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Nonequilibrium phase transition in a model for the propagation of innovations
among economic agents
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We characterize the different morphological phases that occur in a simple one-dimensional model of propa-
gation of innovations among economic agents@X. Guardiolaet al., Phys. Rev E66, 026121~2002!#. We show
that the model can be regarded as a nonequilibrium surface growth model. This allows us to demonstrate the
presence of a continuous roughening transition between a flat~system size independent fluctuations! and a
rough phase~system size dependent fluctuations!. Finite-size scaling studies at the transition strongly suggest
that the dynamic critical transition does not belong to directed percolation and, in fact, critical exponents do not
seem to fit in any of the known universality classes of nonequilibrium phase transitions. Finally, we present an
explanation for the occurrence of the roughening transition and argue that avalanche driven dynamics is
responsible for the novel critical behavior.
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I. INTRODUCTION

In the past few years there has been an increasing inte
among theoretical physicists in complex phenomena oc
ring in fields that are far apart from the traditional realm
physics like social and economic sciences@1–4#. The main
reason being that social and economic systems often ex
many instances of complex dynamics, including se
organization, pattern formation, synchronization, and ph
transitionlike phenomena that closely resemble those
served in nonequilibrium physical systems@5–8#. Physicists
approach to these systems usually provides insights into
basic ingredients that should be included in simple model
order to obtain the dynamics observed. Although it is cl
that physics inspired models of socioeconomic phenom
are often very simplistic views of very complicated system
the aim is to show how complex macroscopic dynam
might arise from rather simple rules operating at the ‘‘mic
scopic’’ level of individual agents and their mutual intera
tions.

In this paper we consider a very simple model of innov
tion propagation dynamics in an economic system formed
agents@9,10#. The aim is to describe in a simple way th
adoption of innovations that occur among industries, firm
or individuals. Once a brand new product appears in
market, the agents should decide whether or not they
incorporate the new technology. Adopting the new techn
ogy ~in the form of a software, device, gadget, etc.! has a
cost, but at the same time it may improve business per
mance in the case of firms, or may leveloff life quality f
individuals. Innovations are regarded here in a broad se
and stand for any device or tool. For instance, a firm c
decide to incorporate world wide web~WWW! technology
by creating or revamping its WWW page, or going in
e-commerce for the first time. A layman observation is th
if not always, in most cases, when the new technology a
ally improves performance its use will spread all over.

In this approach two main mechanisms for the propa
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tion of innovations are considered. First, external press
can push an agent to adopt an innovation. This mechan
intends to mimic exogenous influence, such as advertis
and is independent of the network structure. Second, the
interaction among agents, which depends on the underly
network structure and is introduced in the model by cons
ering local coupling rules. A single tunable parameterC,
which is fixed and the same for all agents, accounts for
agents’ resistance to change, and controls the dynamica
havior of the system. In earlier studies, some of us h
already focused on the several outcomes of the model in
social and economic context@9,11,12#. From the economic
point of view, the main result is that the system presents
optimal behavior for an intermediate value ofC, and that this
can be quantified with a macroscopic observable. This f
ture is closely related with the statistical properties of t
profile of technological levels of the agents and its dynami
evolution. A proper characterization of these properties
be done with the tools of statistical mechanics and it is
main aim of this work.

In this paper we show that this model can be interpre
as a surface growth model. Such interpretation allows u
analyze the dynamical behavior of the model as a kine
roughening process akin to other nonequilibrium surfa
growth systems. We find that the model exhibits a continu
phase transition between a rough and a flat phase at a cr
valueCth of the control parameter. We focus on the scali
properties at the threshold in order to determine the crit
exponents at the transition. By defining a convenient or
parameter and studying its finite-size scaling properties n
criticality we are able to show that the horizontal correlati
length diverges asj;uC2Cthu2n, wheren'2.5. Close to
the threshold, relaxation dynamics to the stationary regim
characterized by diverging correlation timest;jz, wherez
'0.57 is the dynamic exponent. The existence of a none
librium roughening transition in a 111 dimension model
makes it interesting also for statistical mechanics. It
known that phase transitions in nonequilibrium 111 dimen-
©2003 The American Physical Society01-1
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FIG. 1. Snapshots of the profile of a system withN51024 forC50.5, C51.0, C52.0, andC55.0.
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sional systems are usually associated with systems with
sorbing states@13#. In this case, the number of absorbin
states and symmetries among them determine the unive
ity class to which a particular system belongs to. Thus, i
of great interest to find models far from equilibrium whic
do not possess absorbing states but still display a phase
sition. As we will see below, our model lacks absorbi
states and the measured critical exponents suggest tha
model belongs to a different universality class. Finally,
discuss the physical mechanisms behind the critical tra
tion in this model.

II. THE MODEL

We considerN agents placed at the sites of a on
dimensional lattice with periodic boundary conditions. Ea
site ~agent! i is characterized by a real variablehi . In gen-
eral, we can consider this quantity as acharacteristicof a
given individual that other agents might want to imita
When an agent has adopted a new feature~innovation!, her
neighbors become aware of the change and balance
interest~quantified ashi2hj ) with their resistance to chang
C to decide if they would like to imitate this change. In th
way C controls the mechanism of imitation. This parame
is constant and the same for all the agents in the system

The system is updated as follows@11#:
~1! At each time step an agenthi is randomly selected an

hi→hi1D, ~1!

whereD is a random variable uniformly distributed in@0,1#
@23#. The driving process accounts for the external press
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that may lead an individual to spontaneously update
adopting a new technology. This mechanism keeps the
tem out of equilibrium.

~2! The agentsj PG( i ), G( i ) being the set of neares
neighbors of agenti, upgrade ifhi2hj>C. If the latter is
satisfied, agentj imitates agenti by settinghj5hi . In this
way the information of an update may spread beyond
neighbors of the originally perturbed site. This procedure
repeated until no one else wants to change, concluding
avalancheof imitation events. We thus assume that the tim
scale of the imitation process is much shorter than the
corresponding to the external driving.

Starting from a flat initial condition,hi50 for all i, the
system evolves to a stationary regime. In Fig. 1 we pres
snapshots of the surface profile in the stationary regime
four different values ofC.

The time scale separation—namely, slow driving vers
fast relaxation in the form of avalanches of activity—is sim
lar to that occurring in self-organized critical~SOC! systems
and dynamically drives the system towards a stationary s
@14#. We will see below that, at variance with most SO
systems, two different stable phases are possible: an ord
~flat! phase and a disordered~rough! phase with scale invari-
ant properties. For smallC, the driving process easily trig
gers avalanches that cover the whole system, leading
uniform advance and a flat phase. On the contrary, for la
C, there are almost no avalanches, and the system adva
mostly due to the random updates, thus presenting an
tremely heterogeneous and rough profile. For intermed
values ofC one can clearly see the presence of large a
lanches and new updates. In fact, in the intermediate reg
one can find the optimal growth regime in which the age
reach a given average level with a minimum number of u
grades@9#.
1-2
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III. CRITICAL ROUGHENING TRANSITION

A. Stationary regime

In order to characterize the different morphologic
phases we performed extensive numerical simulations of
model. The fluctuations of the profile height are measured
means of the global interface width@15#,

W~N,t !5KA~1/N!(
i 51

N

@hi~ t !2h̄~ t !#2L ~2!

where^& stands for average over noise realizations. At e
time step the mean height value

h̄~ t !5~1/N!(
i 51

N

hi~ t ! ~3!

is also calculated. It is important to stress here that time
always measured in the external driving temporal scale
that one time stept corresponds to an external update. As
consequence, the number of agents that change their
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FIG. 2. Time evolution of the widthW(t) for four different
system sizes (N5512, N51024, N52048, andN54096) when
C50.5 andC52.0. Results correspond to averages over 500 r
izations of the noise. The inset shows thatWsat scales with system
size.
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may vary from a single one~which changes fromh to h
1D) to any number of agents in the system if the upd
generates an avalanche.

In the following we report on the behavior of the width
the two different phases. On the top panel of Fig. 2 we sh
the behavior ofW(N,t) for C50.5. The saturation value
does not depend on the system size, which indicates tha
system is in the smooth phase. On the bottom panel of Fi
we show the numerical results in the rough phase forC
52.0. In this case the saturation valueWsat(N) scales with
the system size, as is shown in the inset. We find that in
rough phase the height fluctuations seem to fit reason
well with a scaling asWsat(N);N0.15, which actually cannot
be distinguished from a possibly logarithmic dependen
These results strongly suggest the presence of a roughe
transition.

In order to study the critical behavior at the transitio
threshold we introduce a convenient order parameter. W
looking at the profile snapshots in the stationary regime
Fig. 1, one can easily notice the presence of large plate
i.e., finite connected regions of agents that have the s
height. The size of these flat regions decreases asC grows,
since forC→` the model has to become equivalent to t
random deposition model@15#. We found that the size of the
largest plateau can be used as an order parameter. In
following, we shall callM to the size of the largest plateau
the system, normalized by the system sizeN. In this way, a
completely flat profile corresponds toM51. We have also
tried other common choices, as the often used Ising-
magnetization (1/N)( i(21)hi (t) and its variations@16,17#.
However, we found that our election has better scaling pr
erties for this particular case, since it takes into account
singular behavior of the flat phase in this model.

Starting from a flat initial conditionM (t) evolves until it
reaches a stationary value. In Fig. 3 we show the behavio
the stationary value of the order parameterMstat(N,C) vs C
for four different system sizes. The order parameter allo
us to distinguish the two phases discussed above. Note
for small values of the control parameter, the system g
ordered, implying a flat phase. On the contrary, the station

l-
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FIG. 3. Order parameterMstat vs C for four different system
sizes (N5256, N5512, N51024, andN52048). The points cor-
respond to an average over 250 realizations of the noise.
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value of the order parameter goes to zero for large value
C as the system size becomes larger. Critical behavio
expected close to the thresholdCth and, as usual, it can b
studied numerically by finite-size scaling techniques@16–18#
as follows. For any value of the control parameterC, there
exists a horizontal correlation lengthj, which diverges as
j;e2n when the distance to the critical threshold goes
zero e5uC2Cthu→0. In finite systems this actually occur
for values ofC close to, but not exactly at, the thresho
since the finite-size critical behavior is encountered as l
as j;N, or equivalently whene;N21/n. Close to the
threshold,e→0, for sufficiently large values of the syste
size, Mstat converges to a finite value obeyingMstat(N,e)
;eb. Just at the critical pointe50 we expect the orde
parameter to decay as a power law with the system size

Mstat~N,e50!;N2b/n. ~4!

In Fig. 4 we plot our numerical results forMstat(N,e) vs N
for different values of the distance to the thresholde. Only
for C5Cth a power law with the system size can be obtain
and the slope of the straight line in a log-log plot gives
estimation of the ratiob/n50.4460.05 between critical ex-
ponents. We can thus identifyCth51.060.1 with the critical
point. After having determined the critical point, numeric
data for different system sizes can be cast in the finite-
scaling ansatz

Mstat~N,e!5N2b/ng~eN1/n!, ~5!

where the scaling functiong(y);const fory!1, andg(y)
;yb if y@1. In Fig. 5 we plot a data collapse that allows
to determine the values of the exponents 1/n50.4060.05
and b/n50.4460.05. From these, we then haveb;1.10
andn;2.50.
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FIG. 4. Order parameterMstat vs N for four different values of
the parameterC50.90, C50.95, C51.00, andC51.05. A power
law-decayMstat;N20.44 is observed forC51.0. Results corre-
spond to averages over 500 realizations.
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B. Dynamics

Since the model is out of equilibrium our study is com
pleted next with an analysis of the dynamic behavior, wh
contains much information about the universality of t
roughening transition. In Fig. 6 we show the temporal beh
ior of the order parameterM (t,N,C) for three different val-
ues ofC ~above, below, and at the critical threshold!. Again,
only at the critical point we may expect to find a power-la
decayM (t,N,e50);t2b/n t, wheren t is the exponent asso
ciated with the diverging correlation timet;e2n t ase→0.
The correlation time corresponds to the typical time that c
relations survive in the system and is given byt;jz, where
z is the dynamic exponent. The three exponents are rel
by the usual scaling relationz5n t /n provided dynamic scal-
ing holds. In Fig. 6 we can see that only at the critical po
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FIG. 5. Data collapse of the order parameterMstat as given in
Eq. ~5!. Results correspond to averages over 500 realizations.
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FIG. 6. Order parameter dynamics for three values ofC: C
50.90 in the smooth phase, the critical valueC51.00 andC
52.00 in the rough phase. Two system sizesN52048 andN
54096 are represented to better appreciate the deviations
power-law behavior, indicated with a dashed line, for the valu
outside the critical region. The curves correspond to an aver
over 500 realizations.
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a power-law behavior is observed, while deviations occur
CÞCth . The fit to a straight line in a log-log plot, as show
Fig. 7, leads to a determination of the ratiob/n t50.77
60.05. One can write the dynamic scaling ansatz

M ~ t,N,e!5N2b/nF~et1/n t,t/Nz! ~6!

for the order parameter, which at the critical pointe50 reads

M ~ t,N,e50!5N2b/n f ~ t/Nz!, ~7!

where the scaling functionf (u);const foru@1 and f (u)
;u2b/n t for u!1. We can then use the values of the exp
nents just obtained to collapse our data as shown in Fi
with exponentsn t;1.43 andz;0.57.

Nonequilibrium phase transitions have been mostly
lated to the universality class of directed percolation~DP!,
with very few exceptions@13#. In particular, there are man
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FIG. 7. Order parameter dynamics for six increasing values
the system sizeN, from top to bottom, 29–214. A power-law behav-
ior M;t20.77 is observed in the transient regime. Results cor
spond to averages over 500 realizations.
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FIG. 8. Dynamical data collapse of the order parameter at
critical point, as given by Eq.~7!. The exponents used correspond
the ones obtained above,b/n;0.44, andz;0.57.
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examples of roughening transitions far from equilibrium th
have been linked to DP, examples include polynucl
growth models@18#, solid-on-solid models with evaporatio
at the edges of terraces@16#, and the fungal growth mode
@17#. In all these systems, the DP process emerges at a
ticular reference height of the interface. In this case, the c
cal exponents characterizing the roughening transition ca
obtained from those of DP, which in 111 dimension are
given byn5n'

DP51.10 for the correlation length exponen
n t5n i

DP51.73 for the time correlation exponent, andz
5zDP51.58 the dynamic exponent@13#. Our results clearly
suggest that the roughening transition occurring in the in
vation propagation model does not belong to the DP clas

The relation of many nonequilibrium critical models
DP has led to the proposal of the conjecture due to Jan
and Grassberger@19,20#, which states that a model belong
to DP under the following assumptions@13#:

~1! The model displays a continuous phase transition fr
a fluctuating active phase into a unique absorbing state.

~2! The transition is characterized by a positive on
component order parameter.

~3! The dynamic rules involve only short-range intera
tions.

~4! Finally, the system has no special attributes like ad
tional symmetries or quenched randomness.

Any model satisfying all above four conditions has be
found to belong to DP universality class, with no excepti
to date. However, it is known that at least some of the ab
DP conditions can be relaxed. In fact, there are a few
amples of systems that, despite exhibiting no absorb
states@16–18# or having quenched disorder@21,22# also dis-
play nonequilibrium phase transitions that belong to the
universality class. Our model does not have absorbing sta
since in both the rough and the flat phase the interface ke
fluctuating. Also and perhaps most importantly, interaction
not short ranged, because of the avalanches of activity
give rise to nonlocal effects with finite probability. Their in
fluence on the dynamics is reflected by the extremely l
value of the dynamic exponent,z50.57 ,2, signature of a
highly super diffusive behavior. It appears that this nonlo
interaction mechanism is responsible for the deviation of
DP critical behavior.

We believe that the transition takes place exactly atC
51.0. This is directly related to the dynamical evolutio
rules of the model. We have defined the external driving
choosing a random number from a uniform distribution
@0,1#. As a consequence, forC,1.0, a random update o
any site can generate an avalanche. On the other hand
C.1.0, only a small fraction of sites will be able to genera
an avalanche with a single update. In order to quantify t
effect we have studied the fraction of sites which can gen
ate an avalanche with a single update. A sitei with this
property will satisfy

hi2hi 6111.C. ~8!

In Fig. 9 we present the fraction of sitesf which are able to
generate an avalanche as a function of C. The figure cle
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e
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shows that this fraction remains close to 1 forC,1.0 and
drops abruptly to a small value forC.1.0.

IV. CONCLUSIONS

In this work we have studied a simple model of innov
tion propagation dynamics in an economic system as a
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FIG. 9. Fraction of sitesf that can generate an avalanche with
single update as a function ofC for three different system sizes
N5100, N5200, andN5400. Curves are averaged over 10
realizations.
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face growth model. This has allowed us to characterize
ferent morphological phases and also to analyze
dynamical behavior of the model as a kinetic roughen
process. We have characterized a roughening transition
determined its critical exponents by finite-size scaling te
niques. The values of the exponents do not coincide w
known universality classes. We believe that the avalan
driven dynamics with its long-range effects is the reason w
this model does not belong to the DP universality class.
have also presented a possible mechanism for the trans
occurring exactly atCth51.
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