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Synchronization, diversity, and topology of networks of integrate and fire oscillators

X. Guardiola, A. Dı´az-Guilera, M. Llas, and C. J. Pe´rez
Departament de Fı´sica Fonamental, Universitat de Barcelona, Diagonal 647, E-08028 Barcelona, Spain

~Received 5 April 2000!

We study synchronization dynamics of a population of pulse-coupled oscillators. In particular, we focus our
attention on the interplay between topological disorder and synchronization features of networks. First, we
analyze synchronization timeT in random networks, and find a scaling law which relatesT to network
connectivity. Then, we compare synchronization time for several other topological configurations, character-
ized by a different degree of randomness. The analysis shows that regular lattices perform better than a
disordered network. This fact can be understood by considering the variability in the number of links between
two adjacent neighbors. This phenomenon is equivalent to having a nonrandom topology with a distribution of
interactions and it can be removed by an adequate local normalization of the couplings.

PACS number~s!: 87.10.1e, 05.90.1m, 64.60.Cn, 05.50.1q
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I. INTRODUCTION

Synchronization of populations of interacting oscillato
units takes place in several physical, chemical, biologic
and even social systems@1–3#. Networks of interacting os-
cillators are currently used to model these phenomena
this paper we will focus on a special kind of interactin
oscillator, namely pulse-coupled oscillators. These units
cillate periodically in time and interact each time they co
plete an oscillation, with its coupled neighbors sending th
pulses which modify their current states. These syste
show a rich spectrum of possible behaviors which ran
from global synchronization@4# or spatiotemporal pattern
formation @5,6# to self-organized criticality@7#. Although
some theoretical approaches have been proposed, in ge
the singular nature of pulselike interactions does not al
one to describe the system in terms of tractable differen
equations. Despite this, some methods have been devel
to find the attractors of the dynamics and study their rela
stability @4,8,5#.

In this paper, we want to focus on the effects that differ
topologies have on the dynamical properties of the netwo
In particular, we will study how a network’s topology affec
global synchronization. So far, most of the studies on n
works of coupled oscillators have been done on either sm
connectivity lattices@usually one-dimensional~1D! rings#
@8,5# or globally coupled networks~all-to-all coupling! @4#.
Nevertheless, there is some work done in networks of c
tinuously coupled oscillators~Kuramoto’s! @9–11# and
Hodgkin-Huxley neuronlike models@12# where different
nonstandard topologies are considered. Among these, th
calledsmall-worldnetworks seem to be an optimal archite
ture, in terms of activity coherence, for some of the
coupled systems@11,13#.

Pulse-coupled oscillators are commonly used to mo
driven biological units such as pacemaker cells of the h
@14# and some types of neurons@15#. In these systems, syn
chronization is usually considered to be a relevant state.
garding the heart, pacemakers must be synchronized in o
to give the correct heart rhythm avoiding arrhythmias
other perturbed states. In populations of neurons, synchr
zation has been experimentally reported@16# and is believed
PRE 621063-651X/2000/62~4!/5565~6!/$15.00
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to play a role in information codification@17#. Therefore, it is
interesting to check which kind of topologies makes the n
work reach a coherent state more easily and uncover wh
it so by looking for its responsible mechanisms. We w
focus on a whole family of networks which are characteriz
by its increasing degree of disorder, i.e., ranging from re
lar lattices to completely random networks.

The structure of this paper is the following. In Sec. II w
introduce the model of pulse-coupled oscillators which
going to be used throughout the paper. In Sec. III we s
studying synchronization of populations of these coupled
cillators in random networks. In Sec. IV we compare rand
network performance with the more classical regular lattic
In Sec. V we consider a more general family of networ
with a variable degree of randomness and study its sync
nization properties. Moreover, the interplay between div
sity, interaction, and topology is also discussed. In Sec.
we present our conclusions.

II. BASICS

We study the synchronization of a network ofN oscilla-
tors interacting via pulses. The phase of each oscillatorf i
evolves linearly in time

df i

dt
51 ; i 51, . . . ,N, ~1!

until one of them reaches the threshold valuef th51. When
this happens the oscillator fires and changes the state o
its vicinity according to

f i>1⇒H f i→0,

f j→f j1D~f j !,

where j ,G( i ), G( i ) being the list of nearest neighbors o
oscillator i. The nonlinear interaction is introduced in th
phase response curve~PRC! D(f). We use a PRC which
induces a global synchronization (f15f25 . . . 5fN) of
the population of oscillators:D(f)5«f with «.0. This
PRC is, indeed, the most simple type of interaction that
ways leads to a synchronizated state whatever the initial c
5565 ©2000 The American Physical Society
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ditions are. In other words, synchronization is the uniq
attractor of the dynamics. Although it has only been ma
ematically proved for all-to-all@4# and local@8# couplings,
for all the topologies we have dealt with, synchronizati
holds. Therefore, the dynamics could also be expressed

df i

dt
511«f i (

j ,G( i )
d~ t2t j !, ~2!

wheret j are the firing times off j . To define a certain de
gree of synchronization in our simulations, we define
variable

m[
1

N (
i 51

N

@12f i~ t1
1!# ~3!

measured each timef150. The choice of oscillator 1 as
reference is completely arbitrary. Notice that measuring
phases att1

1 ensures that these phases are 0 if they are
chronized with oscillator 1, not depending on the order th
fire. In this way, we have a series of system ‘‘snap sho
which mathematically correspond to areturn mapof the dy-
namics~see Fig. 1!. Synchronization time Tis thus defined as
the time needed to reachm51. When this happens, all os
cillators will always fire in unison.

III. RANDOM NETWORKS

We start studying synchronization of a population
coupled oscillators by defining a random network~RN!. We
restrict ourselves to the most simple type of RN@19#, that is,
we randomly select a pair of theN nodes and establish a lin
among them, repeating this procedure up to a certain num
of links l. Notice that, with this wiring method, there is n
guarantee of ending up with a connected network~where
there must be a path connectingany pair of nodes!. Dealing
with a network split into two or more clusters would ma
global synchronization (m51) impossible so we should
avoid such pathological configurations. In order to have
connected network one has to work over a threshold num
of links which ensures connectivity@20#

FIG. 1. Typical evolution ofm. The activity coherence of the
system increases with time. At timeT the population reaches globa
synchronization@m(t5T)51#. In this example, we consider
population ofN5300 oscillators with arbitrary initial conditions
@m(t50);0.5#. Time units must be understood as relative to t
threshold value we have arbitrarily set equal to one.
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2
ln~N!. ~4!

Therefore, we can study RN’s whose number of linkl
runs from the above limit up to the globally connected n
work ~all to all coupling! which hasl 5N(N21)/2. In addi-
tion, if we want to study the transient to synchronization, o
should always stay in the limit

N«!1, ~5!

otherwise synchronization would be achieved in a few firin
due to the stronger interaction. This is in agreement with
fact that realistic neurons are believed to be weakly c
nected, that is, the interaction strength is thought to be r
tively small @18#.

As one expects, when the number of linksl is increased,
the time needed to reach synchronizationT diminishes, hav-
ing its lowest value for the globally connected case. Wha
really interesting ishow Tdecreases as we consider networ
with more links. It turns out thatT follows a power-law with
a slope which is independent of the number of nodes:

T; l 2a ;N, ~6!

with a51.3060.05 for «50.01. In Fig. 2 this behavior is
shown. In these simulation results, each point is avera
over different random topologies with the same number
links and over different initial arbitrary conditions for all th
oscillators.

In addition, one can study how doT increases with the
number of oscillatorsN. We find that it also follows a power
law behavior which does not depend on the number of lin
l considered

T;Nb ; l , ~7!

FIG. 2. T as a function ofl for a fixed number of oscillatorsN
and fixed interaction strength«50.01. Results are averaged ov
100 different arbitrary initial conditions in ten different rando
topologies. The lowest value ofl is in each case the one whic
statistically guarantees that the network is connected and the h
est one is all-to-all coupling. For higher values ofN the power-law
behavior is lost since relation~3! does not hold anymore.
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with b51.5060.05 for «50.01. Therefore, once the inte
action strength is set, we can characterize synchroniza
time T by means of the network’s geometrical propert
through the scaling relation

T;
Nb

l a
, ~8!

which can be rewritten as

T

N2a2b
;S l

N2D a

. ~9!

In Fig. 3 we plot the collapse of data curves according to
~9! and the agreement is excellent. The exponentsa andb
are constant within the error bars for the checked values«
(0.1.«.0.005).

IV. RANDOM NETWORKS VERSUS REGULAR
LATTICES

Once we have seen the synchronization features of RN
would be interesting to compare them with the performa
of regular lattices~RL’s!. In the 1D RL we consider, eac
oscillator is coupled to its 2l /N nearest neighbors in a ring
like ~1D reticle with periodic boundary conditions! network.
In Fig. 5 there is an example of RL with 2l /N54. In order to
do the comparison we must calculateT for the RL, always
keeping the same number of nodes and links as in the
cases. Since the RL is the topological configuration which
a connected network with a minimum number of linksl
5N), we can also explore topologies with fewer links th
the RN.

Another point one has to take into account when study
RL’s with a growing number of linksl is that it is not pos-
sible to add just one link to pass from one configuration
another since it would break the regularity of the lattic
Instead, one has to work with integer values of 2l /N, that is,
adding a next-nearest neighbor toall oscillators when pass

FIG. 3. Collapse of data curvesT( l ,N) supporting the scaling
hypothesisT;Nbl 2a for «50.01.
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ing from one configuration to the next one that have m
links. Therefore, although we can start from an initial min
mal configuration with less links, we have less points
study.

In Fig. 4 results for«50.01 are shown. One can clear
see that the RL performs better than the RN for all degree
connectivity. This result holds for all«.0. Nevertheless,
this difference is only appreciable for lower values ofl so
that as our network has more links it quickly vanishes. Wh
we are close to the globally connected network, the synch
nization features of both kind of networks are roughly t
same, while in the low connectivity case, the RN has s
chronization timeT much longer~about twice! than the RL.

V. MIXED TOPOLOGIES

So far, we have checked the synchronization feature
the two extreme kind of networks: RN and RL. Neverthele
there exists a whole family of networks that lie betwe
these two limits. They are networks of mixed nature, that
although they may have some random connections, also
sess an underlying regular structure. Recently, these kind
networks have received a lot of attention@11,13,22#, espe-
cially due to to the so-calledsmall-world networks. These
networks, basically a regular lattice with a very small nu
ber of random connections, have the advantage of havin
low average distance among nodes while keeping a hig
clustered structure. In this work, we examine synchroni
tion time for networks with all degrees of randomness ra
ing from the RL to RN.

We parametrically characterize these networks with are-
wiring probability per link p. It defines the following ran-
domization procedure: starting from an initial RL ofl links,
we cut each link with probabilityp and rewire it between
two randomly chosen pairs of nodes. Notice that our meth
slightly differs from others used by some authors who j
rewire one edge of the link@13# or add new ones@21#. In this

FIG. 4. T as a function ofl with a fixed number of oscillators
N5100 and interaction strength«50.01 for the two kinds of ex-
treme networks RL and RN. RL always performs better than
although its difference quickly vanishes as we tend to a glob
coupled network.
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way, we keep the number of linksl constant and recover th
previous two limiting cases, the RN and the RL, forp51
andp50, respectively~see Fig. 5!.

In Fig. 6 we see the synchronization timeT for a network
of N5300 oscillators with 2l /N516. One can clearly se
that T grows monotonously as we introduce more disor
into the system~increasingp). For different N and l the
behavior ofT is qualitatively the same.

These results obviously raise a question: why does to
logical disorder slow the synchronization process? The
wiring process induces a random distribution of links for a
oscillator. Therefore, two adjacent units can have a very
ferent number of oscillators. This fact is crucial since t
incoming signal from the firings of the neighborhood of
given oscillator can be much larger or smaller than the sig
that another of its neighbors receive. In this case, the
oscillators have different effective frequencies. The lar

FIG. 5. Randomization procedure for an initial RL with links
first- and second-nearest neighbors. Each link is cut with a p
ability p50.3 and rewired between two randomly selected pair
nodes~dashed lines!. For p50 we have again the RL since no lin
is rewired, while forp51 the pure RN is recovered.

FIG. 6. Synchronization timeT for the whole range of rewiring
probability p. Each point is averaged over 1000 realizations fo
system ofN5300 oscillators and 2l /N516. T increases monoto
nously with p as the dispersion in the number of links also do
This figure can be thought as a cross section of Fig. 4, with an e
p axis. Empty circles correspond to the normal case. The fi
squares show the results once the interactions have been norm
according to Eq.~10!.
r

o-
-

f-

al
o
r

the difference in their effective driving, the more difficult
is to synchronize these two units. This can be thought a
kind of dynamic frustrationamong two adjacent oscillators
One way of quantifying this problem is to check the variab
ity in the number of neighbors per oscillator. In Fig. 7 w
can see how does the dispersion in the number of links
node grow as we induce more topological disorder. This d
persions2 is zero forp50 ~RL! whereas forp51 ~RN! the
distribution of links is known to follow a Poisson distributio
with a variance equal to 2l /N whenN→` @19#. As we can
see, both Figs. 6 and 7 look quite similar, they show a mo
tonic growth with the rewiring probabilityp which seems to
saturate for values close to 1.

Another way to check if, in the topologically disordere
model, this dynamic frustration is responsible for the de
to synchronization is by trying to remove it. This can b
done if we think in terms of effective drivings, once we ha
seen that topological disorder induces a heterogeneity
these drivings, we can try to make them homogeneous a
by means of a convenient local interaction normalizatio
The normalization works as follows, without changing t
topology, each oscillator modifies all pulses it receives fro
the firing of any of its neighbors by the factor

« i
norm5«

^N~G~ i !!&
N„G~ i !…

, ~10!

whereN„G( i )… is the number of neighbors off i . This nor-
malization means that the more pulses an oscillator recei
the less intense they are. The average number of neigh
^N„G( i )…& is always 2l /N for all p. In Fig. 6 we see that this
procedure does remove the dynamical frustration, lower
the time needed to achieve synchronization, and even m
ing it shorter than the unnormalized case for some sm
values ofp. Therefore, with this rough method we are able
get rid of the effect that topological disorder had on the s
chronization features of the network.

b-
f

.
ra
d
zed

FIG. 7. Dispersion (s2) in the number of links for the whole
range ofp. Each point corresponds to an average of 1000 real
tions for a system ofN5300 oscillators and 2l /N516. For p51
the system has a complete random network topology and thu
expected to have as2; l /N ~Poisson approximation!. The dashed
line corresponds to this limit behavior.
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From another point of view, one can think of this variab
ity induced by the topological disorder as something equi
lent to having some diversity in a population of coupl
oscillators on a RL. Imagine, for instance, a population
oscillators following the dynamics:

df i

dt
511 «̃ i j f i (

j ,G( i )
d~ t2t j ! ~11!

with «̃ i j being a random variable uniformly distributed ov
the interval («2s,«1s). In this case,s gives us a quantita
tive idea of the population diversity. Now, in this modifie
model, synchronization timeT also grows as we increas
population diversitys. In Fig. 8 we can check this for a
population ofN5100 oscillators in a RL with 2l /N516 and
a mean value of the interaction^«̃ i j &50.01. The same resu
for the specific case of all-to-all coupling had already be

FIG. 8. Synchronization timeT for a population ofN5100 os-
cillators in a RL with 2l /N516 with an inhomogeneous distribu

tion of interactions«̃ i j characterized by its dispersions. Increasing
dispersion in this distribution makes synchronization process m
difficult, increasingT. Results are averaged over different realiz
tions of the quenched random interactions and arbitrary initial c

ditions with ^«̃ i j &50.01.
ce
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found in @23#. Therefore, for this kind of pulse-coupled o
cillatory systems, inducing some topological disorder is
most equivalent to dealing with a random distribution of i
teractions in a regular lattice, as far as synchronizat
features are concerned.

VI. CONCLUSIONS

In this paper we have studied synchronization timeT for
several networks, each of them characterized by a diffe
degree of randomness. For the special case of a comple
random network we have found a scaling relation betweeT
and the network’s connectivityT(N,l ). As far as other to-
pologies are concerned, the regular lattice is the one wh
synchronizes faster. Nevertheless, our regular lattice is a
ringlike structure, and there are other kind of regular lattic
which might also be studied~2D lattices, hierarchical
trees, . . .!. Therefore, the question of which is the optim
synchronizing network remains open. However, the m
aim of our work was to point out which are the geometric
mechanisms responsible for slowing or accelerating the s
chronization process in such pulse-coupled systems. It tu
out that the variability in the number of neighbors is a fac
that slows synchronization. We have finally proposed a lo
normalization method that manages to remove the effe
induced by the topological disorder. Among the limitatio
of our model there is the lack of time delays in the intera
tion, or a finite pulse propagation velocity, which are pres
in real systems. Such effects might modify some of the
sults and is part of future work.
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Sigüenza, Phys. Rev. Lett.84, 2758~2000!.

@13# D.J. Watts and S.H. Strogatz, Nature~London! 393, 440
~1998!.

@14# C.S. Peskin,Mathematical Aspects of Heart Physiology~Cou-
rant Institute of Mathematical Sciences, New York Universi
New York, 1984!, p. 268.

@15# C. Torras, inStatistical Mechanics of Neural Networks, edited
by L. Garrido~Springer-Verlag, Berlin, 1990!, pp. 65–79.



e

tl.
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