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Continued fraction solution for the radiative transfer equation in three dimensions
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Starting from the radiative transfer equation, we obtain an analytical solution for both the free propagator
along one of the axes and an arbitrary phase function in the Fourier-Laplace domain. We also find the effective
absorption parameter, which turns out to be very different from the one provided by the diffusion approxima-
tion. We finally present an analytical approximation procedure and obtain a differential equation that accurately
reproduces the transport process. We test our approximations by means of simulations that use the Henyey-
Greenstein phase function with very satisfactory results.

PACS number~s!: 05.40.2a, 05.60.2k, 66.90.1r
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I. INTRODUCTION

Diffusion theory is perhaps the most employed appro
mation scheme for photon migration in multiply scatteri
media because its simplicity goes along with effectivity
many applications@1–4#. There are, of course, situation
where diffusion theory does not provide useful approxim
tions and simply does not work. One of these cases is tha
transport in either small systems or through strong absorb
media. In other words, diffusion theory will not provide co
rect approximations when the photon mean lifetime ins
the medium is small compared to the so-called isotropiza
time @5,6#, since in such a case photons do not experie
enough collisions for the diffusion approximation to app
@4#. This is certainly the case of transport through thin sla
the usual geometry encountered in many biological exp
ments such as skin measurements and nondestructive
@2#.

One of the reasons for the failure of diffusion theory
thin slabs is that it does not take into account the ballis
properties of photon movements and the effect of anisotro
scattering. Several approaches have been developed to
come these difficulties; among them we single out the te
rapher’s equation approach first proposed by Ishimaru@7#
some years ago and recently improved by Durian and R
nick by means of anad hoctelegrapher’s equation adapted
the problem@8#. Another approach, proposed by Gandjbak
che, Bonner, and Nossal@5,6#, exploits the random-walk im-
age of multiple light scattering with properly scaled para
eters, so as to take anisotropy into account. We have rece
addressed the problem as well and proposed a model b
on a three-dimensional generalization of the persistent
dom walk@9#. This model assumes that photons move alo
directions that are parallel to the axes, which allows tak
ballistic motion effects and strongly anisotropic scatter
into account. However, the model is unrealistic in spite
allowing us to exactly solve the problem of multiple
scattering migration in a thin slab.
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†Present address: Gaesco Bolsa, SVB, S.A., Diagonal 429, 0
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None of the above approximations are completely sa
factory, and the most complete account of transport for
problem at hand is provided only by the solution of the tra
port equation, which, in the case of light propagation throu
narrow slabs, is the so-called radiative transfer equation~see
below!. Nevertheless, to our knowledge, there are no gen
analytical solutions other than numerical ones for transp
equations, and this makes fitting experimental data to the
difficult and impractical. Herein we obtain an analytical s
lution, for the free propagator along one axis and for a
phase function, of the radiative transfer equation in
Fourier-Laplace domain. We also present an approxima
scheme, based on continued fractions, which gives very g
results when tested against simulation results.

II. MATHEMATICAL FRAMEWORK

The starting point of our analysis is the radiative trans
equation~RTE! that defines the motion of a photon through
disordered medium@1,7,10#. The photon moves through th
medium at finite velocityc and suffers scattering accordin
to a Poisson law at ratems ; that is, the time between two
consecutive scattering events is a random variable with p
ability density

c~ t !5mse
2mst.

These scattering events are defined by a phase func
b(VuV8) that takes into account the probability of a give
transition between two directions of propagation,V8 andV.
Moreover, we will assume that the phase function is onl
function of the relative angle between the directions bef
and after the collision. This is not a strong assumption
long as no drift is acting on the system, as is the case
photon propagation in homogeneous media. This implies
the phase function takes the simpler form

b~VuV8!5
1

2p
b~u!,

whereu is the relative angle; that is, cosu5V•V8. Finally,
let p(r,V,t) be the joint probability density function in orde
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to find the photon at the positionr5(x,y,z) moving in the
directionV at timet. The radiative transfer equation for th
density is@10#

]p~r,V,t !

]t
1cV•“p~r,V,t !1msp~r,V,t !

5msE b~VuV8!p~r,V8,t !dV8. ~1!

One of the most important applications of this equat
corresponds to the problem of transport through slabs. In
case, because of the symmetry of the problem, the only
evant direction is one perpendicular to the slab, say, thz
axis. Having this in mind, we will solve the problem for th
marginal probability densityp(z,t). In consequence, we wil
replace the operatorV•“ in Eq. ~1! by cosu]/]z and use the
initial condition

p~z,V,t50!5b0~V!d~z!, ~2!

which corresponds to a photon starting its movement fr
the origin at t50 with direction distributed according t
some functionb0(V). Moreover, we will assume that pho
tons start moving with cylindrical symmetry with respect
thez axis; that is,b0(V) is only a function of the polar angle
with respect to thez axis. The problem given by Eqs.~1! and
~2! contains all the information we need, and obtaining
solution is the main objective of this paper.

A. The angular expansion and thePN method

We will now perform the angular expansion on all th
functions appearing in the RTE. In fact, this is the ba
assumption of the so-calledPN approximations that are ex
tensively used in transport theory@10#. Thus the phase func
tion becomes

b~VuV!85(
l 50

`

(
m52 l

l

b lYlm~V!Ylm* ~V8! ~3!

~symbol * means complex conjugate!, whereYlm(V) are the
spherical harmonics defined as

Ylm~V!5A2l 11

4p

~ l 2m!!

~ l 1m!!
eimwPl

m~cosu!,

Pl
m(•) are the associated Legendre functions, andb l are the

coefficients of the expansion of the phase function in ter
of Legendre polynomials, i.e.,

b l5E
0

p

b~u!Pl~cosu!sinudu. ~4!

We easily see thatb051, which assures the normalizatio
condition, and

b15g[^cosu&

is the anisotropic parameter widely used in the literatu
Taking into account Eq.~3!, the term on the right-hand sid
of Eq. ~1! becomes
is
l-

s

c

s

.

ms(
l 50

`

(
m52 l

l

b l plm~z,t !Ylm~V!,

where plm(z,t) are the coefficients in the expansion
p(z,V,t) in terms of spherical harmonics, i.e.,

plm~z,t !5E p~z,V,t !Ylm* ~V!dV. ~5!

Collecting all of the above and taking the joint Fourie
Laplace transform of Eq.~1!, we get

(
l 50

` A112l

4p
b l

0Yl0~V!

5(
l 50

`

(
m52 l

l

@s1ms~12b l !# p̂lm~v,s!Ylm~V!

1 icv(
l 50

`

(
m52 l

l

p̂lm~v,s!cosuYlm~V!, ~6!

where

p̂lm~v,s!5E
2`

`

dze2 ivzE
0

`

dte2stplm~z,t !

is the joint Fourier-Laplace transform of the coefficients d
fined in Eq.~5!. The quantitiesb l

0 are defined as in Eq.~4!
but with the initial angle distributionb0(V) instead of
b(V). Using the standard relation

~2l 11!xPl
m~x!5~ l 112m!Pl 11

m ~x!1~ l 1m!Pl 21
m ~x!,

we can obtain from Eq.~6! the following infinite set of linear
equations forp̂l0:

sp̂0~v,s!1
icv

A3
p̂1~v,s!5

1

A4p
, ~7!

p̂l 21~v,s!1s l p̂l 11~v,s!5a l~v,s! p̂l~v,s!1r l~v!

( l 51,2,3, . . . ) wherep̂l(v,s)[ p̂l0(v,s),

s l5
l 11

l
A2l 21

2l 13
,

a l~v,s!5
i @s1ms~12b l !#A4l 221

cv l
,

and

r l~v!52
2l 11

icv l
A2l 21

4p
b l

0 .

Note that we are solving the problem forp̂l0(z,t) because we
are only interested in the marginal probability densityp(z,t),
which is related top00(z,t) through the relationp(z,t)
5A4pp00(z,t).
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We will solve the system of equations~7! in two steps:~i!
we first truncate the infinite set; i.e, we assume that b
p̂l(v,s) andr l(v) vanish whenl>n for certainn, and solve
the resulting finite system of equations;~ii ! we take the limit
n→`. Following this way, the final solution reads

p̂~v,s!5
1

s@s1ms~12g!#1c2v2F1~v,s!/3
H s1ms~12g!

2 icvF1~v,s!Fb1
01(

l 51

`
~ l 11!!b l 11

0

~2l 11!!!

3~2 icv! l)
j 52

l 11 Fj~v,s!

s1ms~12b l !
G J , ~8!

whereFj (v,s) are continued fractions defined as

Fj~v,s!5
1

11
k j~v,s!

11
k j 11~v,s!

11
k j 12~v,s!

11•••

~9!

andk l(v,s) are the following coefficients that contain all th
information about the characteristics of the scattering:

k l~v,s!

5
~ l 11!2c2v2

~2l 11!~2l 13!@s1ms~12b l !#@s1ms~12b l 11!#
.

~10!

Equations~8!–~10! are the main results of the paper a
provide us with the exact solution in the Fourier-Lapla
space of the marginal probability densityp(z,t) for an arbi-
trary phase function. If we assume thatk l(v,s)50 for l
>N, we recover the so-calledPN approximation and, from
this point of view, our solution is precisely theP` solution.

In order to proceed further, we need to specify a ph
function for the problem at hand. The simplest choice is t
of the isotropic scattering. In such a case, all coefficients
the phase function vanish; that is,b l50(l 51,2, . . . ) and

k l~v,s!5
~ l 11!2c2v2

~2l 11!~2l 13!~s1ms!
2

.

Moreover, if we suppose isotropic initial conditions, th
solution ~8! becomes

p̂~v,s!5

arctanS cv

s1ms
D

cv2msarctanS cv

s1ms
D , ~11!

where we have used the expression of the function arctax)
in terms of a continued fraction@13#. In this case, due to the
spherical symmetry of the solution, we can replacev with
v5Avx

21vy
21vz

2 and get the three-dimensional dens

p̂(v,s). This is precisely the solution obtained by Masolive
h

e
t
f

(

,

Porrà, and Weiss some years ago@11# and, in a different
context, by Claes and Van den Broeck@14#.

B. The moments of the distribution

Let us now obtain the moments of the distribution usi
the characteristic function Eq.~8!. Looking at the structure of
the continued fraction~9!, we realize that theFj (v,s) are
analytical functions ofv and that their expansion until orde
2n coincides with the expansion of the same fraction tru
cated atk j 1 l(v,s)50 for l .n. Using this property, we can
easily write the Laplace transform of the moments^ ẑn(s)&.
Thus, for instance, the first three moments read

^ẑ~s!&5
cb1

0

ss1
, ~12!

^ẑ2~s!&5
2c2

3s2s1

1
4c2b2

0

3ss1s2
, ~13!

^ẑ3~s!&5
2c3b1

0

s2s1
2

1
24c3b1

0

15ss1
2s2

1
36b3

0c3

15ss1s2s3
, ~14!

where, for simplicity of notation, we have defined

sn[s1ms~12bn!,

(n51,2,3, . . . ). From these expressions we readily see t
in order to obtain the moment of ordern we need to know
the nth coefficient of the expansion of the phase functio
Hence any approximation trying to go further than the diff
sion approximation necessarily needs at least the sec
order properties of the phase function.

C. The differential equation

In spite of having the exact expression, in terms of t
continuous fractions and the Fourier-Laplace domain, of
marginal probability density, it turns out to be quite useful
obtain the differential equation forp(z,t) because the knowl-
edge of this equation will allow us to get suitable appro
mate expressions of the distribution. Note first that, as m
tioned above, the continued fractions of Eq.~9! are analytical
functions ofv that can be expanded in the form

Fj~v,s!511 (
n51

`

f̂ n
( j )~s!v2n, ~15!

where the coefficientsf̂ m
( j )(s) can be obtained by expandin

the equivalent truncated fraction~i.e., with k l50 for l .n)
in powers ofv. Substituting Eq.~15! into Eq.~8! and invert-
ing the joint Fourier-Laplace transform we get
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]2p~z,t !

]t2
1ms~12g!

]p~z,t !

]t

5
1

3
c2

]2p~z,t !

]z2
1

1

3
c2(

n51

`

~21!n

3E
0

t

f n~ t2t!
]2(n11)p~z,t!

]z2(m11)
dt1g~z,t !,

~16!

where f n(t)[ f n
(1)(t). The inhomogeneous termg(z,t) con-

tains the information about the second-order properties of
initial conditions; that is, it contains the coefficientsb l

0 with
l>2. Therefore our problem is equivalent to the one po
by Eq. ~16! along with the initial conditions

p~z,t50!5d~z2z0!,
]p~z,t !

]t U
t50

52cb1
0d8~z2z0!.

~17!

Although Eq.~16! is the exact differential equation for th
probability density of photons into the medium, it turns o
to be very difficult to solve, even approximately, in the tim
domain. However, as we will shortly see, we can easily
sensible approximations for its time-Laplace transfor
Therefore, Eq.~16! seems to be a convenient starting po
for continuous-wave experiments~CWE’s! where solutions
appear in a natural way in the Laplace domain@9#. Indeed, in
this type of experiment a continuous source of photons le
the system, after a transient period, to a steady state ch
terized by the Laplace transform ofp(r,t). If the system is
absorbent with an absorption ratema , then we have to re-
place, in the Laplace transformp̂(r,s), the variables by ma .
The Laplace transform of Eq.~16! reads

1

3
c2 (

m50

`

~21!m11 f̂ m~s!
]2(m11)p̂~z,s!

]z2(m11)

1s@s1ms~12g!# p̂~z,s!

5@s1ms~12g!#d~z2z0!2cb1
0d8~z2z0!1ĝ~z,s!.

~18!

Equation ~18! is an infinite-order differential equation bu
with constant coefficients. Therefore we have reduced th
problem to finding the roots of its characteristic polynomi
which in this case is

q2F~ iq,s!5
3s

c2
@s1ms~12g!#, ~19!

whereF is the continued fraction defined in Eq.~9! and the
q’s are the roots of the characteristic polynomial. It
straightforward to see that in the case of isotropic scatter
the transcendental equation~19! reduces to

~s1ms!tanh~cq/ms!5cq.
e

d

t

t
.
t

ds
ac-

,

g,

III. RESULTS

The analysis we have done so far is completely gen
and exact. In order to proceed further with our developme
we first need to specify a particular phase function and t
obtain some results out of our exact solution that can
tested in practice. We will do it in two steps.

A. The Henyey-Greenstein phase function and the effective
absorption

Unfortunately, it is not possible to obtain the exact so
tion of the transcendental equation~19!, and we have to se
lect a special form for the phase function. We choose
Henyey-Greenstein phase function, which has been used
tensively in both numerical analyses and simulations@12#. In
this case, the coefficientsb l have the simple form

b l5b1
l 5^cosu& l .

Nevertheless, even with this choice, it is not possible to g
closed analytical expression for the solution of the transc
dental equation~19!, but the numerical analysis become
quite simple. In Fig. 1, we show the shape of the functi
q2F( iq,s), appearing on the left-hand side of Eq.~19!, for

FIG. 1. Numerical solution of the functionq2F( iq,s) ~in ms
2/c2

units! as a function ofq ~in ms /c units! for s5ms for different
values of the anisotropy parameterg. From top to bottom:g50,g
50.5, andg50.9.
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different values ofg5^cosu& and for real values ofq. The
first feature we can see is thatq2F( iq,s) is a symmetrical
function of q defined in the interval (2s2ms ,s1ms). This
reflects the fact that photons move through the medium
finite speed and can be directly derived from the structure
the continued fractionF. On the other hand, let$qn(s)% be
the set of different roots of Eq.~19!. Note that due to the
symmetry ofq2F( iq,s),6qn(s) are both solutions of Eq
~19!. Then forg50, the set of solutions contains only on
real root, while the numerical analysis also shows that for
arbitrary value ofg the set contains an infinite number
roots whose limit value is

lim
n→`

qn~s!5
1

c
~s1ms!.

This means thatq(s)5(s1ms)/c is an accumulation poin
of the roots that will lead to an irregular solution associa
with ballistic photons. However, this irregular solution co
tains terms of the order exp@2(s1ms)z/c# that will become
negligible forz@c(s1ms)

21. We will focus our interest on
the first of these roots,q1(s), because the long-distance b
havior of the probability density in the steady state for t
CWE is an exponential of rateq1(s). Therefore if we sup-
pose that the system is absorbent with an absorption ratema ,
then the valuecq1(s5ma) is exactly the effective absorptio
ratema* ; that is,

ma* 5cq1~s5ma!.

We can see from Eq.~19! that when the absorption is low
the effective rate behaves as

ma* .A3mams~12g! ~ma→01!,

corresponding to the diffusive limit. Moreover, for a strong
absorbing medium we have

ma* .ma ~ma→`!,

corresponding to the ballistic limit. In Fig. 2, we plot th
effective absorbing rate for different values ofg and the cor-
responding ones to the diffusion approximation. Observe
the difference between both the exact one and the diffu
one increases wheng increases.

B. Some approximations

In Sec. II preceding section, we obtained the exact diff
ential equation forp̂(z,s) @cf. Eq. ~18!#. Nevertheless, this
equation is not very useful because we cannot exactly s
an infinite-order differential equation. Therefore we need
do approximations if we want to obtain more informatio
about the process. Since the long-distance behavior in
steady state is governed by the first rootq1(s) of Eq. ~19!,
we first approximate the solution by

p̂~z,s!.H Aeq1(s)z, z,0

Be2q1(s)z, z.0.
~20!

The two constantsA and B will be determined by the nor
malization of p̂(z,s) and by the fact that Eq.~20! must re-
a
f

n

d

at
e

-

ve
o

he

produce the first moment given by Eq.~12!. Under these
conditions, the differential equation satisfying Eq.~20! reads

E
0

t

a~ t2t!F ]2p~z,t!

]t2
1ms~12g!

]p~z,t!

]t Gdt

5c2
]2p~z,t !

]z2
, ~21!

where

â~s!5
c2q1

2~s!

s@s1ms~12g!#
, ~22!

and the initial conditions are given by Eq.~17!. Note that Eq.
~21! is a nonlocal telegrapher’s equation and it reprodu
correctly both the diffusion and the ballistic limit. In add
tion, Eq. ~21! shows the long-distance behavior observed
the CWE. Indeed, whent→0 one can easily see from Eq
~22! that a(t);d(t), and Eq.~21! reduces to the ordinary
telegrapher’s equation with a photon speed given byc. On
the other hand, whent→` we havea(t);3d(t), and the
telegrapher’s equation obtained from Eq.~21! asymptotically
results in the following diffusion equation:

]p~z,t !

]t
5

c2

3ms~12g!

]2p~z,t !

]z2
,

which gives us the correct diffusion coefficient.
The next-order approximation corresponds to taking

first two roots of Eq.~19!. In such a case, the solution rea

p̂~z,s!.H A1eq1(s)z1A2eq2(s)z, z,0

B1e2q1(s)z1B2e2q2(s)z, z.0.
~23!

FIG. 2. The effective absorption parameterma* in terms of the
absorption parameterma ~both ma and ma* are in ms units!. Solid
lines correspond to the diffusion approximation and symbols co
spond to numerical solutions of Eq.~19! for different values of
g:g50 ~circles!, g50.5 ~squares!, g50.9 ~diamonds!.
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As before, the four constantsA1 ,A2 ,B1, and B2 must be
determined under the conditions that Eq.~23! correctly re-
produce the first three moments given by Eqs.~12!–~14! and
that it be properly normalized. All of this results in the fo
lowing differential equation:

S d2

dz2
2q1

2~s!D S d2

dz2
2q2

2~s!D p̂~z,s!

5a~s!d~z!1b~s!d8~z!1c~s!d9~z!1d~s!d-~z!,

~24!

where

a~s!5
q1

2~s!q2
2~s!

s
, b~s!52

cb1
0q1

2~s!q2
2~s!

ss1
, ~25!

c~s!5
c2q1

2~s!q2
2~s!

3ss1
S 1

s
1

2b2
0

s2
D 2

q1
2~s!1q2

2~s!

s
, ~26!

d~s!52
c3q1

2~s!q2
2~s!

3ss1
S b1

0

ss1
1

4b1
0

5s1s2
1

6b3
0

5s2s3
D

1
cb1

0@q1
2~s!1q2

2~s!#

ss1
. ~27!

Again, one can show that Eq.~24! has the right ballistic
and diffusive limits. Therefore it seems to be quite a go
approximation for the transport process. In order to test
approximation, we have done simulations of the normaliz
concentration profile in the steady stater(z), assuming that
there is a continuous source of photons at the origin, and
the medium is absorbent with a ratema . We assume tha
photons start moving along thez axis with equal probability

FIG. 3. Normalized concentration profile in the steady stater(z)
~in ms /c units! for ma50.1ms . Positionz is plotted inc/ms units.
Solid lines correspond to the numerical solution of Eq.~24! and
symbols are simulation results of the continuous time random w
using the Henyey-Greenstein phase function. Photons start mo
along thez axis in both directions with equal probability.g50
~diamonds!, g50.5 ~squares!, g50.9 ~circles!.
d
is
d

at

for both directions. This last condition corresponds to t
choicesb1

05b3
050 and b2

051. We also use the Henyey
Greenstein phase function. The normalized concentra
profile in the steady state is precisely the normalized solu
of Eq. ~24!, i.e.,

r~z!5sp̂~z,s!us5ma
, ~28!

so we can test the validity of this second-order approxim
tion by ~numerically! solving Eq.~24! with the initial condi-
tions explained above. In Figs. 3–5, we plot the concen
tion profile ~28! using the solution of Eq.~24! along with
simulations for different values ofg andma . As we can see
in these figures, the agreement between simulations and
solution of Eq.~24! is very good for all values of the param
eters, even anisotropic scattering, except for distances
than one length of the scattering mean-free path. This is c
sistent with the fact that we have neglected the contribut
of the roots of Eq.~19! that are greater thanq2(s).

lk
ng

FIG. 4. The same as in Fig. 3, withma5ms/2.

FIG. 5. The same as in Fig. 3, withma5ms .
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IV. CONCLUSIONS

In this paper, we have studied the problem of pho
propagation through a disordered medium by means of
transport equation for the problem. We have set a succes
approximation solution scheme for obtaining the margi
probability density function of photons inside an infinite m
dium. We have also obtained, in terms of a transcende
equation, the effective absorption parameter, which turns
to be different from that which the diffusion theory provide

The approximation scheme can be used to solve m
realistic problems, such as transport through slabs. A c
parison of the theoretical predictions of our procedure w
simulations shows that it is a fairly good description of t
transport process for all ranges of parameters. In fact, kn
o
l-

alk

hy

p

n
e

ive
l

al
ut
.
re
-

h

-

ing the differential equation is better adapted to the probl
is the first step toward a more complete description of tra
port in any real problem. In order to accomplish this obje
tive, we need to know the appropriate boundary conditio
for the problem. This is not an easy task, and it is prese
under investigation.
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