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Synchronization, diversity, and topology of networks of integrate and fire oscillators
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We study synchronization dynamics of a population of pulse-coupled oscillators. In particular, we focus our
attention on the interplay between topological disorder and synchronization features of networks. First, we
analyze synchronization tim& in random networks, and find a scaling law which relalfeso network
connectivity. Then, we compare synchronization time for several other topological configurations, character-
ized by a different degree of randomness. The analysis shows that regular lattices perform better than a
disordered network. This fact can be understood by considering the variability in the number of links between
two adjacent neighbors. This phenomenon is equivalent to having a nonrandom topology with a distribution of
interactions and it can be removed by an adequate local normalization of the couplings.

PACS numbds): 87.10+€, 05.90+-m, 64.60.Cn, 05.50:q

[. INTRODUCTION to play a role in information codificatiolL7]. Therefore, it is
interesting to check which kind of topologies makes the net-

Synchronization of populations of interacting oscillatory work reach a coherent state more easily and uncover why is
units takes place in several physical, chemical, biologicalit SO by looking for its responsible mechanisms. We will
and even social systenig—3]. Networks of interacting os- focus on a whole family of networks which are characterized
cillators are currently used to model these phenomena. IRY its increasing degree of disorder, i.e., ranging from regu-
this paper we will focus on a special kind of interacting lar lattices to completely random networks.
oscillator, namely pulse-coupled oscillators. These units os- The structure of this paper is the following. In Sec. Il we
cillate periodically in time and interact each time they com-introduce the model of pulse-coupled oscillators which is
plete an oscillation, with its coupled neighbors sending then§0ing to be used throughout the paper. In Sec. Il we start
pulses which modify their current states. These systemstudying synchronization of populations of these coupled os-
show a rich spectrum of possible behaviors which ranges§illators in random networks. In Sec. IV we compare random
from global synchronizatiori4] or spatiotemporal pattern network performanqe with the more classmal_regular lattices.
formation [5,6] to self-organized criticality{7]. Although In Sec. V we consider a more general family of networks
some theoretical approaches have been proposed, in geneMth a variable degree of randomness and study its synchro-
the singular nature of pulselike interactions does not allownization properties. Moreover, the interplay between diver-
one to describe the system in terms of tractable differentia$ity, interaction, and topology is also discussed. In Sec. VI
equations. Despite this, some methods have been develop@§ Present our conclusions.
to find the attractors of the dynamics and study their relative
stability [4,8,5). Il. BASICS

In this paper, we want to focus on the effects that different o .
topologies have on the dynamical properties of the network, V€ Study the synchronization of a network Wfoscilla-
In particular, we will study how a network’s topology affects tors mter_actlng via _pulses. The phase of each oscillaior
global synchronization. So far, most of the studies on netevolves linearly in time
works of coupled oscillators have been done on either small
connectivity lattices[usually one-dimensionallD) rings]| o1 vi=1,... N, (1)
[8,5] or globally coupled networksgall-to-all coupling [4]. dt
Nevertheless, there is some work done in networks of con- .
tinuously coupled oscillators(Kuramoto’s [9-11 and uqtll one of them rea(;hes thg threshold valbige=1. When
Hodgkin-Huxley neuronlike model§12] where different f[h|s _hgppens the _oscnlator fires and changes the state of all
nonstandard topologies are considered. Among these, the sl Vicinity according to
calledsmall-world networks seem to be an optimal architec-
ture, in terms of activity coherence, for some of these $i=1= $i—0,
coupled systempl1,13. ! d— ¢+ A(),

Pulse-coupled oscillators are commonly used to model
driven biological units such as pacemaker cells of the heamvherejCI'(i), I'(i) being the list of nearest neighbors of
[14] and some types of neuroh%5]. In these systems, syn- oscillator i. The nonlinear interaction is introduced in the
chronization is usually considered to be a relevant state. Rgghase response curyf®RQO A(¢). We use a PRC which
garding the heart, pacemakers must be synchronized in ordérduces a global synchronizationp{= ¢,= ...=¢y) of
to give the correct heart rhythm avoiding arrhythmias orthe population of oscillatorsA(¢)=¢c¢ with £>0. This
other perturbed states. In populations of neurons, synchronRPRC is, indeed, the most simple type of interaction that al-
zation has been experimentally reporf@6] and is believed ways leads to a synchronizated state whatever the initial con-
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FIG. 1. Typical evolution ofm. The activity coherence of the
system increases with time. At tinTethe population reaches global
synchronizationfm(t=T)=1]. In this example, we consider a
population of N=300 oscillators with arbitrary initial conditions 0
[m(t=0)~0.5]. Time units must be understood as relative to the
threshold value we have arbitrarily set equal to one.

log, (1)

FIG. 2. T as a function of for a fixed humber of oscillatorl
ditions are. In other words, synchronization is the uniqueand fixed interaction strength=0.01. Results are averaged over
attractor of the dynamics. Although it has only been math-100 different arbitrary initial conditions in ten different random
ematically proved for all-to-al[4] and local[8] couplings, topologies. The lowest value dfis in each case the one which
for all the topologies we have dealt with, synchronizationstatistically guarantees that the network is connected and the high-

holds. Therefore, the dynamics could also be expressed asest one is all-to-all coupling. For higher valueshthe power-law
behavior is lost since relatiof8) does not hold anymore.

déo,
dqi =lteg >, d(t-t), 2) N
iCT() I>Eln(N). (4)

wheret; are the firing times ofp; . To define a certain de- .
| J y

gree of synchronization in our simulations, we define the Therefore, we can .stgdy RN's whose number of likks

variable runs from the above limit up to the globally connected net-

work (all to all coupling which hasl=N(N—1)/2. In addi-

N tion, if we want to study the transient to synchronization, one
2 [1—¢i(t))] 3) should always stay in the limit
|
=1

Zl+~

m=

Ne<1, )
measured each timg,=0. The choice of oscillator 1 as a herwi hronizati Id b hieved in a few firi
reference is completely arbitrary. Notice that measuring th&t e:W'tT]e 33{“0 ronlga;tlon \t/_vou Th'e achievedin a etw 'Itrr;nt%S
phases at; ensures that these phases are 0 if they are sy 1ue 1o the stronger interaction. This IS In-agreement wi €
chronized with oscillator 1, not depending on the order they oc" that realistic neurons are believed to be weakly con-
. . ' . " ;hected, that is, the interaction strength is thought to be rela-
fire. In this way, we have a series of system ‘“snap shots tively small [18]
which mathematically correspond taeturn mapof the dy- y '

namics(see Fig. 1L Synchronization time 16 thus defined as As one expects, when the number of lirlkis increased,
: g. =y ~ : the time needed to reach synchronizatiodiminishes, hav-
the time needed to reach=1. When this happens, all os-

. : e . ing its lowest value for the globally connected case. What is
cillators will always fire in unison. . L .
really interesting is10w Tdecreases as we consider networks
with more links. It turns out thaf follows a power-law with
IIl. RANDOM NETWORKS a slope which is independent of the number of nodes:

We start studying synchronization of a population of T~1"® VN, (6)
coupled oscillators by defining a random netwORN). We
restrict ourselves to the most simple type of R, thatis,  with a=1.30=0.05 for e=0.01. In Fig. 2 this behavior is
we randomly select a pair of tHénodes and establish a link shown. In these simulation results, each point is averaged
among them, repeating this procedure up to a certain numbejer different random topologies with the same number of
of links I. Notice that, with this wiring method, there is no |inks and over different initial arbitrary conditions for all the
guarantee of ending up with a connected netwtwkere gscillators.
there must be a path connectiagy pair of nodeg Dealing In addition, one can study how db increases with the
with a network split into two or more clusters would make number of oscillatort\. We find that it also follows a power-

global synchronization ii=1) impossible so we should |aw behavior which does not depend on the number of links
avoid such pathological configurations. In order to have g considered

connected network one has to work over a threshold number
of links which ensures connectivif20] T~N~? VI, )
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FIG. 3. Collapse of data curveg(l,N) supporting the scaling

FIG. 4. T as a function of with a fixed number of oscillators
hypothesisT ~N#| ~ ¢ for £ =0.01.

N=100 and interaction strength=0.01 for the two kinds of ex-

treme networks RL and RN. RL always performs better than RN
with 8=1.50+=0.05 fore=0.01. Therefore, once the inter- although its difference quickly vanishes as we tend to a globally

action strength is set, we can characterize synchronizatiocoupled network.
time T by means of the network’s geometrical properties

through the scaling relation ing from one configuration to the next one that have more

links. Therefore, although we can start from an initial mini-

NA mal configuration with less links, we have less points to

T~ Te (8 study.

In Fig. 4 results fore=0.01 are shown. One can clearly

which can be rewritten as see that the RL performs better than the RN for all degrees of
connectivity. This result holds for alt>0. Nevertheless,
T |\ this difference is only appreciable for I_ower val_uesl&fo
N ~ W) (9)  thatas our network has more links it quickly vanishes. When

we are close to the globally connected network, the synchro-

) ) nization features of both kind of networks are roughly the
In Fig. 3 we plot the collapse of data curves according to Edsame, while in the low connectivity case, the RN has syn-

(9) and the agreement is excellent. The exponentnd 8 chronization timeT much longer(about twice than the RL.
are constant within the error bars for the checked values of

(0.1>£>0.005). V. MIXED TOPOLOGIES

IV. RANDOM NETWORKS VERSUS REGULAR So far, we hav_e checked the synchronization features of
LATTICES the two extreme kind of networks: RN and RL. Nevertheless,

there exists a whole family of networks that lie between
Once we have seen the synchronization features of RN, these two limits. They are networks of mixed nature, that is,

would be interesting to compare them with the performancelthough they may have some random connections, also pos-

of regular latticesRL’s). In the 1D RL we consider, each sess an underlying regular structure. Recently, these kinds of

oscillator is coupled to its[ZN nearest neighbors in a ring- networks have received a lot of attentiphl, 13,23, espe-

like (1D reticle with periodic boundary conditiongetwork.  cially due to to the so-calledmall-world networks. These

In Fig. 5 there is an example of RL witH/N=4. In orderto  networks, basically a regular lattice with a very small num-

do the comparison we must calculaigfor the RL, always ber of random connections, have the advantage of having a

keeping the same number of nodes and links as in the Rlbw average distance among nodes while keeping a highly

cases. Since the RL is the topological configuration which islustered structure. In this work, we examine synchroniza-

a connected network with a minimum number of links ( tion time for networks with all degrees of randomness rang-

=N), we can also explore topologies with fewer links thaning from the RL to RN.

the RN. We parametrically characterize these networks wite-a
Another point one has to take into account when studyingviring probability per linkp. It defines the following ran-

RL’s with a growing number of link$ is that it is not pos- domization procedure: starting from an initial RL lofinks,

sible to add just one link to pass from one configuration towe cut each link with probabilityp and rewire it between

another since it would break the regularity of the lattice.two randomly chosen pairs of nodes. Notice that our method

Instead, one has to work with integer values &f\2, that is,  slightly differs from others used by some authors who just

adding a next-nearest neighborat oscillators when pass- rewire one edge of the linkL3] or add new onef21]. In this
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FIG. 5. Randomization procedure for an initial RL with links to 0 . ‘ ‘ ‘
first- and second-nearest neighbors. Each link is cut with a prob- ] 0.2 04 0.6 08 1
ability p=0.3 and rewired between two randomly selected pair of p

nodes(dashed lines For p=0 we have again the RL since no link

is rewired, while forp=1 the pure RN is recovered. FIG. 7. Dispersion ¢?) in the number of links for the whole

) range ofp. Each point corresponds to an average of 1000 realiza-
way, we keep the number of linkonstant and recover the tions for a system ofN=300 oscillators and ZN=16. Forp=1

previous two limiting cases, the RN and the RL, for 1
andp=0, respectively(see Fig. 5.

In Fig. 6 we see the synchronization tifidor a network
of N=300 oscillators with 2 N=16. One can clearly see

that T grows monotonously as we introduce more disordethe difference in their effective driving, the more difficult it
into the system(increasingp). For differentN and | the s to synchronize these two units. This can be thought as a
behavior ofT is qualitatively the same. kind of dynamic frustrationramong two adjacent oscillators.
These results obviously raise a question: why does topo®ne way of quantifying this problem is to check the variabil-
logical disorder slow the synchronization process? The reity in the number of neighbors per oscillator. In Fig. 7 we
wiring process induces a random distribution of links for anycan see how does the dispersion in the number of links per
oscillator. Therefore, two adjacent units can have a very difnode grow as we induce more topological disorder. This dis-
ferent number of oscillators. This fact is crucial since thepersions? is zero forp=0 (RL) whereas fop=1 (RN) the
incoming signal from the firings of the neighborhood of adistribution of links is known to follow a Poisson distribution
given oscillator can be much larger or smaller than the signalith a variance equal tol2N whenN— < [19]. As we can
that another of its neighbors receive. In this case, the tw@ee, both Figs. 6 and 7 look quite similar, they show a mono-
oscillators have different effective frequenCieS. The |arge|fonic growth with the rewiring probabmtp which seems to
saturate for values close to 1.

the system has a complete random network topology and thus is
expected to have a®~I/N (Poisson approximationThe dashed
line corresponds to this limit behavior.
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FIG. 6. Synchronization tim& for the whole range of rewiring
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Another way to check if, in the topologically disordered
model, this dynamic frustration is responsible for the delay
to synchronization is by trying to remove it. This can be
done if we think in terms of effective drivings, once we have
seen that topological disorder induces a heterogeneity in
these drivings, we can try to make them homogeneous again
by means of a convenient local interaction normalization.
The normalization works as follows, without changing the
topology, each oscillator modifies all pulses it receives from
the firing of any of its neighbors by the factor

(N(T'(i)))
norm__

whereN(I'(i)) is the number of neighbors af;. This nor-
malization means that the more pulses an oscillator receives,
the less intense they are. The average number of neighbors

probability p. Each point is averaged over 1000 realizations for a(N(I'(i))) is always 2/N for all p. In Fig. 6 we see that this

system ofN=300 oscillators and IZN=16. T increases monoto-

procedure does remove the dynamical frustration, lowering

nously with p as the dispersion in the number of links also does.the time needed to achieve synchronization, and even mak-
This figure can be thought as a cross section of Fig. 4, with an extri1d it shorter than the unnormalized case for some small
p axis. Empty circles correspond to the normal case. The filledvalues ofp. Therefore, with this rough method we are able to
squares show the results once the interactions have been normalizgéit rid of the effect that topological disorder had on the syn-
according to Eq(10).

chronization features of the network.
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39 . . . found in[23]. Therefore, for this kind of pulse-coupled os-

o cillatory systems, inducing some topological disorder is al-
® most equivalent to dealing with a random distribution of in-
a7 | 0.2 | teractions in a regular lattice, as far as synchronization
$ oo features are concerned.

Tast oo 2 1 VI. CONCLUSIONS

o % In this paper we have studied synchronization timior
0o X several networks, each of them characterized by a different
337 R 1 degree of randomness. For the special case of a completely
AN random network we have found a scaling relation between
o °Q>°‘9°OC*’°° T and the network’s connectivitf (N,1). As far as other to-
0° 002 Y 006 008 o1 pologies are concerned, the regular lattice is the one which
) : s ) . synchronizes faster. Nevertheless, our regular lattice is a 1D
ringlike structure, and there are other kind of regular lattices
FIG. 8. Synchronization tim& for a population oN=100 os-  which might also be studied2D lattices, hierarchical
cillators in a RL with 2/N=16 with an inhomogeneous distribu- trees...). Therefore, the question of which is the optimal
tion of interactionéij characterized by its dispersianincreasing  synchronizing network remains open. However, the main
dispersion in this distribution makes synchronization process moraim of our work was to point out which are the geometrical
difficult, increasingT. Results are averaged over different realiza- mechanisms responsible for slowing or accelerating the syn-
tions of the quenched random interactions and arbitrary initial conchronization process in such pulse-coupled systems. It turns
ditions with <Eij)=0.01. out that the variability in the number of neighbors is a factor
that slows synchronization. We have finally proposed a local
From another point of view, one can think of this variabil- normalization method that manages to remove the effects
ity induced by the topological disorder as something equivainduced by the topological disorder. Among the limitations
lent to having some diversity in a population of coupledof our model there is the lack of time delays in the interac-
oscillators on a RL. Imagine, for instance, a population oftion, or a finite pulse propagation velocity, which are present
oscillators following the dynamics: in real systems. Such effects might modify some of the re-
dg sults and is part of future work.
I

W:1+8'J¢'J<:Er(|) B(t_t]) (11)
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