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Metastable liquid-liquid phase transition in a single-component system
with only one crystal phase and no density anomaly
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We investigate the phase behavior of a single-component system in three dimensions with spherically-
symmetric, pairwise-additive, soft-core interactions with an attractive well at a long distance, a repulsive
soft-core shoulder at an intermediate distance, and a hard-core repulsion at a short distance, similar to poten-
tials used to describe liquid systems such as colloids, protein solutions, or liquid metals. We showed@Nature
~London! 409, 692 ~2001!# that, even with no evidence of the density anomaly, the phase diagram has two
first-order fluid-fluid phase transitions, one ending in a gas–low-density-liquid~LDL ! critical point, and the
other in a gas–high-density-liquid~HDL! critical point, with a LDL-HDL phase transition at low temperatures.
Here we use integral equation calculations to explore the three-parameter space of the soft-core potential and
perform molecular dynamics simulations in the interesting region of parameters. For the equilibrium phase
diagram, we analyze the structure of the crystal phase and find that, within the considered range of densities,
the structure is independent of the density. Then, we analyze in detail the fluid metastable phases and, by
explicit thermodynamic calculation in the supercooled phase, we show the absence of the density anomaly. We
suggest that this absence is related to the presence of only one stable crystal structure.

DOI: 10.1103/PhysRevE.66.051206 PACS number~s!: 61.20.Gy, 65.20.1w, 64.70.Ja, 64.60.My
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I. INTRODUCTION

Soft-core potentials have been widely used to study a
riety of systems such as liquid metals, metallic mixtur
electrolytes, and colloids, as well as anomalous liquids, s
as water and silica@1–15#. In these models, the specifi
structural characteristic at the molecular~or atomic! level is
neglected and the molecules~or atoms! are represented b
simple spheres. Quantum effects~such as the quantum natu
of chemical interactions! and classical effects~such as the
Coulomb interaction! are modeled through a phenomen
logical isotropic pair potential. The advantages of this a
proach are that while these potentials are simple enoug
be treated analytically@16#, they still allow a qualitative
comparison with the experiments. Moreover, they can
studied by means of numerical simulations less time c
suming than those of realistic models@17#.

We consider an off-lattice model in three dimensions~3D!
@11# related to the soft-core potentials studied by Hemm
and Stell@2# for solid-solid critical points. Our model show
a phase diagram with two fluid-fluid phase transitions, a f
ture recently seen in experiments on phosphorus@18# and
confirmed by specific simulations@19#. In Ref. @11# we
showed that both first-order fluid-fluid phase transitions e
in critical points, a low-density critical pointC1 and a high-
density critical pointC2. For the considered potential, bo
transitions occur in the supercooled phase with respect to
crystal phase.

*Present address: SMC, Dipartimento di Fisica, Universita` ‘‘La
Sapienza,’’ P.le A. Moro 2, I-00185 Roma, Italy. Electronic addre
franzese@na.infn.it
1063-651X/2002/66~5!/051206~14!/$20.00 66 0512
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The hypothesis of a second critical point has been p
posed@20# as a way to rationalize the density anomaly—i.
the expansion upon isobaric cooling—in network-formi
fluids, such as water@1,20,21#, carbon@22#, silica @23# and
silicon @24#. Consequently, both the experimental@25–29#
and the theoretical@7–10,13–15,30,31# investigations about
the possibility of a second critical point have been focus
on systems with the density anomaly@Fig. 1~a!#. However,
the results of Ref.@11# have shown that the presence of t
critical point C2 does not necessarily induce the dens
anomaly, indicating that the quest for simple liquids with tw
critical points is not restricted to systems with densities
hibiting anomalous behavior@Fig. 1~b!#. In this paper we
push forward the analysis, by studying the equilibrium pha
diagram and showing that the system introduced in Ref.@11#
has one stable crystalline phase, in the range of consid
densities, suggesting that the absence of density anomali
related to the presence of only one stable crystal structu

To reach this goal we organize the work in the followin
way. After the definition of our soft-core potentials~Sec. II!,
~i! we describe in detail the integral equations in the hyp
netted chain~HNC! approximation~Sec. III A! and ~ii ! we
perform additional calculations using different assigned
rameters for the pair potential, thus establishing a bridge
tween the potential studied in Ref.@11# and the potential
investigated in Refs.@10,15# and rationalizing how—in ad-
dition to the critical pointC1—the critical pointC2 arises as
a function of the parameters of the pair potential~Sec. III B!.
Then, ~iii ! we describe in detail the molecular dynami
~MD! simulations, studying the equilibrium phase diagra
and finding that the only stable crystal structure, in the ran
of simulated densities, has two characteristic lattice distan
~Sec. IV A!. ~iv! By MD simulations we analyze also th
:
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FRANZESEet al. PHYSICAL REVIEW E 66, 051206 ~2002!
supercooled liquid phase and the metastable fluid-fluid ph
transition ~Sec. IV B!; ~v! in order to construct an accura
phase diagram and to study the finite size effect, we perf
some extra MD simulations in addition to the calculatio
presented in Ref.@11# ~Sec. IV C!. Hence,~vi! we study the
radial distribution function, comparing the HNC predictio
with the MD results and analyzing the composition of t
system within the fluid-fluid coexisting regions~Sec. V!. Fi-
nally, ~vii ! we address the density anomaly issue by pres
ing the explicit thermodynamic calculation, based on the M
phase diagram, that allows us to exclude the presence o
density anomaly~Sec. VI!. We give our conclusions in Sec
VII.

II. SOFT-CORE POTENTIALS

Among the isotropic potentials, much attention has be
devoted to soft-core potentials, which have a finite~soft-
core! repulsion added to the infinite~hard-core! repulsion.
The infinite repulsion is due to the impenetrability of th
spheres. The finite repulsion represents the combinatio
all the quantum and classical repulsive effects averaged
the angular part. It has been shown@4# that a weak effective
repulsion can be derived by a first-principles calculation
liquid metals@3#. To understand the possibility of the solid
solid critical point in such material as Ce and Cs, Hemm
and Stell@2# proposed a soft-core potential with an attracti
interaction at large distances, performing an exact analys
1D. Over the past 30 years, several other soft-core poten

FIG. 1. Schematic pressure-temperatureP-T phase diagrams
with two critical points. Solid lines represent first-order phase tr
sition lines, circles represent critical points.~a! Phase diagram with
critical point C between the gas and the uniform liquid phase
high T and low P and critical pointC8 between the low-density
liquid ~LDL ! and the high-density liquid~HDL! at low T and high
P. This phase diagram has been proposed for water and has
shown to be consistent with the density anomaly.~b! Phase diagram
with critical point C1 between the gas and the LDL at lowT and
low P and the critical pointC2 between the gas and the HDL at hig
T and highP. IncreasingP at constant temperatureTa below C1

~dashed line atTa), the system undergoes a first-order phase tr
sition between the gas and the LDL phase, followed by a first-o
phase transition between the LDL and the HDL phases. Increa
the pressure at constant temperatureTb aboveC1 but below C2

~dashed line atTb), the system undergoes only a first-order pha
transition between the gas and the HDL. The square represent
gas-LDL-HDL triple point. This phase diagram has been found
Ref. @11# and shows no evidence of the density anomaly.
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with one or more attractive wells were proposed and stud
with approximate methods, or numerical simulations in 2
to rationalize the properties of liquid metals, alloys, elect
lytes, colloids, and the water anomalies@1–8,10–15#. It has
been recently shown@11#, in 3D with MD, that an appropri-
ate soft-core potential with an attractive well is able to sh
two supercooled liquids of different densities, with two cri
cal points. Similar results have been reported for a soft-c
potential with a linear repulsive ramp by Monte Carlo sim
lations @14#.

Following Ref.@11#, we define the isotropic pair potentia
U(r ), as a function of the pair distancer ~inset in Fig. 2!:

U~r !55
` for r ,a,

UR for a<r ,b,

2UA for b<r ,c,

0 for c<r ,

~1!

wherea is the hard-core distance andb is the soft-core dis-
tance. Fora<r ,b, the spheres interact with a finite~soft-
core! repulsive energyUR . For b<r ,c, the pair’s interac-
tion is attractive with energy2UA,0. The distancec is the
cutoff radius beyond which the pair’s interaction is cons
ered negligible. For sake of comparison with Refs.@10,15#,
we will consider bothUR.0 andUR,0.

The steplike shape in Eq.~1! has the advantage of bein
defined by only three parameters: the width of the soft c
in units of the hard-core distancewR /a[(b2a)/a, the
width of the attractive well in the same unitswA /a[(c
2b)/a, and the soft-core energy in units of the attracti
well energyUR /UA . To explore the phase diagram of th
model as a function of these three parameters in an appr
mate, yet fast, way we use the integral equations in the H
approximation.
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FIG. 2. Instability line of the HNC equations in 3D in ther-T
plane for the pair potential in Eq.~1!, with wR /a50.4, wA /a
50.3, and ~from top to bottom! UR /UA520.5, 0.0, 0.5. For
UR /UA520.5, the pair potential recovers that studied in 1D a
2D in Refs.@10,15#. The symbols represent the calculations and
lines are guides for the eye. Inset: the isotropic pairwise-addi
potentialU(r ) as a function of the interparticle distancer ; a is the
hard-core distance,b is the soft-core distance,c is the maximum
attractive distance,2UA,0 is the attractive energy, andUR is the
repulsive energy.
6-2
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METASTABLE LIQUID-LIQUID PHASE TRANSITION . . . PHYSICAL REVIEW E66, 051206 ~2002!
III. THE INTEGRAL EQUATIONS IN THE HYPERNETTED
CHAIN APPROXIMATION

In this section we present details of the integral equati
and the HNC approximation adopted in Ref.@11# and in this
work. The radial distribution functiong(r ) plays a central
role in the physics of fluids@16#. This quantity is propor-
tional to the probability of finding a particle at a distancer
from a reference particle and is the ratio of local to bu
density at distancer, with

g~r ![
n~r !

4pr 2r
, ~2!

wheren(r ) is the number of particles at a distance betweer
and r 1dr from the reference particle andr is the number
density, assumed to be independent ofr ~uniform system!.
The radial distribution function goes to 1 for larger and is
always 1 for a random spatial distribution of particles.
represent deviations from randomness, thetotal pair correla-
tion functionh(r )[g(r )21 is introduced.

These functions are relevant because they are dire
measurable by radiation scattering experiments and are
lated to the thermodynamic properties of the fluid. A fund
mental relation between structure and thermodynamic
given by

kBTrKT511rE h~rW !drW, ~3!

whereKT[(]r/]P)T /r is the isothermal compressibility,P
is the pressure, andkB is the Boltzmann constant. Provide
that the particles interact through pairwise-additive forc
other thermodynamic properties of the fluid—such as
internal energy—can be expressed using integrals over
pair correlation function.

The functionh(r ) is the result of the interaction of all th
particles in the system. Formally,h(r ) can be decompose
into ~i! the contribution coming from thedirect interaction
between two particles at distancer, calledc(r ), and~ii ! the
contribution due to theindirect interaction propagated
through any other particle in the system. This second con
bution is written in turn as an integral convolution of dire
correlations and total pair correlation.

This decomposition, for uniform systems, is expressed
the Ornstein-Zernike relation

h~r !5c~r !1rE c~r 8!h~ urW2rW8u!drW8. ~4!

Equation~4! is also the formal definition ofc(r ). Both h(r )
andc(r ) in Eq. ~4! are unknown functions, thus to solve th
equation, one needs another relation~closure! between these
two functions. This relation is provided by the diagramma
expansion ofg(r ) @16#, which, after formal summation
yields the functional relation

g~r !5exp@2bU~r !1h~r !2c~r !1d~r !#, ~5!
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where U(r ) is the interparticle potential,b[1/(kBT) and
d(r ) is the sum over a specific class of diagrams~bridge
diagrams! @16#. Sinced(r ) cannot be calculated exactly, on
resorts to approximate expressions. The simplest approx
tion assumesd(r )50 ~HNC closure! @32#. One expects this
approximation to work better at lowerr, where the direct
correlation functionc(r ) is more relevant than the correla
tion propagated through the other particles. However,
results~see Sec. V! will show that this intuitive observation
is not straightforward, at least for soft-core potentials.

A. The iterative procedure

The solution of the integral equations~4!,~5! with the
HNC closure is obtained through a numerical iterative p
cedure whose essential scheme is the following. Under
assumptiond(r )50, one can writeg(r ) as

g~r !5exp@2bU~r !1u~r !#, ~6!

where the functionu(r )[h(r )2c(r ) has the remarkable
property of being a continuous function ofr, even for dis-
continuous potentials~as in this paper!. From the definitions
of h(r ), u(r ) and Eq.~6!, one can derive the equation

c~r !5exp@2bU~r !1u~r !#2u~r !21. ~7!

By using the Fourier transformf̂ (qW )[* f (rW)exp(iqW•rW)drW de-
fined for a generic functionf (rW), from Eq. ~4! we obtain

ĥ~q!5 ĉ~q!1r ĉ~q!ĥ~q!. ~8!

Or, using the definition ofu(r ), we have

û~q!5r
ĉ2~q!

12r ĉ~q!
. ~9!

The numerical iteration is based on Eqs.~7! and ~9!.
We start by choosing an initial guess foru(r ). A reason-

able input, at least at high temperatures, is theu(r ) of a fluid
of hard spheres with diametera. In fact, at high temperature
our potential can be approximated with a simple hard-c
repulsion. We can calculate the correspondingu(r ) by mak-
ing use of the Percus-Yevick integral equation@16#, which
for hard spheres can be solved analytically. Next, at cons
r, we decrease the temperature ofdT and we perform cal-
culations at fixedr andT by using as input theu(r ) obtained
as a solution atr andT1dT.

From the chosen guess ofu(r ) we calculatec(r ) by using
Eq. ~7!. Its Fourier transformĉ(q) is used in Eq.~9! to
calculateû(q). Its inverse Fourier transform provides a ne
u(r ) that is used as a new input for the next cycle. W
evaluate the functions onM52048 discrete pointsr m
5mdr , with m51, . . . ,M anddr 50.01a. Successive itera-
tions of the elementary cycle define a successionu (k)(r ),
wherek51,2, . . . is thenumber of the iteration. If the dif-
ference between two consecutive elements of this succes
6-3
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D[F 1

M (
m

M

@u (k11)~r m!2u (k)~r m!#2G1/2

, ~10!

decreases for increasingk, the succession converges towar
a u* (r ) that is the solution of our integral equations. T
iteration process is stopped whenD<1027.

Based on this iterative procedure, different algorithms c
be used to improve the accuracy and rapidity of converge
of the numerical solution of HNC equations. However, ind
pendent of the algorithm used, there exists a region in
r-T plane where no solution can be found, i.e., for anyr,
there is aT below which the numerical algorithm does n
converge, defining aninstability line in the r-T plane.

B. The HNC instability line

The nature of the locus of instabilities of the HNC equ
tion and its relationship with the spinodal line of the flu
was investigated for a hard-core potential plus an attrac
Yukawa tail in a number of papers@33,34#. These studies
showed that the isothermal compressibility does not dive
as the temperature is lowered and the instability region
approached from above. This conclusion was definitively
sessed through extensive numerical calculations@35# both for
the hard-core Yukawa fluid and other model potentia
showing that this behavior is directly correlated to the ex
tence of multiple HNC solutions. The analysis develop
was based on a careful treatment of the low-k behavior of the
Fourier transforms of the correlation functions required
the iterative procedure. A further theoretical support to th
results was given by an analysis@36# on models for an ionic
fluid and a monoatomic Lennard-Jones fluid.

In the light of the above mentioned studies, an identifi
tion of the instability line of the HNC equation with th
spinodal line of the fluid, which is characterized by a dive
ing compressibility, is not possible. Keeping in mind th
limitation, one can nevertheless observe that for a large n
ber of simple fluid pair potentials the shape of the instabi
line qualitatively resembles the region of spinodal decom
sition of the fluid. Also for our potential the comparison
the HNC calculations with the MD results~Sec. V! shows
that the HNC instability line is qualitatively consistent wi
the spinodal line@37#. Thus, studying the modifications o
the instability line as the potential parameters are varied
yield some approximate, yet useful, information on the ph
behavior of the fluid.

C. The results

First, we calculate the instability line of the HNC equ
tions for the potential investigated in Refs.@10,15#. The cor-
responding parameters arewR /a50.4, wA /a50.3, and
UR /UA520.5. In this case, the soft core is given by tw
attractive wells with different depths. Calculations in 1D a
2D @10,15# have shown a waterlike density anomaly. The
fore, it is interesting to analyze the phase diagram in 3
However, the instability line for this case~Fig. 2! is similar
to the spinodal line usually exhibited by a simple fluid, e.
interacting via a Lennard-Jones potential with the maxim
05120
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of the spinodal line corresponding to the liquid-gas critic
point. Upon increasingUR /UA to 0.5 ~Fig. 2!, the only evi-
dent change of the instability line is a shift toward a lowerT
as a result of the overall decrease of the interparticle att
tion, with no hints of a second critical point. A small shift t
lower r is also seen. This behavior is more evident for larg
wR .

Next, we consider a potential with a largerwR(wR /a
50.7, wA /a50.3). The instability line is calculated fo
several values ofUR /UA ~Fig. 3!. Upon increasingUR /UA ,
we now find not only the shift to a lowerT, but also an
evident shift of the maximum of the line~i.e., the critical
point, assuming that the instability line represents the beh
ior of the spinodal line! to a lower r. This result can be
rationalized by observing that, passing fromUR,0 to UR
.0, the soft core becomes more and more difficult to p
etrate and the system passes from a potential with a hard
a and an effective attractive rangewA1wR to a potential
with an effective hard coreb, for UR /UA large enough, and
an attractive rangewA . As a consequence of the increase
the effective hard core, the critical density decreases and
a consequence of the decrease of the effective overall at
tion, the critical temperature decreases.

Comparing Figs. 2 and 3, we notice an important diffe
ence. In the case of largerwR ~Fig. 3!, asUR /UA increases,
the temperature of the instability line does not decrease w
increasingr, but becomes rather flat. This result sugge
that the instability line might develop a second maximum
larger values ofr for even largerwR .

We thus consider a potential withwR /a51.0 andwA /a
50.2. The results~Fig. 4! show that for 0.4<UR /UA<0.6,
the instability line has two well-distinct local maxima, su
gesting the possibility of two critical points in the pha
diagram for the fluid phases@38#. For UR /UA<0.3 or
UR /UA>0.7, the instability line shows just one maximum
similar to the typical spinodal line of a fluid of hard spher
with diametera or b, respectively, attracting via a squa
well of width wA . As a consequence of this analysis, w
choosewR /a51, wA /a50.2, andUR /UA50.5 as the set of
parameters for the potential used in the MD calculations
3D @11#.

FIG. 3. Instability lines, as in Fig. 2, for the pair potentials wi
parameterswR /a50.7, wA /a50.3, and ~from top to bottom!
UR /UA520.5, 0.0, 0.5, 0.7, 1.0.
6-4
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IV. THE MOLECULAR DYNAMICS APPROACH

In this section we give extensive details on the M
method and extend the analysis performed in Ref.@11#, in-
cluding calculations for the crystal phase, the crystal nuc
ation process, and the metastable phases. We perform
simulations at a constant number of particlesN of unit mass
m, at constant volumeV, with periodic boundary conditions
and at a constant average temperatureT. We present the re
sults for N5490, 720 andN51728. The average tempera
ture is set by coupling the system to a thermal bath at
assignedT, with a thermal exchange coefficient per partic
between the system and the bath equal tok
50.015 (UA /m)1/2kB /a. We use a standard collision eve
list algorithm @39# to evolve the system and a modified B
rendsen method to achieve the desiredT @40#.

The pressure is calculated by using the virial express
for a step potential@17#,

P5
m

3V K (
i

N

v i
21

1

Dt ( 8
i , j

DvW i•~rW i2rW j !L , ~11!

with ( i , j8 being the sum over the particle pairs (i , j ) under-
going a collision in the time intervalDt[(105ma2/UA)1/2,
hereafter used as unit of time, and withDvW i[vW i82vW i , where

vW i and vW i8 are the velocities of the particlei at positionrW i

before and after the collision with particlej at positionrW j .

A. The crystal

First, to locate the equilibrium crystal line, we simulate
crystal seed surrounded by the gas. We prepare a crystal
by cooling atT50.45UA /kB a gas configuration with densit
r50.018/a3.

The crystal~Fig. 5! is the effect of the competition be
tween the hard-core repulsion at distancer 5a and the at-
traction at distancer 5b. The resulting structure is reminis
cent of the close packing of hard spheres with diametera or
b, but the competition gives rise to new symmetries~Fig. 5!.
The minimum in the interparticle interaction potential atb
<r ,c would induce a face-centered-cubic crystal with l

FIG. 4. Instability lines, as in Fig. 2, for the pair potentials wi
parameterswR /a51.0, wA /a50.2, and ~from top to bottom!
UR /UA50.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7. The full symbols c
respond to the set of parameters selected for the MD calculatio
05120
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tice space ranging fromb to c and a characteristic sixfold
symmetry on one projection plane with seven particles
form a triangular lattice. However, due to the soft core, t
system can allocate particles at the hard-core distanca
5b/2. This induces a 12-fold symmetry, placing an avera
number of 12, almost on-plane, nearest neighbor~NN! par-
ticles at a distance 1<r /a&1.2 from each other to form a
dodecagon around two particles. These two NN particles
next nearest neighbors to the dodecagon, at a distanc
<r /a<2.2, and are placed on a line almost perpendicula
the plane individuated by the dodecagon@Fig. 5~b!#. This
structure is distorted in such a way to form nonclosed cha
of NN particles that wrap along another axis to give rise
an eightfold symmetry@Fig. 5~c,d!#.

By analyzing the crystal structure obtained from the M
simulations, we conclude that the position of the particles
the crystal can be described byrW5 i •aW 1 j •bW 1k•cW1rWm ,
where rWm , for m51, . . . ,10, are thecoordinates, with re-
spect to the center of the cell, of the ten particles formin
crystal cell,aW , bW , andcW are the lattice vectors describing th
position of the center of the cell, andi, j, andk are integers
such thati 1 j 1k is even. We estimate the lattice vecto

-
s.

FIG. 5. The MD configuration equilibrated atkBT/UA50.45
anda3r50.018. Darker particles are farther away from the obs
vation point.~a! The crystal, with defects, surrounded by the ga
Bonds connect particles at distance 1<r /a<1.2. The radius of the
particles isnot in scale with the distances. A typical ring of eigh
particles~octagon! is plotted with a larger radius.~b! A section of
the crystal. Bonds connect particles at distance 2<r /a<2.2. The
radius of the particles is in scale with the distances. Note, in
upper part of the panel, a ring of 12 NN particles~dodecagon!,
connected by bonds to two central particles.~c! The same 12 par-
ticles of the section in~b! are plotted with a larger radius with
respect to the other particles. Bonds are like in panel~a!. ~d! A
rotation of 40 ° around a central horizontal axis of the section in~c!
reveals the eightfold symmetry observed in~a!.
6-5
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FRANZESEet al. PHYSICAL REVIEW E 66, 051206 ~2002!
~Table I! and the coordinates of the particles forming the c
~Table II! after an equilibration time 102Dt at T
50.03UA /kB for an artificial crystal placed in vacuum~Fig.
6!. The resulting density of the crystal isa3r.0.39.

Surface effects could be responsible for the tilt that can
seen in Fig. 6~d!. In a system withN5720, this tilt disap-
pears when the sample is equilibrated at higherT ~Fig. 7!.

We compare theg(r ) ~Fig. 8! of the MD crystal in Fig. 5
and of the artificial crystal in Fig. 6, both equilibrated atT
50.48UA /kB . Both functions show peaks located at t
same distances, with two large peaks atr /a51 and r /a
52, consistent with the presence of the two characteri
distancesa andb in the potential. The comparison confirm
that the proposed crystal is a good representation of the c
tal structure generated by the MD simulation. The sligh
different intensities of the peaks of theg(r ) of the two sys-
tems are probably due to the defects of the MD crystal.

The validity of the artificial crystal as a good descriptio
of the real crystal structure is confirmed also by the evolut
of the potential energy per particle~inset in Fig. 8! when

TABLE I. The coordinates of the lattice vectors as obtained a
an equilibration time 102Dt at T50.03UA /kB of the artificial crys-
tal ~Fig. 6! proposed to describe the crystal structure found in
MD simulations~Fig. 5!. The errors on the parameters are on t
last decimal digit and decrease as the square root of the tim
averaging.

x y z

aW /a 1.95 0.00 0.11

bW /a 0.00 3.41 0.00

cW /a 0.00 0.00 1.94

TABLE II. The coordinates rWm5(xm ,ym ,zm) for m
51, . . . ,10 of the tenparticles forming a crystal cell, with respec
to the center of the cell, as obtained after an equilibration ti
102Dt at T50.03UA /kB of the artificial crystal~Fig. 6!. The char-
acteristic distances, with an error on the last decimal digit,
l 1 /a50.53, l 2 /a50.59, l 3 /a50.07, l 4 /a51.43, l 5 /a50.05,
l 6 /a50.03, l 7 /a51.40, l 8 /a50.52. The errors decrease as t
square root of the time of averaging. For each particlem of the cell,
we denote withnm

sc the number of particles in the crystal at a di
tancer<b ~in the soft core! and withnm

aw the number of particles a
a distanceb,r<c ~in the attractive well!.

m xm ym zm nm
sc nm

aw

1 l 1 l 2 l 3 6 15
2 2 l 1 l 2 2 l 3 6 15
3 2 l 1 2 l 2 2 l 3 6 15
4 l 1 2 l 2 l 3 6 15
5 2 l 4 0 2 l 5 3 24
6 l 4 0 l 5 3 24
7 2 l 6 2 l 7 2 l 8 4 21
8 l 6 2 l 7 l 8 4 21
9 2 l 6 l 7 2 l 8 4 21

10 l 6 l 7 l 8 4 21
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the MD crystal and the artificial crystal are heated, fro
the configuration equilibrated atT50.48UA /kB to
T50.60UA /kB . Both samples equilibrate to the same e
ergy. The starting potential energy is, as expected, in b
cases greater than the ground state energyU0 /N5

FIG. 6. The artificial crystal configuration equilibrated for
time 102Dt with a MD simulation atT50.03UA /kB . Bonds con-
nect particles at distancer /a<1.2. The radius of the particles isnot
in scale with the distances. Greater particles are closer to the o
vation point. The configuration contains 15 cells. The central ce
emphasized by darker bonds.~a! Each cell has four particles at th

corners of a rectangle (rWm with m51, . . . ,4 in Table II!, whose
long sides form two triangles, with two particles on the same pla

(rWm with m55,6 in Table II!, and the short sides form two tetrahe

dra, each with two more particles (rWm with m57, . . . ,10 in Table
II !. ~b! The crystal configuration rotated byp/4 around a central
horizontal axis shows the eightfold symmetry seen in Figs. 5~a! and
5~d!. ~c! A further rotation ofp/4 around the same axis shows th
dodecagons seen in Figs. 5~b! and 5~c!. ~d! A rotation ofp/2 around
a central vertical axis shows again the octagons seen in Figs.~a!
and 5~d!.

r

e
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e

e

FIG. 7. The artificial crystal configuration forN5720 particles
equilibrated with a MD simulation atT50.10UA /kB ~a! and atT
50.52UA /kB ~b!. Bonds connect particles at distancer /a<1.2.
The radius of the particles isnot in scale with the distances. Th
crystal seeds are in equilibrium with the gas phase and show m
defects. The tilt present at the lowerT in ~a! disappears at the highe
T in ~b!.
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28.45UA , calculated from the number of particles at d
tancea<r ,b and at distanceb<r ,c ~Table II!, due to
surface effects. We find analogous results for the evolutio
the kinetic energy.

To test if the system has more than one crystal structur
a function of the density, we cool atT50.6UA /kB a fluid
configuration equilibrated at T50.8UA /kB and r
50.267/a3, and compare the resultingg(r ) with the case of
the crystal seeds atT50.45UA /kB andr50.018/a3, finding
no relevant differences~Fig. 9!. At the same time, the at
tempt of finding alternative artificial crystal structures h

FIG. 8. The radial distribution functionsg(r ) for the MD crystal
~solid line! and the artificial crystal~dotted line!, both equilibrated
at T50.48UA /kB , are very close to each other. Inset: the poten
energy densityU/N for the MD crystal~solid line! with N5490
and the artificial crystal~dotted line! with N5720, both equili-
brated atT50.60UA /kB , starting from a configuration equilibrate
at T50.48UA /kB , as a function of the time divided by the numb
of particlesN.

FIG. 9. Comparison of the radial distribution functiong(r ) cal-
culated for two MD configurations obtained by cooling the syst
at different densities: the solid line is for the configuration
kBT/UA50.60 anda3r50.267, the dashed line for the configur
tion at kBT/UA50.45 anda3r50.018. The two functions are ver
close to each other for distancesr /a<4, showing that the crysta
structure is the same at both densities. The difference betwee
two functions is consistent with the presence of defects and of
surrounding gas.
05120
of
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revealed, after an appropriate equilibration, that the o
stable structure is that presented in Fig. 6. We therefore
sume that the system, at least for this choice of the po
tial’s parameters, has one single-crystal structure indep
dent ofr, within the considered range of densities.

Starting from a configuration with the crystal seed d
scribed above, we equilibrate the system at different de
ties and temperatures. We define the system to be in the s
phase if, after a time 106(ma2/UA)1/2.33103Dt, the crys-
tal seed is growing, or we consider it in a fluid phase if t
seed is melting. The cases in which the trend is not cl
within the simulation time are considered as belonging to
first-order transition region@41#. The crystallization pressure
rapidly increases withr andT, giving a first-order transition
line ~in the thermodynamic limit! that separates the equilib
rium P-r phase diagram in a high-T fluid and a low-T crys-
tal ~Fig. 10! @11#.

l

t

the
e

FIG. 10. The MDP-r phase diagram. The thick dashed line
the gas-crystal first-order transition line at the equilibrium. The c
culations in the region below this line are for the metastable fl
states. Main panel: the diamonds~full and open! are the MD calcu-
lations for ~bottom to top! kBT/UA50.570, 0.580, 0.590, 0.600
0.610, 0.620, 0.630, 0.640, 0.650, 0.660, 0.670, 0.675, 0.685, 0.
The dotted lines are the isotherms calculated by polynomial in
polations of the points at constantT and, at the same time, of th
points at constantr. The circle atr50.1/a3 is the gas-LDL critical
point C1. The square atr50.306/a3 is the gas-HDL critical point
C2. The solid thick lines connecting the local minima and maxim
along the isotherms are the spinodal lines associated with each
cal point and the shaded regions are the associated mechan
unstable regions. The dashed lines, passing through the cr
points, are the coexistence regions associated with each cr
point. The meeting point of the gas-HDL coexistence line with t
gas-LDL coexistence line gives the possible triple point~full tri-
angle atr.0.12/a3). Where not shown, the errors are smaller th
the symbols. Inset: enlarged view aroundC1. Symbols are as in the
main panel. The diamonds are the MD calculations for~bottom to
top! kBT/UA50.580 0.590, 0.595, 0.600, 0.603, 0.606, 0.60
0.620, 0.630, 0.640, 0.660.
6-7
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B. The supercooled liquids

At equilibrium, there is no~stable! liquid phase. A phase
diagram without an equilibrium liquid phase is expect
@42,43# for systems with an interparticles potential with
narrow attractive part, such as the one we are conside
here. However, the liquid is present as a metastable~super-
cooled! phase with respect to the crystal phase@11#. To study
the metastable phase diagram, we equilibrate the system
eachr from a gas configuration atT50.70UA /kB and then
rapidly cool it to the desiredT>0.57UA /kB , calculating
P, g(r ), and the total potential energyU[( i , j

N U(ur i

2r j u).
We find that the supercooled fluid phase has a lifeti

longer than 33103Dt ~the standard length of our simula
tions! for r&0.20/a3 at T'0.57UA /kB , for r&0.27/a3 at
T'0.65UA /kB , and forr&0.34/a3 at T'0.70UA /kB . The
system is equilibrated in the fluid phase fort>20Dt, after
which we averageP, g(r ), andU over the time. We calculate
each state point by averaging the configurations for
3102Dt<t<33103Dt. We estimate the errors by dividin
the configurations into 90 nonoverlapping intervals of 30Dt,
which we assume to be independent.

For largerr, the system spontaneously crystallizes~ho-
mogeneous nucleation process!. Thus, we only average ove
configurations that occur before nucleation. To be certain
our estimates are carried out in the fluid phase, we stud

S~qW ,t ![
1

N K (
j ,k

N

eiqW •[ rW j (t)2rWk(t)] L , ~12!

whererW j (t) is the position of particlej at timet andqW is the
wave vector. At equilibrium, the average ofS(qW ,t), over the
time and the wave vectors with the same module, is
structure factorS(q), describing the spatial correlation in th
system. Therefore,S(qW ,t) describes the time evolution of th
spatial correlation along the wave vectorqW . In particular, for
a crystal-like configuration, with a long-range order, there
at least one wave vector such thatS(qW ,t);O(N), while for
a fluidlike configuration, it isS(qW ,t);O(1) for all qW .

The time evolution ofS(qW ,t) for a typical simulation in-
side the nucleation region is presented in Fig. 11. To limit
computational effort, we consider 93104 wave vectors with
modulusq<100/a, which is much larger than the wave ve
tors of the largest peak of the crystal structure factorq
'2p/(a/2), corresponding to the hard-core radius@Fig.
11~c!#. Three different regimes can be distinguished in
example in Fig. 11.

~i! A short-time regimeA, in whichS(qW ,t);O(1) for any
q@q51/a and q'12/a'4p/a are shown in Figs. 11~a,b!#.
Averaged on this interval@curveA in Fig. 11~c!# the S(q) is
fluidlike.

~ii ! An intermediate-time regimeB, in which S(qW ,t) for
q51/a has an increase, but has no increase forq'4p/a.
Averaged on this interval@curveB in Fig. 11~c!# the S(q) is
fluidlike, but with an increase forq→0. This increase indi-
cates an increase ofKT , according to the equation
05120
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kBTrKT5 lim
q→0

S~q!, ~13!

where we use Eq.~3! and the definitionS(qW )[11rĥ(qW ).
The increase ofKT is associated with the phase separat
into two fluids with different densities. To help visualize th
phase separation, in Fig. 12 we show the three planar pro
tions of the three dimensional configuration corresponding
the largest peak in the time intervalB for q51/a @Fig. 11~a!#.
By dividing the box into two equal parts, the histograms
the number of particles in each part~Fig. 12! show a sepa-
ration in density approximately at half the box length, cor
sponding to q54p(r/N)1/3'1/a for r50.27/a3 and N
5490, in agreement with the peak atq51/a for curveB in
Fig. 11~c!. In each projection, it is possible to see regions
high density and low density~Fig. 12!. To better quantify the
phase separation occurring in the configuration in Fig. 12,
present~main panel in Fig. 12! the histogram of the numbe
of pairs of particles at a relative distancer i,r<r i 11, where
r i 112r i5a/10. The histogram has a broad maximu
around the distancer /a51.2 in the soft-core range, showin
that there exists a subset of the pairs of particles that are
preferred distance 1.1,r /a<1.2. This subset is the HDL

FIG. 11. MD calculations.~a! Time evolution of the structure

factor S(qW ,t) at T50.62UA /kB and r50.27/a3, for wave vectors
with modulusq51/a and for a timet/Dt53000; in the time inter-

val A with 200Dt<t<500Dt, it is S(qW ,t);O(1) for anyqW ; in the
time intervalB with 700Dt<t<1800Dt, for six wave vectors there
is an increase inS(q51/a,t); in the intervalC with 2100Dt<t
<3000Dt, for the same six wave vectors there is a larger increa
~b! As in ~a! but for q'12/a'4p/a; in this case there is a larg
increase inS(q'12/a,t), more than one order of magnitude, on
in the time intervalC for several wave vectors, revealing the fo
mation of a crystal seed.~c! The structure factorS(q), given by the
average over the dimensionless wave vectorsaq with the same
modulus and the average over the time intervalsA, B, and C of

S(qW ,t). The curves forB andC are offset by 1.5 and 3, respectivel
All the curves go to 1 for largeq. In the intervalA, S(q) is liq-
uidlike. In the intervalB, S(q) is still liquidlike but with an in-
crease forq→0, while in the intervalC it is solidlike, with two
large peaks atq'2p/(b/2)52p/a andq'2p/(a/2), correspond-
ing to the soft-core radius and the hard-core radius, respectiv
and a large value forq→0.
6-8



be
w
1

,

-

cl

th
rd
he

rre-
m in

ns.
the

n at

ra

is
ra
th
es

he

re

is
o

is-
the

par-

1.
nect
in

METASTABLE LIQUID-LIQUID PHASE TRANSITION . . . PHYSICAL REVIEW E66, 051206 ~2002!
that has a nonuniform distribution over space@Fig. 13~b!#,
consistent with the phase separation.

~iii ! A long-time regimeC, in which isS(qW ,t);O(N) for
q'4p/a, revealing the crystal nucleation process. TheS(q)
averaged over this time interval@curve C in Fig. 11~c!# is
solidlike. In the same interval,S(qW ,t) for q51/a has a large
increase, corresponding to the increase ofKT@S(q) increases
for q→0], which is consistent with the phase separation
tween the fluid and the crystal. As an example, in Fig. 14
show the last configuration of the time series in Fig. 1
where the crystal structure, already observed in Fig. 5
clearly seen.

The example in Fig. 11~b! shows the formation of a high
density fluid phase within the time intervalB, followed by
the nucleation of the crystal phase. The onset of the nu
ation is marked by a large increase ofS(qW ,t) for all the wave
vectors corresponding to the peaks in the crystalS(q) and by
a large steplike decrease of energy.

C. The phase diagram and the finite size effect

By repeating the analysis described above for all
simulations inside the region with nucleation—and disca
ing the data corresponding to the formation of t

FIG. 12. Inset: projections of the three-dimensional configu
tion of N5490 particles in a system of sizeV1/3512.25a and cor-
responding to the largest peak in the time intervalB in Fig. 11~a!.
The projections are~from left to right! Z vs Y, Z vs X, andX vs Y.
The histograms of a number of particles as functions of the absc
are superimposed on each projection. Projections and histog
are shifted for clarity. Each histogram bin corresponds to half of
box size. The dashed line shows the average number of particl
each bin for a uniform configuration (N/25245). The largest de-
viation from the average is 40.AN'22, i.e., twice the statistic
fluctuation for a random distribution of particles. Main panel: t
number of pairs of particles at a relative distancer i,r<r i 11 for
the MD configuration in the inset, withr 050, r 1 /a51, andr i 11

2r i5a/10 for i .1. The histogram shows a large maximum cor
sponding to the attractive range 2<r /a,2.2, a broad maximum
aroundr /a51.2, and a small number of pairs at the hard-core d
tancer 5a. Therefore, the preferred relative distance for pairs
particles within the soft-core range 1<r /a,2 is, for this configu-
ration, r /a.1.2.
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nucleus—it is possible to calculate the state points co
sponding to the metastable fluid phase. The phase diagra
Fig. 10 is based on averages over a total of 105–106 configu-
rations in the fluid phase, accumulated in independent ru

For completeness we recall here the main features of
phase diagram in Fig. 10 and presented in Ref.@11#. The
~mechanically unstable! region at high r for T
&0.67UA /kB , whereP decreases for increasingr, denotes
the coexistence of the gas and HDL. The unstable regio
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FIG. 13. Spatial distribution of pairs of particles at various d
tances for the MD configuration shown in Fig. 12. The radius of
particles isnot in scale with the distances. In~a! the darker particles
are farther away from the observation point. Bonds connect
ticles at the hard-core distance 1<r /a,1.1 in panel~a!, at distance
1.1,r /a<1.2 in panel~b!, at distance 1.3,r /a<1.4 in panel~c!,
at distance 1.5,r /a<1.6 in panel~d!. The nonuniform distribution
of bonds is clearly seen in panel~b!.

FIG. 14. The last MD configuration in the time series in Fig. 1
A crystal nucleus surrounded by gas is clearly seen. Bonds con
particles at distancer /a<1.1. The 3D perspective is given as
Fig. 5. The radius of particles isnot in scale with the distances.
6-9
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FRANZESEet al. PHYSICAL REVIEW E 66, 051206 ~2002!
low r for T&0.603UA /kB ~inset in Fig. 10! denotes the co-
existence of the gas and LDL. The coexistence lines are
tained by using the Maxwell construction of the equal ar
@1#, suggesting the presence of a gas-LDL-HDL triple poi

By definition, the spinodal lines~limit of stability of each
phase with respect to the coexisting phase! meet the coexist-
ence lines at a critical point. Therefore, by interpolation
estimate the gas-LDL critical pointC1 at kBT1 /UA50.603
60.003, a3r150.1060.01, a3P1 /UA50.017160.0005,
and the gas-HDL critical pointC2 at kBT2 /UA50.665
60.005, a3r250.30660.020, a3P2 /UA50.1060.01.
These values are consistent with the linear interpolation
the MD isotherms~Fig. 10!.

The phase diagram resulting from the MD calculations
as expected, in agreement with the time-dependent ana
of the structure factor presented above. For example, the
presented in Fig. 11 corresponds to a state point inside
gas-HDL coexistence region at a density higher then
crystal nucleation density forT50.62UA /kB . The nucle-
ation of the~metastable! HDL phase is thus followed by the
crystal nucleation.

To estimate the finite size effect in our calculations,
compare the results forN5490 andN51728 for an isotherm
below both critical points~Fig. 15!. The calculations do no
show any relevant finite size effect, suggesting that the M
results forN5490 are reliable.

V. THE RADIAL DISTRIBUTION FUNCTION ANALYSIS

The interpretation of the HNC instability line is qualita
tively consistent with the MD spinodal line for the corr
sponding set of the potential’s parameters. The projectio
the MD spinodal line in theT-r plane~not shown! has the

FIG. 15. Comparison between MD simulations forN5490 ~full
diamonds! and N51728 ~circles! at kBT/UA50.595. The results
for the two sizes are very close. For comparison, we include
the calculations forN5490 atkBT/UA50.60 and 0.59~upper open
diamonds and lower open diamonds, respectively! and the interpo-
lation at kBT/UA50.595 ~dashed line! between these two iso
therms, showing the presence of two regions with negatively slo
isotherms. The points calculated forN51728 are also consisten
with this interpolation, suggesting that the finite size effect betw
N5490 andN51728 is small. Errors, where not shown, are sma
than the symbols.
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same characteristics as the HNC instability line, with tw
local maxima and one local minimum. In both approach
the high-r local maximum occurs at a temperature high
then the temperature of the low-r maximum and the pres
ence of a triple point is suggested by the presence of the l
minimum.

The quantitative HNC predictions for the locations of t
two critical points are, as expected, only partially consist
with the MD results. It is remarkable that the HNC estima
of the density of the low-r local maximum (r'1/a3) and
the temperature of the high-r local maximum (T
'0.65UA /kB) of the instability line are close to the corre
sponding MD results forC1 andC2, respectively.

An estimate of the agreement between the two meth
can be evaluated by comparing the calculations forg(r )
within the two approaches~Fig. 16!. In contrast with what
could be suggested by the nature of the HN
approximation—i.e., the underestimate of the indire
correlation—the agreement is better at intermediater than at
low r ~Fig. 16!. In particular, at lowr the HNC approxima-
tion underestimates the probability of a particle penetrat
the soft core or entering the attractive well. At higherr,
instead, the estimates of theg(r ) within the two approaches
are almost indistinguishable.

The g(r ) of the low-r fluid is characterized by a larg
peak at r 5b corresponding to the shortest attractive d
tance. As a consequence of the increase of the density
peak at the hard-core distancer 5a increases while the pea
at r 5b decreases, and additional peaks atr /a53,4, . . . ap-
pear. In Fig. 17 we present the calculation ofg(r ) for the gas
phase, the gas-HDL coexisting region, and the HDL pha
In particular, by combining the radial distribution function
evaluated in each pure phase, we can estimate the com
tion of the mixed phase. For example, atT50.64UA /kB the
radial distribution function calculated atr050.302/a3 is

o

d

n
r

FIG. 16. Comparison between theg(r ) calculated in the HNC
approximation~dotted line! and by MD simulations~solid line!. As
an example, we present the calculations atT50.64UA /kB for den-
sities ~from top to bottom! a3r50.066, 0.154, 0.267. For clarity a
constant value is added to the first two curves~6.5 and 3, respec-
tively!. The two independent calculations are very close at interm
diate densities. At larger all the curves go to 1.
6-10
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METASTABLE LIQUID-LIQUID PHASE TRANSITION . . . PHYSICAL REVIEW E66, 051206 ~2002!
g0(r ).X1g1(r )1X2g2(r ), whereg1(r ) and g2(r ) are the
radial distribution functions at the sameT and at r1
50.223/a3 and r250.349/a3, respectively, withX150.3
andX250.7 ~Fig. 18!, revealing that the system is compos
approximately by 30% gas and 70% HDL.

From Eq.~2!, by using theg(r ) calculated from the MD
simulations, we evaluate the average number of parti
N(r )5*dN(r ) within a sphere of radiusr ~Fig. 19!. This
analysis reveals that the number of particlesDN within the
repulsive range and within the attractive range increases
early withr ~inset of Fig. 19!, and that the increase is fast

FIG. 17. The radial distribution functiong(r ) calculated from
the MD results atT50.64UA /kB for densitiesa3r50.066, 0.100,
0.132, 0.154, 0.186, 0.223, 0.267, 0.302, 0.322, 0.333, 0.349, 0
With increasingr, the peak atr 5a increases and the peak atr
5b decreases, while more peaks appear at largerr.

FIG. 18. The radial distribution function calculated from th
MD simulations atT50.64UA /kB and r50.302/a3 ~open circles!
is compared with the compositionX1g1(r )1X2g2(r ) ~solid line!,
where g1(r ) is the radial distribution function for the pure ga
phase~at r50.223/a3) andg2(r ) is for the pure HDL phase~at r
50.349/a3) at the sameT, with X150.3 andX250.7.
05120
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within the attractive range~Fig. 19! for the densities we stud
ied. In particular, the number of particles within the attracti
rangeb<r ,c increases from 2.5 to 9!(m51

10 nm
aw/10519.2

estimated for the artificial crystal~Table II!.

VI. ABSENCE OF A DENSITY ANOMALY

In Ref. @11# it has been noted that the possibility of
second fluid-fluid critical point is not necessarily restricted
systems with a density anomaly, at least from a theoret
point of view. Here we present the explicit thermodynam
calculations for this result.

The defining relation for the density anomaly is given

]V

]T U
P

,0 ~14!

or

]S

]V U
T

]V

]PU
T

.0 ~15!

for the Maxwell relation

]V

]T U
P

52
]S

]PU
T

, ~16!

whereS is the entropy. Since

8.

FIG. 19. Inset: the MD results atT50.64UA /kB for the cumu-
lative number of particlesDN within the repulsive ranger ,b
~circles! and within the attractive rangeb<r ,c ~squares!, increas-
ing linearly withr in this range of densities; the linear fit of the da
gives a slope 20.260.5 for the solid line and a slope 22.160.6 for
the dashed line. Main panel: the data in the inset plotted one ve
the other to show that within the mechanically unstable regionr
.0.267/a3), DN increases approximately in the same way withr
both within the attractive and within the repulsive range~the dashed
line is a linear fit of all the data with slope 1.0860.06) and in-
creases faster within the attractive range at lower densities~the solid
line is a quadratic fit!.
6-11
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]V

]P U
T

,0 ~17!

holds for a mechanically stable phase, Eq.~15! can be rewrit-
ten as

]S

]V U
T

,0. ~18!

From the differential expression of the thermodynam
potential at constantT, we know that

TdS5dE1PdV, ~19!

whereE[U1K is the total energy, withU andK being the
total potential and kinetic energy, respectively. Therefore
is

]S

]V U
T

5
1

T

]U

]VU
T

1
P~V,T!

T
~20!

at constantT and we can rewrite the density anomaly con
tion in Eq. ~18! as

]U

]V U
T

1P~V,T!,0 ~21!

at constantT.
To calculate the left-hand side of Eq.~21!, we need to

evaluate (]U/]V)T . In Fig. 20, we show our MD calculation
for U(r) at constantT. All the MD points can be fitted with
a third-degree polynomial inr. The fitting parameters ar
given in Table III and are used to calculate the derivat
(]U/]V)T , shown in Fig. 21. Our calculations show a p
tential energyU increasing withV ~inset of Fig. 21!, with a

FIG. 20. The potential energy densityU/N, calculated by MD
simulations, as a function of the densityr for temperatures~bottom
to top! kBT/UA50.60, 0.61, 0.63, 0.64, 0.66, 0.67, 0.70. The sy
bols represent the MD calculations, with errors smaller than
symbol’s size. The lines represent the cubic fit of the calculati
with the parameters in Table III.
05120
it

-

e

derivative always positive, thus whereverP is positive, the
condition in Eq.~21! is not satisfied and there is no densi
anomaly.

In the region whereP,0 ~at low T and smallV), the
derivative (]U/]V)T rapidly increases in such a way that E
~21! is never satisfied. Particularly, in the range of volum
considered, it is always (]U/]V)T20.025UA /a3.0, where
P520.025UA /a3 is the minimum pressure, reached forT
50.6UA /kB and V/N53.31a3 ~Fig. 10!. These results sug
gest that the density anomaly is ruled out for this choice
parameters. At this stage it is not clear if it is ruled out f
any choice of parameters for our potential in 3D~see Ref.
@15#!.

VII. SUMMARY AND CONCLUSIONS

We analyzed the phase diagram of a soft-core poten
similar to potentials used in systems such as protein s
tions, colloids, melts, and in pure systems such as liq

-
e
s

TABLE III. Parameters for the cubic fitU/N5a01a1r1a2r2

1a3r3 of the MD calculations for the potential energy densityU/N
in Fig. 20 for different temperatures. The errors on the fitting p
rameters are on the last decimal digit.

kBT/UA a0 a1 a2 a3

0.60 -0.2309 -20.46 39.64 -56.90
0.61 -0.2228 -19.74 36.52 -51.11
0.63 -0.1279 -21.38 49.64 -76.71
0.64 -0.1098 -20.24 44.19 -65.17
0.66 -0.0458 -20.48 48.08 -70.72
0.67 -0.0733 -21.50 52.43 -75.20
0.70 -0.0446 -18.18 37.39 -49.14

FIG. 21. The derivative (]U/]V)T calculated by using the cubic
expression in Fig. 20, with the parameters in Table III, as a funct
of the specific volumeV/N for temperatures~top to bottom!
kBT/UA50.60, 0.61, 0.63, 0.64, 0.66, 0.67, 0.70. The derivative
the considered range ofV/N, is always larger than 0.025UA /a3

~bottom horizontal line!. Inset: the same MD results in Fig. 20 fo
U/N plotted as a function ofV/N. The symbols are the same as
Fig. 20.
6-12
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metals. We use two independent numerical methods, inte
equations in the HNC approximation and MD simulation
The comparison of the HNC results with previously pr
posed soft core potentials suggests that the system has
fluid-fluid phase transitions for an appropriate choice
parameters—energy and width—of the repulsive soft co
We select a set of potential parameters with a narrow att
tive well that gives a HNC instability line with two maxim
and suggests the presence of two critical points.

The MD analysis shows, in agreement with the previo
results for potentials with a short range attraction@42#, a
phase diagram with no stable liquid phase. We analyze
crystal structure, characterized by the competition betw
the attractive interaction at distancer 5b and the repulsive
interaction atr 5a,b. We show that the crystal, with eigh
fold and 12-fold symmetries, is independent on the dens
within the considered range of densities.

Hence, we study the metastable liquid phase at temp
tures above and below the line of spontaneous crystal nu
ation. We find two liquids in the supercooled phase, the L
and the HDL, with two fluid-fluid transitions ending in tw
critical points, the gas-LDL critical pointC1 and the gas-
HDL critical point C2, as already shown in Ref.@11#. Here
we improve our estimate of the phase diagram and verify
absence of relevant finite size effects in the MD results.

We compare these results with the HNC calculations, c
-

p
es

d

R.

7
,
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.

wo
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e.
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y,

a-
le-
L

e
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cluding that the HNC approximation underestimates the
fect of the attractive interaction and overestimates the ef
of the repulsive interaction at lowr, and is in good agree
ment with the MD results at intermediater.

Finally, by explicit calculation, we show that the cond
tion for the density anomaly is never satisfied in the range
T and V considered here, as announced in Ref.@11#. Our
results suggest that the density anomaly is always ruled
for this choice of potential parameters.

In conclusion, the results of this paper evoke an intrigu
relation between the absence of the density anomaly and
presence of a single crystalline phase, with higher den
than the liquid phases, in systems with two fluid-fluid pha
transitions. This relation, which deserves greater invest
tion, is consistent with the fact that the substances with
density anomaly, and a hypothesized second liquid-liq
critical point, have more than one crystal structure, as in
case of water or carbon or silica.
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