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Metastable liquid-liquid phase transition in a single-component system
with only one crystal phase and no density anomaly
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We investigate the phase behavior of a single-component system in three dimensions with spherically-
symmetric, pairwise-additive, soft-core interactions with an attractive well at a long distance, a repulsive
soft-core shoulder at an intermediate distance, and a hard-core repulsion at a short distance, similar to poten-
tials used to describe liquid systems such as colloids, protein solutions, or liquid metals. We §Neved
(London 409 692 (2001)] that, even with no evidence of the density anomaly, the phase diagram has two
first-order fluid-fluid phase transitions, one ending in a gas—low-density-lidubd. ) critical point, and the
other in a gas—high-density-liquieHDL) critical point, with a LDL-HDL phase transition at low temperatures.

Here we use integral equation calculations to explore the three-parameter space of the soft-core potential and
perform molecular dynamics simulations in the interesting region of parameters. For the equilibrium phase
diagram, we analyze the structure of the crystal phase and find that, within the considered range of densities,
the structure is independent of the density. Then, we analyze in detail the fluid metastable phases and, by
explicit thermodynamic calculation in the supercooled phase, we show the absence of the density anomaly. We
suggest that this absence is related to the presence of only one stable crystal structure.
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[. INTRODUCTION The hypothesis of a second critical point has been pro-
posed 20] as a way to rationalize the density anomaly—i.e.,
Soft-core potentials have been widely used to study a vathe expansion upon isobaric cooling—in network-forming
riety of systems such as liquid metals, metallic mixturesfluids, such as watdrl,20,21, carbon[22], silica[23] and
electrolytes, and colloids, as well as anomalous liquids, suchilicon [24]. Consequently, both the experimenf@b—29
as water and silicd1-15. In these models, the specific and the theoreticdl7—10,13—15,30,3linvestigations about
structural characteristic at the molecular atomig level is  the possibility of a second critical point have been focused
neglected and the moleculésr atomg are represented by on systems with the density anomdlyig. 1(a)]. However,
simple spheres. Quantum effessich as the quantum nature the results of Refl11] have shown that the presence of the
of chemical interactionsand classical effectésuch as the critical point C, does not necessarily induce the density
Coulomb interaction are modeled through a phenomeno- anomaly, indicating that the quest for simple liquids with two
logical isotropic pair potential. The advantages of this ap-ritical points is not restricted to systems with densities ex-
proach are that while these potentials are simple enough tiibiting anomalous behavidiFig. 1(b)]. In this paper we
be treated analyticallj16], they still allow a qualitative push forward the analysis, by studying the equilibrium phase
comparison with the experiments. Moreover, they can beliagram and showing that the system introduced in Réf,
studied by means of numerical simulations less time conhas one stable crystalline phase, in the range of considered
suming than those of realistic mod¢lk7]. densities, suggesting that the absence of density anomalies is
We consider an off-lattice model in three dimensi@Bb) related to the presence of only one stable crystal structure.
[11] related to the soft-core potentials studied by Hemmer To reach this goal we organize the work in the following
and Stell[2] for solid-solid critical points. Our model shows way. After the definition of our soft-core potentidiSec. I,
a phase diagram with two fluid-fluid phase transitions, a feafi) we describe in detail the integral equations in the hyper-
ture recently seen in experiments on phosphdi8] and netted chain(HNC) approximation(Sec. Il A) and (ii) we
confirmed by specific simulationgl9]. In Ref. [11] we  perform additional calculations using different assigned pa-
showed that both first-order fluid-fluid phase transitions endameters for the pair potential, thus establishing a bridge be-
in critical points, a low-density critical poir€; and a high- tween the potential studied in Regfll] and the potential
density critical pointC,. For the considered potential, both investigated in Refd.10,15 and rationalizing how—in ad-
transitions occur in the supercooled phase with respect to thgition to the critical pointC;—the critical pointC, arises as
crystal phase. a function of the parameters of the pair potent&éc. 111 B).
Then, (iii) we describe in detail the molecular dynamics
(MD) simulations, studying the equilibrium phase diagram
*Present address: SMC, Dipartimento di Fisica, Univerdita ~ and finding that the only stable crystal structure, in the range
Sapienza,” P.le A. Moro 2, 1-00185 Roma, Italy. Electronic address:of simulated densities, has two characteristic lattice distances
franzese@na.infn.it (Sec. IVA). (iv) By MD simulations we analyze also the
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FIG. 1. Schematic pressure-temperatitel phase diagrams %5 02 0a . 06 08
with two critical points. Solid lines represent first-order phase tran- Density a'p

sition lines, circles represent critical poinfa) Phase diagram with o . . .
critical point C between the gas and the uniform liquid phase at FIG. 2. Instabl_llty line Qf the HNC quatlons in 3D in theT
high T and low P and critical pointC’ between the low-density plane for the pair potential in Eql), with wg/a=0.4, wp/a
liquid (LDL) and the high-density liqui@HDL) at low T and high ~ —0-3. and(from top to bottom Ug/U,=—0.5, 0.0, 0.5. For
P. This phase diagram has been proposed for water and has begr'R/,UA: —0.5, the pair potential recovers that StUd'e(,j in 1D and
shown to be consistent with the density anomdly.Phase diagram 2_D in Refs.[}O,lEﬂ. The symbols represer_lt the C?"Cu"'?‘“o_“s and_t_he
with critical point C; between the gas and the LDL at Iofvand lines are guides for the_ eye. Insgt: the |§otroplc pamms_e-addltlve
low P and the critical poin€, between the gas and the HDL at high potentlaIU(r_) as a fupctlon of the |nterpart|cle @stant:e ais the
T and highP. IncreasingP at constant temperaturg, below C; hard-cpre c.1|stanceb Is the §oft-core dls.tanceE, is the maximum
(dashed line aT,), the system undergoes a first-order phase tran@iiractive distance;- U, <0 is the attractive energy, andg is the
sition between the gas and the LDL phase, followed by a first-ordeFePUIS'Ve energy.
phase transition between the LDL and the HDL phases. Increasing . . .
the pressure at constant temperatligeabove C, but below C, w!th one or more attractive wells were proposed gnd §tud|ed
(dashed line aT), the system undergoes only a first-order phase?Vith approximate methods, or numerical simulations in 2D,
transition between the gas and the HDL. The square represents ti rationalize the properties of liquid metals, alloys, electro-
gas-LDL-HDL triple point. This phase diagram has been found inlytes, colloids, and the water anomaljgs-8,10-1%. It has
Ref.[11] and shows no evidence of the density anomaly. been recently showft1], in 3D with MD, that an appropri-
ate soft-core potential with an attractive well is able to show
supercooled liquid phase and the metastable fluid-fluid phag#o supercooled liquids of different densities, with two criti-
transition (Sec. IVB); (v) in order to construct an accurate cal points. Similar results have been reported for a soft-core
phase diagram and to study the finite size effect, we perforrfotential with a linear repulsive ramp by Monte Carlo simu-
some extra MD simulations in addition to the calculationslations[14].
presented in Ref11] (Sec. IV Q. Hence,(vi) we study the Following Ref.[11], we define the isotropic pair potential
radial distribution function, comparing the HNC predictions U(r), as a function of the pair distaneginset in Fig. 2:
with the MD results and analyzing the composition of the

system within the fluid-fluid coexisting regioriSec. V). Fi- © for r<a,

nally, (vii) we address the density anomaly issue by present- Ur for a<r<b,

ing the explicit thermodynamic calculation, based on the MD ur=4q _ U, f b<r< .y
phase diagram, that allows us to exclude the presence of the A fOF D=I=C,

density anomalySec. V). We give our conclusions in Sec. 0 for c=<r,

VIL.

wherea is the hard-core distance aihds the soft-core dis-
Il SOFT-CORE POTENTIALS tance. Fora_sr<b, the spheres interact with glflr?lteoft-
core repulsive energyr. Forb=<r<c, the pair’s interac-
Among the isotropic potentials, much attention has beefion is attractive with energy- U,<<0. The distance is the
devoted to soft-core potentials, which have a finigeft- cutoff radius beyond which the pair’s interaction is consid-
core repulsion added to the infinitéhard-corg repulsion.  ered negligible. For sake of comparison with R¢f0,15,
The infinite repulsion is due to the impenetrability of the we will consider bothUg>0 andUg<O0.
spheres. The finite repulsion represents the combination of The steplike shape in Eql) has the advantage of being
all the quantum and classical repulsive effects averaged ovelefined by only three parameters: the width of the soft core
the angular part. It has been shoj4j that a weak effective in units of the hard-core distancer/a=(b—a)/a, the
repulsion can be derived by a first-principles calculation forwidth of the attractive well in the same unitg,/a=(c
liquid metals[3]. To understand the possibility of the solid- —b)/a, and the soft-core energy in units of the attractive
solid critical point in such material as Ce and Cs, Hemmewmvell energyUg/U,. To explore the phase diagram of the
and Stell[2] proposed a soft-core potential with an attractivemodel as a function of these three parameters in an approxi-
interaction at large distances, performing an exact analysis imate, yet fast, way we use the integral equations in the HNC
1D. Over the past 30 years, several other soft-core potentialpproximation.
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lIl. THE INTEGRAL EQUATIONS IN THE HYPERNETTED where U(r) is the interparticle potentialg=1/(ksT) and
CHAIN APPROXIMATION d(r) is the sum over a specific class of diagrathsidge
giagrams) [16]. Sinced(r) cannot be calculated exactly, one
resorts to approximate expressions. The simplest approxima-
tion assumesl(r)=0 (HNC closure [32]. One expects this
approximation to work better at lower, where the direct
correlation functionc(r) is more relevant than the correla-
tion propagated through the other particles. However, our
results(see Sec. Ywill show that this intuitive observation
is not straightforward, at least for soft-core potentials.

In this section we present details of the integral equation
and the HNC approximation adopted in Rgf1] and in this
work. The radial distribution functiomg(r) plays a central
role in the physics of fluid$16]. This quantity is propor-
tional to the probability of finding a particle at a distarnce
from a reference particle and is the ratio of local to bulk
density at distance, with

n(r
g(r)= ( 2) , 2) A. The iterative procedure

The solution of the integral equationd),(5) with the
HNC closure is obtained through a numerical iterative pro-
cedure whose essential scheme is the following. Under the
assumptiord(r) =0, one can writgy(r) as

wheren(r) is the number of particles at a distance between
andr +dr from the reference particle andis the number
density, assumed to be independentr guiniform system
The radial distribution function goes to 1 for largeand is g(r)=exd — BU(r)+6(r)], (6)
always 1 for a random spatial distribution of particles. To

represent deviations from randomness, tital pair correla-  \\here the functiond(r)=h(r)—c(r) has the remarkable

tion functionh(r)=g(r) — 1 is introduced. property of being a continuous function of even for dis-

These functions are relevant because they are directiyontinuous potential&s in this paper From the definitions
measurable by radiation scattering experiments and are rgz h(r), 6(r) and Eq.(6), one can derive the equation
lated to the thermodynamic properties of the fluid. A funda- ' '

mental relation between structure and thermodynamics is _ _ _ _
given by c(ry=exd —BU(r)+6(r)]—6(r)—1. 7
o By using the Fourier transforrﬁ(d)Eff(F)epr(i'F)dF de-
kgTpKy= 1+Pf h(r)dr, (3 fined for a generic functiofi(r), from Eq.(4) we obtain
whereK;=(dp/dP)+/p is the isothermal compressibiliti, h(a)=c(a)+pc(a)h(q). (8)

is the pressure, arkk is the Boltzmann constant. Provided
that the particles interact through pairwise-additive forcesQr, using the definition of(r), we have
other thermodynamic properties of the fluid—such as the

internal energy—can be expressed using integrals over the . 62(q)
pair correlation function. oq)=p————. (9)
The functionh(r) is the result of the interaction of all the 1-pc(q)

particles in the system. Formalliz(r) can be decomposed

into (i) the contribution coming from thelirect interaction ~ The numerical iteration is based on E¢g). and(9).

between two particles at distancecalledc(r), and(ii) the We start by choosing an initial guess féfr). A reason-
contribution due to theindirect interaction propagated able input, at least at high temperatures, is@f® of a fluid
through any other particle in the system. This second contriof hard spheres with diametar In fact, at high temperatures
bution is written in turn as an integral convolution of direct our potential can be approximated with a simple hard-core

correlations and total pair correlation. repulsion. We can calculate the correspondifg) by mak-
This decomposition, for uniform systems, is expressed byng use of the Percus-Yevick integral equatid®], which
the Ornstein-Zernike relation for hard spheres can be solved analytically. Next, at constant

p, we decrease the temperature&f and we perform cal-
.o culations at fixegp andT by using as input thé(r) obtained
h(f)ZC(f)JrPf c(r')h([r=r")dr". (49 as a solution ap and T+ &T.
From the chosen guess 6fr) we calculatec(r) by using
Equation(4) is also the formal definition af(r). Bothh(r) ~ EQ. (7). Its Fourier transformc(q) is used in Eq.(9) to
andc(r) in Eq. (4) are unknown functions, thus to solve this calculated(q). Its inverse Fourier transform provides a new

equation, one needs another relatiolosure between these 6(r) that is used as a new input for the next cycle. We
two functions. This relation is provided by the diagrammaticevaluate the functions orM=2048 discrete points ,

expansion ofg(r) [16], which, after formal summation, =mér, withm=1,... M anddr=0.01a. Successive itera-
yields the functional relation tions of the elementary cycle define a successi9d(r),
wherek=1,2, ... is thenumber of the iteration. If the dif-
g(r)y=exgd —BU(r)+h(r)—c(r)+d(r)], (5)  ference between two consecutive elements of this succession,
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. . . ': 175
decreases for increasitkgthe succession converges towards X
a 6*(r) that is the solution of our integral equations. The g
iteration process is stopped whAnr<10 7. ® 125
Based on this iterative procedure, different algorithms can g
be used to improve the accuracy and rapidity of convergence & 078
of the numerical solution of HNC equations. However, inde- =
pendent of the algorithm used, there exists a region in the
p-T plane where no solution can be found, i.e., for any 025 - 2 o 06 m
there is aT below which the numerical algorithm does not Density a’p

converge, defining amstability line in the p-T plane. o o _ _ _
FIG. 3. Instability lines, as in Fig. 2, for the pair potentials with

parameterswg/a=0.7, w,/a=0.3, and (from top to bottom
B. The HNC instability line Ugr/U,=-0.5, 0.0, 0.5, 0.7, 1.0.

The nature of the locus of instabilities of the HNC equa-

tion and its relationship with the spinodal line of the fluid of the spinodal line corresponding to the liquid-gas critical
was investigated for a hard-core potential plus an attractivgoint. Upon increasingyg/U  to 0.5 (Fig. 2), the only evi-
Yukawa tail in a number of papef$3,34. These studies gent change of the instability line is a shift toward a lower
showed that the isothermal compressibility does not diverggs 4 result of the overall decrease of the interparticle attrac-
as the temperature is lowered and the instability region igjon with no hints of a second critical point. A small shift to

approached from above. This conclusion was definitively asyq\yer j is also seen. This behavior is more evident for larger
sessed through extensive numerical calculatj@sgboth for

. . R-
the h_ard-core _Yukawa _fIU|_d qnd other model potentla_ls, Next, we consider a potential with a largers(wg/a
showing that this behavior is directly correlated to the exis-_ 0.7, wa/a=0.3). The instability line is calculated for

tence of multiple HNC solutions. The analysis deveIOpedseveral values dfl/U ., (Fia. 3. Upon increasind /U
was based on a careful treatment of the lowehavior of the .o \ow find not gnIyAtﬁegs-hi)f.t tg a loweF bu?JaRIsoAa’m

Fourier transforms of the correlation functions required bYq\iqent shift of the maximum of the lind.e., the critical

the iterative procedure. A further theoretical support to t_hes‘fooint, assuming that the instability line represents the behav-
results was given by an analy$B6] on models for an ionic o of the spinodal ling to a lower p. This result can be

fluid and a monoatomic Lennard-Jones fluid. ; : ; ;
; ; . . ... rationalized by observing that, passing frdox<<0 to U
In the light of the above mentioned studies, an identifica-_ 5 1,6 goft é/ore becorr?es morpe andgmore difficult toRpen—
tion of th_e instability _Ime O.f the HNC equation W'th_ the etrate and the system passes from a potential with a hard core
spinodal line of the fluid, which is characterized by a d|verg-a and an effective attractive range,+wg to a potential
ing compressibility, is not possible. Keeping in mind this with an effective hard cor, for Ur/U , large enough, and

limitation, one can nevertheless observe that for a large nums o tractive range, . As a consequence of the increase of
A .

I?r?; zfuzllri?aetli\e/eﬂl;l(rjegglr;Elcggr:ﬂglfetgiz:r;?zgi%gheﬁ :jneséimlggghe effective hard core, the critical density dgcreases and, as
sition of the fluid. Also for our potential the comparison of aconsequence of the decrease of the effective overall attrac-
the HNC calcula'.[ions with the MD resultSec. \Vj shows tion, the cr!t|cal 'temperature decrea;es. . .

: Y o C . Comparing Figs. 2 and 3, we notice an important differ-
that the HNC instability line is qualitatively consistent with ence. In the case of largers (Fig. 3, asUg/U , increases,

the .Sp'”o‘.’?" I|ne[37]. Thus, stu.dylng the mOd'f'Cat'Or?S of the temperature of the instability line does not decrease with
the instability line as the potential parameters are varied can

ield some aporoximate. vet useful. information on the hasmcreasingp, but becomes rather flat. This result suggests
y . pproxI Y K PNaSthat the instability line might develop a second maximum at
behavior of the fluid.

larger values op for even largemwy.

We thus consider a potential withig/a=1.0 andw,/a
=0.2. The resultgFig. 4 show that for 0.4&Ug/U,=<0.6,

First, we calculate the instability line of the HNC equa- the instability line has two well-distinct local maxima, sug-
tions for the potential investigated in Ref40,15. The cor-  gesting the possibility of two critical points in the phase
responding parameters angr/a=0.4, w,/a=0.3, and diagram for the fluid phase§38]. For Ug/U,<0.3 or
Ur/U,=—0.5. In this case, the soft core is given by two Ug/U,=0.7, the instability line shows just one maximum,
attractive wells with different depths. Calculations in 1D andsimilar to the typical spinodal line of a fluid of hard spheres
2D [10,15 have shown a waterlike density anomaly. There-with diametera or b, respectively, attracting via a square
fore, it is interesting to analyze the phase diagram in 3Dwell of width w,. As a consequence of this analysis, we
However, the instability line for this cag€ig. 2) is similar ~ choosewg/a=1, wa/a=0.2, andUg/U,=0.5 as the set of
to the spinodal line usually exhibited by a simple fluid, e.g.,parameters for the potential used in the MD calculations in
interacting via a Lennard-Jones potential with the maximunBD [11].

C. The results
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FIG. 4. Instability lines, as in Fig. 2, for the pair potentials with \ k@Oi‘Qc'I\WP”" " N ( 7 \T\" Nt
parameterswg/a=1.0, w,/a=0.2, and (from top to bottom . 8‘\g\7x%¢ ‘:’) Ndags YOS
Ur/U,=0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7. The full symbols cor- LIPS o LOQ&\/O o . ° zg?’??& Y7 e
respond to the set of parameters selected for the MD calculations. o f -&4"5/ ﬁaiq/ el " g’( tc{;@f} .\f\,
N A A e X ¥ :
o \ﬁ-c/ ¢ l 0. ° . e
IV. THE MOLECULAR DYNAMICS APPROACH B /,/b.—i-\'\. ¢ \i/ ?IN}
In this section we give extensive details on the MD ° .o

method and extend the analysis performed in R&f], in- , ) .

cluding calculations for the crystal phase, the crystal nucle- F'G- 5. The MD configuration equilibrated &T/U,=0.45

ation process, and the metastable phases. We perform Mﬁ]qa p=0.018. Darker partlcl_es are farther away from the obser-

simulations at a constant number of partidésf unit mass vation point.(a) The_ crystal, Wlth defects, surrounded _by the gas.
t constant volum#¥, with periodic boundary conditions Bon.ds connect particles at dlstanfzgnjagl.Z. The raq'us of the

?r'];at a constant ave;age temperafiréVe present the re' particles isnot in scale with the distances. A typical ring of eight

- = particles(octagon is plotted with a larger radiugb) A section of
sults forN=490, 720 andN=1728. The average tempera- the crystal. Bonds connect particles at distanserta<2.2. The

ture is set by coupling the system to a thermal bath at the,giys of the particles is in scale with the distances. Note, in the
assignedr, with a thermal exchange coefficient per particle upper part of the panel, a ring of 12 NN particlegndecago)
between the system and the bath equal t  connected by bonds to two central particles. The same 12 par-
=0.015 Ua/m)Y%g/a. We use a standard collision event ticles of the section inb) are plotted with a larger radius with
list algorithm[39] to evolve the system and a modified Be- respect to the other particles. Bonds are like in pdagl (d) A
rendsen method to achieve the desifejdtO]. rotation of 40 ° around a central horizontal axis of the sectiofT)jn
The pressure is calculated by using the virial expressiomeveals the eightfold symmetry observed(@.
for a step potentidl17],

N tice space ranging frorb to ¢ and a characteristic sixfold
m 1 . e - L . )
p:_<2 vit— Z Avi'(ri_rj)>v (11  symmetry on one projection plane with seven particles to
VAT At form a triangular lattice. However, due to the soft core, the
system can allocate particles at the hard-core distance
=h/2. This induces a 12-fold symmetry, placing an average
number of 12, almost on-plane, nearest neighiddd) par-
~ - - ticles at a distance €r/a=<1.2 from each other to form a
vi andv; are the velocities of the particleat positionr;  dodecagon around two particles. These two NN particles are

with Zi"j being the sum over the particle pairsj) under-
going a collision in the time intervaht=(10°ma?/U,)*?,

hereafter used as unit of time, and wils,=v/ —v;, where

before and after the collision with particjeat positionfj. next nearest neighbors to the dodecagon, at a distance 2
<r/a=<2.2, and are placed on a line almost perpendicular to
A. The crystal the plane individuated by the dodecagfdfig. 5(b)]. This

structure is distorted in such a way to form nonclosed chains

First, to locate the equilibrium crystal line, we simulate a ¢ particles that wrap along another axis to give rise to
crystal seed surrounded by the gas. We prepare a crystal segd eightfold symmetryFig. 5(c,d)].

by cooling afT =0.43J ,/ks a gas configuration with density g, "ana1y7ing the crystal structure obtained from the MD

— 3
p_Toﬁglc?fs.tal(Fi 5 is the effect of the competition be simulations, we conclude that the position of the particles in
4 Y P the crystal can be described by=i-a+j-b+k-c+r,,

tween the hard-core repulsion at distancea and the at- A ) ]
traction at distance=b. The resulting structure is reminis- Wherery, form=1,...,10, are theoordinates, with re-
cent of the close packing of hard spheres with diamater ~ SPect to theﬁceﬁnter oi the cell, of the ten particles forming a
b, but the competition gives rise to new symmetiieiy. 5.  crystal cell,a, b, andc are the lattice vectors describing the
The minimum in the interparticle interaction potentialkat position of the center of the cell, andj, andk are integers
<r<c would induce a face-centered-cubic crystal with lat-such thati +j+k is even. We estimate the lattice vectors
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TABLE I. The coordinates of the lattice vectors as obtained after

an equilibration time 10\t at T=0.03U 5 /kg of the artificial crys- /| |\
tal (Fig. 6) proposed to describe the crystal structure found in the /\ ,\,\ /;\
MD simulations(Fig. 5). The errors on the parameters are on the | I/c o\| L |/o 9\| |/
last decimal digit and decrease as the square root of the time of /\,\ s\/: /V\
. —o’| 1 i5e |
averaging. °\| ik _|_pead | I O\I |/°
X /\\
X y z
ala 1.95 0.00 0.11 |
- (@) V
b/a 0.00 3.41 0.00
c 0.00 0.00 1.94 o o
o 1/"°"/l 1> C‘°'°/| ! "°"/| "“i\'\.c"("(‘)'?D—OE >—
IIY (i (ll;
. . . Deosd| |I\,cOo\\|| I\ 505 c—<’-n?,c—c"l'-‘-,,)=:‘%t:,—_c-\-}3— P>—
(Table ) and the coordinates of the particles forming the cell ¢ X N L,) P (ﬁ w
(Table 1) after an equilibration time P&t at T I\c—o—) | |\c-0- < < ! c—0-3<l c_<<.‘!‘;§c_c%)_o\l§).>,_;
=0.03U 4 /kg for an artificial crystal placed in vacuufig. (c) (d)

6). The resulting density of the crystal &p=0.39.

Surface effects could be responsible for the tilt that can be FIG. 6. The artificial crystal configuration equilibrated for a
seen in Fig. ). In a system withN=720, this tilt disap- time 1FAt with a MD simulation atT=0.03J,/kg. Bonds con-
pears when the sample is equilibrated at highéFig. 7). nect particles at distanecéa<1.2. The radius of the particles et

We compare the(r) (Fig. 8 of the MD crystal in Fig. 5  in scale with the distances. Greater particles are closer to the obser-
and of the artificial crystal in Fig. 6, both equilibrated Tat vation point. The configuration contains 15 cells. The central cell is
=0.48J,/kg. Both functions show peaks located at the emphasized by darker bonds) Each cell has four particles at the
same distances, with two large peaksrah=1 andr/a  comers of a rectangler, with m=1,...,4 in Tble I, whose
=2, consistent with the presence of the two Chal’aCteI’IStl(I,Ong sides form two triangles, with two partlcles on the same plane
distancesa andb in the potential. The comparison confirms (I With m=5,6 in Table I), and the short sides form two tetrahe-
that the proposed crystal is a good representation of the crysia, each with two more particles { with m=7, ...,10 in Rble
tal structure generated by the MD simulation. The slightlyll). (b) The crystal configuration rotated by/4 around a central
different intensities of the peaks of tiggr) of the two sys-  horizontal axis shows the eightfold symmetry seen in Figs. &nd
tems are probably due to the defects of the MD crystal.  5(d). (c) A further rotation ofz/4 around the same axis shows the

The validity of the artificial crystal as a good description dodecagons seen in Figgbpand c). (d) A rotation of 7/2 around
of the real crystal structure is confirmed also by the evolutiorf central vertical axis shows again the octagons seen in Figs. 5
of the potential energy per particlgnset in Fig. 8 when and gd).

TABLE II. The coordinates r,=(Xn,Ym:zn) for m  the MD crystal and the artificial crystal are heated, from
=1,...,10 of the temparticles forming a crystal cell, with respect the configuration equilibrated atT=0.48J,/kg to
to the center of the cell, as obtained after an equilibration timeT =0.60U 5 /kg. Both samples equilibrate to the same en-
10°At at T=0.03U 4 /kg of the artificial crystal(Fig. 6). The char-  ergy. The starting potential energy is, as expected, in both
acteristic distances, with an error on the last decimal digit, arecases greater than the ground state enekdy/N=
I,/a=0.53, 1,/a=0.59, 15/a=0.07, |,/a=1.43, |s/a=0.05,

l¢/a=0.03,1,/a=1.40, lg/a=0.52. The errors decrease as the e
square root of the time of averaging. For each partickef the cell, - °
we denote withn®° the number of particles in the crystal at a dis- o’ 2
tancer <b (in the soft corgand withnZ) the number of particles at . \¥ {K .
a distanceb<r=c (in the attractive wejl A
e N 4
A A A
m X Ym Zy Mo o' DO
1 I I, I3 6 15 i
2 - | 1 |2 - | 3 6 15 . e
3 =14 =I5 =3 6 15 ° s de
4 |1 —1, Iy 6 15 (@) : (b)
° —la 0 —Is 3 24 FIG. 7. The artificial crystal configuration fof= 720 patrticles
6 ly 0 s 3 24 equilibrated with a MD simulation @ =0.10J4/kg (8 and atT
7 —le =7 —lg 4 21 =0.52J,/kg (b). Bonds connect particles at distancea<1.2.
8 ls =17 Ig 4 21 The radius of the particles isot in scale with the distances. The
9 —lg I, —lg 4 21 crystal seeds are in equilibrium with the gas phase and show many
10 lg I, lg 4 21 defects. The tilt present at the lowEin (a) disappears at the higher
Tin (b).
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FIG. 8. The radial distribution functiorgyr) for the MD crystal _0.02 1
(solid line) and the artificial crystaldotted ling, both equilibrated 0.1 02 3 0.3
at T=0.48J,/kg, are very close to each other. Inset: the potential Density a’p

energy densityJ/N for the MD crystal(solid line) with N=490
and the artificial crystaldotted ling with N=720, both equili-
brated aff=0.60U 5 /kg, starting from a configuration equilibrated FIG. 10. The MDP-p phase diagram. The thick dashed line is
atT=0.48J,/kg, as a function of the time divided by the number the gas-crystal first-order transition line at the equilibrium. The cal-
of particlesN. culations in the region below this line are for the metastable fluid
states. Main panel: the diamondsll and open are the MD calcu-
lations for (bottom to top kgT/U,=0.570, 0.580, 0.590, 0.600,
—8.48J,, calculated from the number of particles at dis-0.610, 0.620, 0.630, 0.640, 0.650, 0.660, 0.670, 0.675, 0.685, 0.700.
tancea<r<b and at distancéo<r<c (Table 1], due to  The dotted lines are the isotherms calculated by polynomial inter-
surface effects. We find analogous results for the evolution oPolations of the points at constaiitand, at the same time, of the
the kinetic energy. po?nts at constang. The circle atp=(_).1/a3 is the gas-LDL critic_al
To test if the system has more than one crystal structure d9int C1. The square ap:0.306é_13 is the gas-HDL critical point
a function of the density, we cool dt=0.6U,/kg a fluid C,. The splld thick lines conngctmg the local minima and maxima
configuration equilibrated at T=0.8U,/ks and along t_he isotherms are the sp!nodal lines assoma_ted with each _crm-
—0.2674°. and compare the resultirg(r) with the case of cal point ano! the shaded regions are the gssomated mechan_lt_:ally
the cr staI, seeds At=0.45J » /ka andp=0.018A3. findin unstable regions. The dashed lines, passing through the critical
y . TooALTE p=* . ) points, are the coexistence regions associated with each critical
no relevant differencegFig. 9). At the same time, the at-

.~ . g point. The meeting point of the gas-HDL coexistence line with the
tempt of finding alternative artificial crystal structures hasgas_LDL coexistence line gives the possible triple paiufl tri-

angle atp=0.12&%). Where not shown, the errors are smaller than

S K 'II'/U a the symbols. Inset: enlarged view aroutige Symbols are as in the
% _ 0560 B 0267 main panel. The diamonds are the MD calculations(Bmttom to
c4r L 0'45 ’ 0.018— top) kgT/U,=0.580 0.590, 0.595, 0.600, 0.603, 0.606, 0.609,
(=] 3 y U
£ 0.620, 0.630, 0.640, 0.660.
53
s revealed, after an appropriate equilibration, that the only
g 2 stable structure is that presented in Fig. 6. We therefore as-
E sume that the system, at least for this choice of the poten-
a1t tial's parameters, has one single-crystal structure indepen-

dent of p, within the considered range of densities.
0 Starting from a configuration with the crystal seed de-
0 scribed above, we equilibrate the system at different densi-

Distance r/a ties and temperatures. We define the system to be in the solid
; ; 2 12 _
FIG. 9. Comparison of the radial distribution functig(r) cal- phase if, after a time f()ma IUp)""=3X 103“’ the crys

culated for two MD configurations obtained by cooling the systemtal seed is gr_owing, or we co_nside_r itin a fluid phase if the
at different densities: the solid line is for the configuration atS€€d iS melting. The cases in which the trend is not clear

keT/U,=0.60 anda3p=0.267, the dashed line for the configura- Within the simulation time are considered as belonging to the
tion atksT/U ,=0.45 anda®p=0.018. The two functions are very first-order transition regiof41]. The crystallization pressure
close to each other for distanceka=<4, showing that the crystal rapidly increases witlp andT, giving a first-order transition
structure is the same at both densities. The difference between th&e (in the thermodynamic limjtthat separates the equilib-
two functions is consistent with the presence of defects and of th&éium P-p phase diagram in a high-fluid and a lowT crys-
surrounding gas. tal (Fig. 10 [11].
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B. The supercooled liquids

-
(=]

At equilibrium, there is ndstable liquid phase. A phase
diagram without an equilibrium liquid phase is expected
[42,43 for systems with an interparticles potential with a
narrow attractive part, such as the one we are considering
here. However, the liquid is present as a metasté&hiper-
cooled phase with respect to the crystal phasg]. To study
the metastable phase diagram, we equilibrate the system for =
eachp from a gas configuration &t=0.70J 5/kg and then <
rapidly cool it to the desiredr=0.57U,/kg, calculating %
P, g(r), and the total potential energyJEEiN<jU(|ri %‘
=ril). =

\JNe find that the supercooled fluid phase has a lifetime 00‘ it s 700 e A
longer than X 10°At (the standard length of our simula- Time t/At Wavevector aq
tions) for p=0.20A% at T=0.5MU,/kg, for p=<0.27/a° at
T~0.69J,/kg, and forps0.34b3 at T~0.7J,/kg. The FIG. 11. MD calculations(a) Time evolution of the structure
system is equilibrated in the fluid phase tor20At, after  factor S(q,t) at T=0.62J,/kg and p=0.2745, for wave vectors
which we averag®, g(r), andU over the time. We calculate with modulusq=1/a and for a timet/At=3000; in the time inter-
each state point by averaging the configurations for 3val A with 200At<t<500At, it is S(q,t)~O(1) for anyq; in the
X 10PAt<t<3x 10°At. We estimate the errors by dividing time intervalB with 700At<t<180Q\t, for six wave vectors there
the configurations into 90 nonoverlapping intervals oAB0 is an increase ir5(q=1/a,t); in the intervalC with 210QAt<t
which we assume to be independent. <300QAt, for the same six wave vectors there is a larger increase.

For largerp, the system spontaneously crystallizes-  (0) As in (a) but for q~12/a~4/a; in this case there is a large
mogeneous nucleation procgsthus, we only average over increase inS(q~12/a,t), more than one order of magnitude, only
configurations that occur before nucleation. To be certain thdf' the time intervalC for several wave vectors, revealing the for-

our estimates are carried out in the fluid phase, we study Mation of a crystal seedc) The structure facto§(q), given by the
average over the dimensionless wave vectgswith the same

N 1 N - ~ modulus and the average over the time inten/&lsB, and C of
S(g,t)= N< Z e'q'[ri(t)rk(t)1> , (12 S(q,t). The curves foB andC are offset by 1.5 and 3, respectively.

Ik All the curves go to 1 for largg. In the intervalA, S(q) is lig-

uidlike. In the intervalB, S(q) is still liquidlike but with an in-

WhereF- t) is the position of particlé at timet and > is the crease forg—0, while in the intervalC it is solidlike, with two
'( ) b P ¢ q large peaks afj~2m/(b/2)=2m/a andq~2/(al2), correspond-

vyave vector. At equilibrium, thg average $(q,t), over the ing to the soft-core radius and the hard-core radius, respectively,
time and the wave vectors with the same module, is theq 4 |arge value fog— 0.
structure facto5(q), describing the spatial correlation in the

system. Therefores(q,t) describes the time evolution of the ke TpK1= lim S(q), (13)

spatial correlation along the wave vectprin particular, for q—0

a crystal-like configuration, with a long-range order, there is ) o

at least one wave vector such tt8(g,t)~O(N), while for ~ Where we use Eq(3) and the definitionS(q)=1+ph(a).

a fluidlike configuration, it isS(d,t)~0(1) for all g. The increase oKy is associated with the phase separation
The time evglution oiS(c] t)(c1‘02 a ty(pi(zal simu?ation i into two fluids with different densities. To help visualize the

side the nucleation region is presented in Fig. 11. To limit th hase separation, in Fig. 12 we show the three planar projec-

tational effort id o ¢ ith ions of the three dimensional configuration corresponding to
O 10 iave yeclors Wit agest pe n e ime it - L Fig. 11a),
= ’ " By dividing the box into two equal parts, the histograms of
tors of the largest peak of the crystal structure factpr, y 9 qua’ p 9

N ) . the number of particles in each pdRig. 12 show a sepa-
~2m/(a/2), corresponding to the hard-core radilfsig. ration in density approximately at half the box length, corre-

11(c)]. Th.ree_different regimes can be distinguished in thesponding toq=4m(p/N)3~1/a for p=0.276°% and N
exa-mple n F'Q- 1. ) ) ) - =490, in agreement with the peak @t 1/a for curveB in

(i) A short-time regimeA, in which $(q,t)~O(1) forany  Fig. 11(c). In each projection, it is possible to see regions of
qlg=1/a andqg~12/la~4m/a are shown in Figs. ¥&,b].  high density and low densitiFig. 12. To better quantify the
Averaged on this intervdlcurve A in Fig. 11(c)] the S(q) is  phase separation occurring in the configuration in Fig. 12, we
fluidlike. A present(main panel in Fig. 12the histogram of the number

(ii) An intermediate-time regim®, in which S(q,t) for  of pairs of particles at a relative distance<r<r,,,, where
g=1/a has an increase, but has no increasedfer4/a. ri.1—r;=al/l0. The histogram has a broad maximum
Averaged on this intervdlcurveB in Fig. 11(c)] the S(q) is  around the distancea=1.2 in the soft-core range, showing
fluidlike, but with an increase fog—0. This increase indi- that there exists a subset of the pairs of particles that are at a
cates an increase #f;, according to the equation preferred distance 1<r/a<1.2. This subset is the HDL

o ©

o o N

Structure factor S(q)

-

%O 3

051206-8



METASTABLE LIQUID-LIQUID PHASE TRANSITION . .. PHYSICAL REVIEW E66, 051206 (2002

1000 —86
} - 2
® a
2 sw0d I
c 3]
[} = _
L
-]
w 6005
2 |
a
a =

40013
‘6 =
T
Q
a
£ 200
=]
- H H

15

Distance r/a

FIG. 12. Inset: projections of the three-dimensional configura-
tion of N=490 particles in a system of si2¢/3=12.25 and cor-
responding to the largest peak in the time intelBah Fig. 11(a).

The projections aréfrom left to righ) ZvsY, Z vs X, andX vs Y.

The histograms of a number of particles as functions of the abscissa
are superimposed on each projection. Projections and histograms ¢ 13 spatial distribution of pairs of particles at various dis-
are shifted for clarity. E_‘""Ch histogram bin corresponds to half _Of the_[ances for the MD configuration shown in Fig. 12. The radius of the
box size. The dashed line shows the average number of particles ), icjes isnotin scale with the distances. [a) the darker particles
each bin for a uniform configuratiorN(2=245). The largest de- 0 tarther away from the observation point. Bonds connect par-
viation from the average is ?9\/,“%22' i.e., twice the Stalistic  (icjes at the hard-core distancest/a<1.1 in panela), at distance
fluctuation for a random distribution of particles. Main panel: the 1 11/3<1 2 in panel(b), at distance 13r/a<1.4 in panel(c),

number of pairs of particles at a relative distameer<ri,, for 4 gistance 1.5r/a<1.6 in paneld). The nonuniform distribution
the MD configuration in the inset, withhy=0, r,/a=1, andr; of bonds is clearly seen in pang).

—r;=al/10 fori>1. The histogram shows a large maximum corre-

sponding to the attractive range<2/a<2.2, a broad maximum . . .
aroundr/a=1.2, and a small number of pairs at the hard-core dis-nUCIGUS_It Is possible to calculate the state points corre-

tancer =a. Therefore, the preferred relative distance for pairs ofSponding to the metastable fluid phase. The phase diagram in

particles within the soft-core range<ir/a<2 is, for this configu- 9. 10 is based on averages over a total éf—mﬁ configu-
ration,r/a=1.2. rations in the fluid phase, accumulated in independent runs.

For completeness we recall here the main features of the
that has a nonuniform distribution over spgéég. 13b)],  phase diagram in Fig. 10 and presented in R&t]. The
consistent with the phase separation. (mechanically unstable region at high p for T

(iii) A long-time regimeC, in which isS(ﬁ,t)~O(N) for sO.G?LJA'/kB, whereP decreases for increasing denotgs
q~4n/a, revealing the crystal nucleation process. H(q) the coexistence of the gas and HDL. The unstable region at
averaged over this time intervaturve C in Fig. 11(c)] is

solidlike. In the same intervaS(ﬁ,t) for g=1/a has a large
increase, corresponding to the increas&dfS(q) increases
for g— 0], which is consistent with the phase separation be-
tween the fluid and the crystal. As an example, in Fig. 14 we
show the last configuration of the time series in Fig. 11,
where the crystal structure, already observed in Fig. 5, is
clearly seen.

The example in Fig. 1b) shows the formation of a high-
density fluid phase within the time interv8| followed by
the nucleation of the crystal phase. The onset of the nucle-

ation is marked by a large increaseS(ﬁ,t) for all the wave

vectors corresponding to the peaks in the cryStal) and by
a large steplike decrease of energy.

C. The phase diagram and the finite size effect ) o ) R
FIG. 14. The last MD configuration in the time series in Fig. 11.

By repeating the analysis described above for all thea crystal nucleus surrounded by gas is clearly seen. Bonds connect
simulations inside the region with nucleation—and discardparticles at distance/a<1.1. The 3D perspective is given as in
ing the data corresponding to the formation of theFig. 5. The radius of particles isotin scale with the distances.
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FIG. 15. Comparison between MD simulations o 490 (full
diamond$ and N=1728 (circley at kgT/U,=0.595. The results FIG. 16. Comparison between tiggr) calculated in the HNC
for the two sizes are very close. For comparison, we include als@pproximation(dotted ling and by MD simulationgsolid line). As
the calculations foN =490 atkgT/U,=0.60 and 0.59upper open  an example, we present the calculationd &t0.64J 5 /kg for den-
diamonds and lower open diamonds, respectivaiyd the interpo-  sities (from top to bottorh a3p=0.066, 0.154, 0.267. For clarity a
lation at kgT/U,=0.595 (dashed ling between these two iso- constant value is added to the first two curyés and 3, respec-
therms, showing the presence of two regions with negatively slopetively). The two independent calculations are very close at interme-
isotherms. The points calculated foi=1728 are also consistent diate densities. At large all the curves go to 1.
with this interpolation, suggesting that the finite size effect between
N=490 andN= 1728 is small. Errors, where not shown, are smallersame characteristics as the HNC instability line, with two
than the symbols. local maxima and one local minimum. In both approaches,
the highp local maximum occurs at a temperature higher
t}_hen the temperature of the lovmaximum and the pres-
&nce of a triple point is suggested by the presence of the local
minimum.

The quantitative HNC predictions for the locations of the

low p for T<0.603J,/kg (inset in Fig. 10 denotes the co-

existence of the gas and LDL. The coexistence lines are o
tained by using the Maxwell construction of the equal area
[1], suggesting the presence of a gas-LDL-HDL triple point.

B finition, th inodal linedimit of ility of h = ) . )
y definition, the spinodal linedimit of stability of eac two critical points are, as expected, only partially consistent

phase with respect to the coexisting phaseet the coexist- . . .
ence lines at a critical point. Therefore, by interpolation WeW'th the MD_ results. It is remarkable '_[hat the HNCBestlmates
of the density of the low local maximum p~1/a”) and

estimate the gas-LDL critical poir€®, at kgT,/U,=0.603 . ;
+0.003, a%p;=0.10-0.01, a°P,/U,=0.01710.0005, the temperature of the high- local maximum {

P : _ ~0.68J,/kg) of the instability line are close to the corre-
d th -HDL critical iC, at kgT,/U,=0.665 CATEB .
ino_oo; gggpzzo_;égg_oggm ;382/U8Ai0,f0'_4- 0.01. sponding MD results foC; andC,, respectively.

These values are consistent with the linear interpolations of An estimate of the agreem_ent between the_ two methads
the MD isothermsFig. 10). can be evaluated by comparing the calculations ¢ér)

- : - .. within the two approache&ig. 16. In contrast with what
The phase diagram resulting from the MD calculations is, ud be suggested by the nature of the HNC

as expected, in agreement with the time-dependent analys%) imati ; th d timat ¢ the indirect
of the structure factor presented above. For example, the ca@@prﬁx'tma |otr;]—|.e., € tu_n bergs 'mta.et ot the in |trec
presented in Fig. 11 corresponds to a state point inside t gorrelation—ine agreement s better at in ermedgeliean a

gas-HDL coexistence region at a density higher then th ow p (Fig. 16_)' In particular, at '9.Wp the HNC. approxima-_
crystal nucleation density fol =0.62U,/ks. The nucle- tion underestimates the probability of a particle penetrating

ation of the(metastablgeHDL phase is thus followed by the f[he soft core or entering the at'gra_ctive well. At higher

crystal nucleation. instead, the estimates of tiggr) within the two approaches
To estimate the finite size effect in our calculations, we&® @lmost indistinguishable. .

compare the results fod =490 and\N= 1728 for an isotherm The g(r) of the lowp .flwd is characterized by a Iargg

below both critical pointsFig. 15. The calculations do not PeakK atr=b corresponding to the shortest attractive dis-

show any relevant finite size effect, suggesting that the MO@NCe: AS a consequence of the increase of the density, the
results forN=490 are reliable. peak at the hard-core distance a increases while the peak

atr=b decreases, and additional peaks/a=3,4, ... ap-

pear. In Fig. 17 we present the calculatiorggf) for the gas

phase, the gas-HDL coexisting region, and the HDL phase.
The interpretation of the HNC instability line is qualita- In particular, by combining the radial distribution functions

tively consistent with the MD spinodal line for the corre- evaluated in each pure phase, we can estimate the composi-

sponding set of the potential’s parameters. The projection ofion of the mixed phase. For example,Tat 0.64U 5 /Kg the

the MD spinodal line in thel-p plane(not shown has the radial distribution function calculated ai,=0.302&° is

V. THE RADIAL DISTRIBUTION FUNCTION ANALYSIS
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e . FIG. 19. Inset: the MD results &t=0.64U 5 /kg for the cumu-
FIG. 17. The radial distribution functiog(r) calculated from | o0 humber of particles\N within the repulsive range <b

— ] 3. _
the MD results all =0.64J,/ks for densitiesa”p=0.066, 0.100, circles and within the attractive rande<r <c (squarey increas-
0.132, 0.154, 0.186, 0.223, 0.267, 0.302, 0.322, 0.333, 0.349, 0.35 g linearly with p in this range of densities; the linear fit of the data

With increasingp, Fhe peak ar=a increases and the peak at gives a slope 20:20.5 for the solid line and a slope 22:D.6 for
=b decreases, while more peaks appear at larger the dashed line. Main panel: the data in the inset plotted one versus

the other to show that within the mechanically unstable regpn (
9o(r)=X191(r) +X,9,(r), whereg;(r) andg,(r) are the >0.26743%, AN increases approximately in the same way vyith
radial distribution functions at the sam& and at p; both within the attractive and within the repulsive rarithe dashed
=0.223&° and p,=0.34943, respectively, withX;=0.3 line is a linear fit of all the data with slope 1.68.06) and in-
andX,=0.7 (Fig. 18, revealing that the system is composed creases faster within the attractive range at lower densttiessolid
approximately by 30% gas and 70% HDL. line is a quadratic fit

From Eq.(2), by using theg(r) calculated from the MD
simulations, we evaluate the average number of particlewithin the attractive rangéFig. 19 for the densities we stud-
N(r)=fdN(r) within a sphere of radius (Fig. 19. This ied. In particular, the number of particles within the attractive
analysis reveals that the number of partice within the ~ rangeb<r <c increases from 2.5 to9= > n3"/10=19.2
repulsive range and within the attractive range increases linestimated for the artificial crystdlrable II).
early with p (inset of Fig. 19, and that the increase is faster
VI. ABSENCE OF A DENSITY ANOMALY

w

In Ref. [11] it has been noted that the possibility of a
N og second fluid-fluid critical point is not necessarily restricted to
0 systems with a density anomaly, at least from a theoretical
X,9:+X,9, point of view. Here we present the explicit thermodynamic
. calculations for this result.
The defining relation for the density anomaly is given by

n

Distribution function g(r)

N 0 14
— <
aT (14)
1 . P
or
as‘ Y 0 15
—| =] >
0 2 4 6 IV |IP|;
Distance r/a
o _ for the Maxwell relation
FIG. 18. The radial distribution function calculated from the
MD simulations atT=0.64J 5 /kg and p=0.302A% (open circled oV 9S
is compared with the compositiaX;g4(r) +X,g,(r) (solid line), —| ===, (16)
where g,(r) is the radial distribution function for the pure gas a P P T
phase(at p=0.223A% andg,(r) is for the pure HDL phaséat p
=0.3494°%) at the samd, with X;=0.3 andX,=0.7. whereSis the entropy. Since
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Y T . T TABLE Ill. Parameters for the cubic fitt/N=ay+ a;p+a,p?
+a5p° of the MD calculations for the potential energy densityN
S 1t i in Fig. 20 for different temperatures. The errors on the fitting pa-
=< rameters are on the last decimal digit.
o 2r 1 kgT/U4 ag a; a, ag
2
g: Sl | 0.60 -0.2309 -20.46 39.64 -56.90
] 0.61 -0.2228 -19.74 36.52 -51.11
> | | 0.63 -0.1279 -21.38 49.64 -76.71
g 0.64 -0.1098 -20.24 44.19 -65.17
u‘-: sl | 0.66 -0.0458 -20.48 48.08 -70.72
0.67 -0.0733 -21.50 52.43 -75.20
0.70 -0.0446 -18.18 37.39 -49.14
-6 1 L 1

0 0.1 0.3 0.4

0.2
Density a’p
derivative always positive, thus whereveris positive, the
FIG. 20. The potential energy density/N, calculated by MD  condition in Eq.(21) is not satisfied and there is no density
simulations, as a function of the densijtyfor temperaturegbottom  anomaly.
to top) kgT/U,=0.60, 0.61, 0.63, 0.64, 0.66, 0.67, 0.70. The sym-  In the region whereP<0 (at low T and smallV), the
bols represent the MD calculations, with errors smaller than thejerjvative ©U/oV)+ rapidly increases in such a way that Eq.
symbol's size. The lines represent the cubic fit of the calculationg21) js never satisfied. Particularly, in the range of volumes
with the parameters in Table Iil. considered, it is alwaysaU/dV);—0.028J ,/a3>0, where
P=—0.028J,/a% is the minimum pressure, reached fbr
=0.6U,/kg andV/N=23.31a® (Fig. 10. These results sug-
gest that the density anomaly is ruled out for this choice of
parameters. At this stage it is not clear if it is ruled out for
holds for a mechanically stable phase, Bid) can be rewrit- E‘fs)ﬁ)ChOice of parameters for our potential in 3Bee Ref.
ten as .

vV
P

<0 (17)
T

JS VIl. SUMMARY AND CONCLUSIONS

T We analyzed the phase diagram of a soft-core potential,
. . . . Ssimilar to potentials used in systems such as protein solu-
From the differential expression of the thermodynamlctions, colloids, melts, and in pure systems such as liquid

potential at constant, we know that
2

TdS=dE+PdV, (19
whereE=U +K is the total energy, witty andK being the %
total potential and kinetic energy, respectively. Therefore, it 3 157
is h-3
<<
S 10U P(V,T) >
J , ® L
N TN T @ 3
: . . ®
at constanf and we can rewrite the density anomaly condi- .2 ;5|
tion in Eq.(18) as ]
o
W T+ P(V,T)<O (21) 00 20

0 20
Specific volume V/(a'N)

at constant. FIG. 21. The derivativedU/dV)+ calculated by using the cubic

To calculate the Ieft_'hand side of E(R1), we need _to expression in Fig. 20, with the parameters in Table Ill, as a function
evaluate gU/dV)r. In Fig. 20, we show our MD calculation ot the specific volumeV/N for temperatures(top to bottom
for U(p) at constanfl. All the MD points can be fitted with _1/u,=0.60, 0.61, 0.63, 0.64, 0.66, 0.67, 0.70. The derivative, in
a third-degree polynomial ip. The fitting parameters are the considered range of/N, is always larger than 0.02, /a3
given in Table Il and are used to calculate the derivativehottom horizontal ling Inset: the same MD results in Fig. 20 for

(9UlaV)1, shown in Fig. 21. Our calculations show a po- U/N plotted as a function 0f/N. The symbols are the same as in
tential energyJ increasing withV (inset of Fig. 2}, with a  Fig. 20.
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metals. We use two independent numerical methods, integraluding that the HNC approximation underestimates the ef-
equations in the HNC approximation and MD simulations.fect of the attractive interaction and overestimates the effect
The comparison of the HNC results with previously pro-of the repulsive interaction at low, and is in good agree-
posed soft core potentials suggests that the system has tweent with the MD results at intermediage

fluid-fluid phase transitions for an appropriate choice of Finally, by explicit calculation, we show that the condi-
parameters—energy and width—of the repulsive soft coretion for the density anomaly is never satisfied in the range of
We select a set of potential parameters with a narrow attracF and V considered here, as announced in Réf]. Our

tive well that gives a HNC instability line with two maxima results suggest that the density anomaly is always ruled out
and suggests the presence of two critical points. for this choice of potential parameters.

The MD analysis shows, in agreement with the previous In conclusion, the results of this paper evoke an intriguing
results for potentials with a short range attract{@g2], a  relation between the absence of the density anomaly and the
phase diagram with no stable liquid phase. We analyze thpresence of a single crystalline phase, with higher density
crystal structure, characterized by the competition betweethan the liquid phases, in systems with two fluid-fluid phase
the attractive interaction at distance=b and the repulsive transitions. This relation, which deserves greater investiga-
interaction arr =a<b. We show that the crystal, with eight- tion, is consistent with the fact that the substances with the
fold and 12-fold symmetries, is independent on the densitydensity anomaly, and a hypothesized second liquid-liquid
within the considered range of densities. critical point, have more than one crystal structure, as in the

Hence, we study the metastable liquid phase at temperaase of water or carbon or silica.
tures above and below the line of spontaneous crystal nucle-

ation. We find two liquids in the supercooled phase, the LDL ACKNOWLEDGMENTS
and the HDL, with two fluid-fluid transitions ending in two
critical points, the gas-LDL critical poin€; and the gas- We wish to thank M. C. Barbosa, P. V. Giaquinta, S.

HDL critical point C,, as already shown in Reff11]. Here  Mossa, G. Pellicane, A. Scala, F. W. Starr, and especially F.

we improve our estimate of the phase diagram and verify th&ciortino for helpful suggestions and for interesting and

absence of relevant finite size effects in the MD results.  stimulating discussions. We thank the NSF Chemistry Divi-
We compare these results with the HNC calculations, consion (CHE-0096892 for support.
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