
T1—Tuin~ —<— + —) , (51)
D, =2(V,V_)2+2\(a2+3V,—2V,V,.V_), 2\ ke ks

- which is just the arithmetic mean associated with the two
D,=2\ Vz++ A (aViV_—V+V2_+2a3—6a2V0) , possit_)le initial barrier configu_ratior[s_ee the discussion sur-
I aVv? rounding Eq.(28)]. In the original units,

(44
T T L2D v, ID L2D v_ /D
[ , N , , T T1—>Tkin:7e e Fe - (52
Dg=2\| VZ+ —(aVZV, +V_Vi +2a%+6a%Vy) |. + -

* Between these two limits lies the resonance regime where

This approximation is one order higher ¥ than the one the mean first passage time is shorter than either the “white
derived in Ref[7], which is equivalent to the so-called ki- noise” or “static noise” results. In the original units the
netic approximatiorj16]. The advantage of our approxima- mean first passage time at resonaffeg. (46)] reads
tion is that it shows a minimum as function of the frequency ) 5

\. WhenV,>1 the resonant frequency can be calculated = 2D o 2LD
explicitly: oS R e a2 2 °

(53

1/2
a(e®®-1)2v3

4e?¥(1+a—e?®+ae)

_ where the second expression, validai= 1, serves to stress
exp — 5 ) 49 the point that the resonant mean first passage time is essen-
tially the usual passage time over the lower of the two bar-

and the associated minima' mean first passage t|me reads rierS. It iS not particularly instructive to eXh|b|t the fu” ex-
pression(45) for the resonance frequency in the original

res

2 units, but, ifa=1 we can display the shorter expression
Tes 5522 © (46)
V< +e “Vy 302
» 0 —v_/2D
. . L. Yres 212° . (54)
The analytic expression@?2)—(46) are the principal re- 2L°D

sults of this paper. i
As we did in the Doering-Gadoua case, it is useful tolt should be noted that both the resonant mean first passage

exhibit explicitly various limiting results in the original units @nd the resonant frequency depend on the intensity of the
so that the dependence on system parameters is clarified. white noise, as does their product. This dependence appears

When the flipping rate is largené&a2 or y> a2/DL?), in the exponents as well as prefgctors.
result(42) reduces to A general feature of our solution and, more generally, of
the resonant activation phenomenon is that with increasing
24 a2/\ 2V, barrier height the resonance phenomenon becomes less and
T1— Twnie= >— exp 5 | (47)  less sharp: a long flat region develops around the resonant
2Vy 2 a frequen fact that has b licitl ted i li
+ = qguency, a fact that has been explicitly noted in earlier
A work [17]. Analysis of Eq.(42) makes it possible to estimate

. .- . analytic bounds of this flat region, which spans the range
or, in the original units,

V,V_

2 -2 2
Vie +ve
off —e V-<\<
v,

. 55
e OlDeff' (48) 4 2V0 ( )

T1— Twhite= ¥
0 .
Thus, rather than stressing the resonance aspect of the prob-

whereD 4 is the effective diffusion coefficient defined in Eq. lem, it might be more accurate to describe the time scale of
(27). This is the appropriate and familiar result for activation the activation process as relatively insensitive to the param-
over a barrier of heighi, with diffusion coefficientD 4. At  eters of the system except in the limits of very low and very
the other extreme, as becomes small, the kinetic approxi- high barrier fluctuation rates. As noted above, if the barrier
mation[7,16] is valid and the mean first passage tifd€)  fluctuations are sufficiently slow, then an initially high bar-
reduces to rier remains that way essentially forever, and the system on
average crosses it before the barrier flips. Passage over the
2N+ (ke +ko)/2 higher barrier then dominates the mean first passage time. At
Kik_+N(kyi+ko)’ 49 the other extreme, when the barrier fluctuations are very
rapid, crossing occurs essentially over the average barrier.
where However, over most parameter ranges the mean first passage
’ v time is essentially determined by passage over the lower bar-
ke=Vie = (50)  rier — the system can avoid passage over the higher barrier

T1—Tyin=
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FIG. 6. Mean first passage time as a function of barrier fluctua- FIG. 7. Mean first passage time as a function of barrier fluctua-
tion rate for the Bier-Astumian model. The barrier fluctuates be-tion rate for the Bier-Astumian model witti,= 15 anda= 1. Solid
tween the high valu&/,+a and the lower valud/y—a, with V, curve with circles: exact mean first passage time obtained numeri-
=11 anda=1. Solid curve with circles: exact mean first passagecally. Dashed curve: white noise approximati@v). Solid curve
time obtained numerically. Dotted curve: kinetic approximationwith squares: our resu(g2).

(49). Dashed curve: white noise approximatiofir). Solid curve

ith : u2). L .
with squares: our resu(#2) wavew( ), a periodic function that alternately takes on the

values+1 and—1. The changes from one to the other occur

by “waiting” for it to flip. Provided the waiting time is 4t 5 constant frequency. The period of the square wave
shorter than the time it would take the system to cross the nction is thus 2.

high barrier, flipping will occur first and the system will

cross when the barrier is loweunless flipping is too rap)d  the probability for the system now includes a time-periodic
This process is most efficiertbut not dramatically more  stential, The problem can be tackled analytically using Flo-
efficient — hence the flat behavjort the resonance fre- et theory. We simply state qualitatively the results that one

quency. _ ) . obtains with this exact approach, but then follow a simpler
In Fig. 6, the mean first passage time and the differenf,nroach to arrive at some quantitative conclusions.

approximations explained above have been plottedVier We continue our discussion in terms of dimensionless
=11 anda=1. Our approximation clearly captures the reso-yariaples and parameters. Exact solution of the problem
nance behavior extremely accurately and for that matter thfoes, as noted above, also lead to resonant activation when
behavior of the mean first passage time over a broad range gle parrier changes from higher to lower periodically, with a
barrier fluctuation rates. Figure 7 again shows the mean firgbsonance behavior very similar to that of the stochastic case.
passage time, but now withlo=15 anda=1. This figure |5 gther words, the mean first passage time is large when the
serves to reconfirm the agreement of our results with th@yeriod of oscillation is very slow and also when it is very
numerical ones, and also illustrates the flattening of the refyt Ag before, and for the same physical reasons, in the
gion around the resonance as the height of the barrier inprmer case the mean first passage time is dominated by the
creases. Figure 8 shows the resonance frequency as a fuliggh parrierv, , and in the latter case it is determined by the

tion of the barrier height. Again, our approximation clearly ayerage barrie,. Again as before, between these two lim-
captures the exact results extremely well for sufficiently highiis there is a flat regiofi.e., rather insensitive to the param-

The Fokker-Planck equation describing the evolution of

barriers. eter valueswhere the mean first passage time is determined
primarily by the lower barrieV _. The only difference be-
VI. ACTIVATION DRIVEN BY A SQUARE WAVE tween this problem and the stochastic one lies in the detailed

FUNCTION way in_ which the mean first passage time changes from one
behavior to the other.

It is interesting to explore whether the resonant activation To find the mean first passage time at the slow-barrier-
phenomenon requires that the barrier fluctuate stochasticallypodulation end of the problerfwhere the difference be-
or whether it also occurs when a noisy process crosses taveen stochastic and periodic modulation is most pro-
barrier that changes periodically. Indeed, stochastic fluctuanounced, we recall that for a fixed barrier of height the
tion of the barrier is not a requirement. probability that the process hast yet crossed the barrier at

To investigate the activation process when the barrier ostimet (i.e., the survival probability at timg), is exponential
cillates periodically between higher and lower values, weg 18], e k!, where the crossing rate=V?e™" [cf., Eq.(50)].
replace the dichotomous noisg 7) in Eq. (1) with a square If the barrier is not fixed, but instead changes slowly from
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FIG. 8. Resonance frequency as a function of average barrier FIG. 9. Mean first passage time as a function of barrier
height for the Bier-Astumian model with=1. Circles: exact nu-  oscillation-fluctuation rate. Square symbols: kinetic approximation
merical results. Solid curve: our rests). for square wave barrier oscillations. Circles: fluctuating barrier.

Barrier parameter value¥,=11 anda=1.
one value to the other at predetermined periodic time inter-
vals A=\"1 with A<1, we can track the trajectory of the of the escape time R/ when the barrier i/, and 1k_
system explicitly and write down an expression for the sur-when the barrier i¥ _ . This kinetic approximation also does
vival probability S(t) that the process has not yet crossed thenot exhibit a minimum because it does not behave correctly
barrier at timet. If initially the barrier isV, and the time when\—x; instead, it converges to the same value as the

t=0 corresponds to the beginning of a period, then kinetic approximatior(49), that is, to k, +k_)/2.
In Fig. 9, approximatior{58) to the mean escape time for
S*=ProfT">t}=qlgle (72", the activation process driven by a periodic signal is com-
pared with the escape time for the same system driven by
2nA<ts=(2n+1)A, (56 dichotomous noise. The difference between the two is no-
ticeable in the decrease of the mean first passage time with
S'= ProfT*>t}=q " 'qhe k-[t-(n+DA] increasing flipping rate — the dependence on the flipping
rate is considerably sharper in the periodic case than in the
(2n+1)A<t=(2n+2)A, random case. A similar effect was observed recently in sys-
tems that exhibit coherent stochastic resonafk®. The
wheren=0,1,2, ... , andy, andq- are the probabilities minimum first passage time and resonance flipping rate are

that a crossing event does not happen when the barriers aigssentially identical in the two cases.
respectively,V, andV_. The assumption about the statis-
tics of the crossing events yields

qi:e*kt”\_ (57)

VII. CONCLUSION

We have revisited the problem of resonant activation, that
is, of the mean escape time of a particle driven by white
noise of intensityD over a barrier of randomly fluctuating
height. The initial position of the particle ig=0, and the
barrier is aty=L. A substantial recent literatufé—9,11,16
deals with this problem, but the results to be found in the
Viiterature are almost exclusively numerical. The distribution
of barrier fluctuations is typically taken to be either dichoto-
mous (i.e., the barrier fluctuates between two values
Gaussian. The correlation function of the barrier fluctuations
T +T- 1/ 1 1 1/ 1 1\q.-q is usually assumed to be exponential and thus characterized
= = —< ) + —( )— by a rate parametey. The quantity of interest is the mean

2 2 2 1-9.9- L= . . .
(58  ©scape timer ; of the paflcle over the barrier as a function
of y. It is observed thaf; vs y exhibits a minimum, i.e.,

This result corresponds to the same level of approximathere is an optimal barrier fluctuation rate that minimizes the
tion as the kinetic result49). At very low frequenciesi escape time of the particle. This minimum defines the reso-
—0, the mean escape time is correctly given by an averageant activation phenomenon.

The mean first passage tinffe” can then be calculated di-
rectly as a moment of this probability. The survival probabil-
ity S™ and associated mean first passage fimewhen the
barrier is initiallyV _ is similarly obtained. To compare most
directly with the stochastic results, we assume that initiall
the barrier is equally likely to b¥, or V_. A short calcu-
lation then leads to the following result for the mean first
passage time whexn=<1:

Gk

k, k_
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In this paper we have concentrated on dichotomous fluclimit, it can be shown that the escape time decreases with
tuations and on triangular potential barriers, so our quantitadecreasingy. These two results clearly point to a minimum
tive results are restricted to these cases. However, we beliefer some finite value ofy, but neither approximation is suf-
that our results provide insights beyond these specific condficient to actually capture the minimum. Our goal here has
tions. In particular, they provide insights for barriers whosebeen to develop a single approximation to capture this mini-
fluctuations are bounded between an upper valueand a mum, and in this we succeeded.
lower value v_. The applicability of our conclusions to However, we found in the process that a distinction needs
Gaussian fluctuations is therefore less certain, but below w be made between two cases that lead to a different physi-
will present some conjectures for this case as well. cal origin and parameter dependences for the resonant flip-

A variety of approaches to the problem of the escape oveping rate and the associated escape time. In the literature,
a fluctuating barrier of bounded variation provide excellentthese two cases have been treated more or less as one be-
and consistent analytic approximations to the escape rate itause both involve dichotomous fluctuations, but they are in
the limiting cases of very slow barrier fluctuations and offact very different. One of these is the case in which the
very fast barrier fluctuations. In the slow fluctuation case, thé'barrier” fluctuates between an “up” or positivébarriep
so-called “kinetic approximation’{16] captures the behav- configuration of heightv, =« and a “down” or negative
ior of the system very well. In the limit of very slow fluc- (valley) configuration of heightv_=—«. We have called
tuations ¢(y—0) the barrier retains its initial height through- this the Doering-Gadoua modgs]. In the other case, the
out the process. The mean first passage time for the ensemiarrier fluctuates between a high valuge =vy+« and a
is then just the mean first passage time averaged over tHewer (but still positive value v_=1v,—«a. We have called
initial distribution of barrier heights. For example, in the this the Bier-Astumian modgl7]. For each model we found
dichotomous case if the height of the high barrierjsthen  a single expression for the mean first passage time that has a
the mean escape time 8s-0 is determined by the mean minimum, and we compared our results with exact ones ob-
escape time over this high barrighe mean escape time over tained numerically. The agreement in both cases is excellent
the lower barrier being negligible in comparigon for almost the entire range of flipping rates, and in particular
over a broad range surrounding the resonance.

The distinctive aspect of the Doering-Gadoua model is the
fact that part of the time the “barrier” is really a valley, so
that the particle can essentially roll rather than climb toward

This is the result captured, for instance, in E@8) and(52). L during these times. We found an explicit expression for the

Clearly, this result is determined in part by the assumptiorfésonant flipping rate and the resonant mean first passage

(generally made in the literaturéhat an initial average over time in this case:

an ensemble of barrier heights is appropriate. The entire dis-

cussion that follows, including the occurrence of a reso- a

nance, is dependent on such an initial average or at least on Yres™ ﬁ (62)

the assumption that a finite fraction of realizations begin with

a barrier configuration that is higher than the lowest barrier.
At the opposite extreme, when the barrier fluctuations are

very rapid (y— ), the main effect of the flipping barrier is

to increase the effective intensity of the white noise. The

escape then occurs over the average barrier, with a diffusionhe noteworthy fact about these results is that neither the
coefficientD ey which exceedd by an amount determined resonant flipping rate nor the resonant escape time depend
by the detailed diStI’ibution Of barrier f|uctuati0ns. If the av- exp||c|t|y on the intensityD of the Wh|te noise_ Th|s fact
erage barrier height is,>0, then the mean escape time in seems not to have been noted before. We then went on to
this limit is explore whether in fact this resonance is observed in a pro-
cess defined by the Doering-Gadoua model with no white
noise from the outset, and found that there is no resonance
for such a model. We explained this apparent contradiction
by noting a discontinuity in th&® —0 limit of the problem

If the average barrier height is zero, then and by presenting a modified set of boundary conditions that
does lead to a resonan@eecisely the Doering-Gadoua reso-
nance in the absence of white noise.

In order to obtain a result for the escape time in the Bier-
Astumian model that captures the resonant behavior, we
These are the results captured in E@6) and(48). In any  found that we had to retain terms in our solutions to one
case, the escape time is Clearly smaller in the fast barriq5ower h|gher infy than had been done previoug{me lower
fluctuation limit than in the slow barrier fluctuation limit.  orders yielded only the kinetic approximatidit]. With this,

In the literature, each of the above approximations hadye identified the resonant frequency and escape times as
been carried sufficiently far to deduce the behavior of the

escape time as one moves away from the strict limits. Thus, 3

within the kinetic approximation, it can be shown that the y ~_ 0
. . . . . res 21/2

escape time decreases with increasingAt the opposite 2L“D

2
Tstatic™ _zev+ P, (59)
Uy

~ L2
Tres—(2+ \/E); (63

~ L2D o

white™

gv0/Defr, (60)

Vo

—~ L2

Twhite= 2D, (61
€

e v_[2D (64)
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and (more complete results are found in Seg. V Note that Eq(Al) is a second-order partial differential equa-
tion in the time variable and a fourth-order partial differential

~ 212D VD equation in the state variable. Therefore, two initial condi-

Tres~——e" . (69 tions and four boundary conditions are needed to solve it.

4

The initial conditions are

We noted that in this case both the resonance frequency and

the mean first passage time at the resonance frequency de- S(x,0=1 (A3)
pend on the intensity of the white noise, as does their prod- ' '

uct. At resonance the escape over the barrier occurs primarily

when the barrier is at its lowest. We also noted that the IS

dependence on the flipping rate, especially for high barriers, > =0. (A4)
is very flat: there is a broad range of flipping rates where t=0

passage over the barrier occurs primarily when the barrier is

low. In this broad range of flipping rates the escape time ove
the high barrier is so long that the barrier is likely to flip to
its lower height before the escape is completed.

We also discussed the fact that the resonant activation S(1t)=0, (A5)
phenomenon does not require a fluctuating barrier — it also
occurs if the barrier oscillates periodically between the high
and low values. The behavior of the escape time at low and
high oscillation periods is the same as in the dichotomous
fluctuation case, and at intermediate oscillation periods a
resonance effect is also observed.

Finally, we note that our analysis does not address thand for the reflecting boundary &t=0 they are
case of Gaussian barrier fluctuations, that is, of Ornstein-

Uhlenbeck barrier fluctuatiord.1]. The results for such bar-

For the absorbing trap at=1, the boundary conditions read

==Vodé(t), (A6)
x=1

Jd 2 2 0S
£+V0&—Vo+a &

rier fluctuations with fixed variandel.0] should be similar to 1“7_5 ~0 (A7)
our results for dichotomous noise. In particular, the escape X X=0_ '
time for the model analogous to that of Doering and Gadoua
(Vp=0) will show a minimum even in the absence of white
noise. J 52
(E ﬁ) Slx=0=0. (A8)
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APPENDIX: SURVIVAL PROBABILITY AND FIRST 0

PASSAGE TIME MOMENTS

The moments of the first passage time fram 0 to x Clearly TO_(X)=1 by normalization.T,(x) is the mean first
=1 can be obtained from the survival probabilix,t) that Passage time to 1 for a process that starts(@)=x; T»(x)
the system evolving according to Eql) (appropriately IS the se_cond moment of the cﬁstnbunon, S0 _that the variance
scaled to dimensionless variablegth a reflecting boundary ~ Of t?e distribution of mean first passage timesoi$=T,
atx=0 and an absorbing boundarysat 1 has not left the —T1.
interval (0,1) at timet. This survival probability obeys the ~ Equations for the first passage time moments can be ob-
following partial differential equatiorfa detailed derivation tained by multiplying Eq(A1) by t"~* and integrating over
and original references for the survival probability in an in-time by parts. The following recursive-differential equation
terval terminated by two absorbing boundaries are presentdg €asily found:

in Ref. [20]):
92S d?T
LPS+2NLS=a2—, (A1) LT~ 2N LpT,—a° dxz” =Gn. (A10)
X
where L is the differential operator
where
d a9
L=—+V (A2)

a0 gy 9n=N(2N—2Lp) T 1—n(N—1)T, 5,  (ALD)
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and Lp is the Fokker-Planck operator, d » | dTh dT,_1
J— R + — N —p—
(2) | Lp Vodx Vo—a ax | . N—ix .
d d?
Lo=-Vo—+ —, (AL2) +Vodns, (A14)
dx dx2
dT,
@) 4 =0 (A15)
with T_;=0. The boundary conditions can be obtained di- x=0
rectly from those of the survival probability: d2T
@) <% | =7nTa-a(0). (A16)
(1) To(1)=0, (A13) o
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