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Stochastic resonance in a suspension of magnetic dipoles under shear flow
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We show that a magnetic dipole in a shear flow under the action of an oscillating magnetic field displays
stochastic resonance in the linear response regime. To this end, we compute the classical quantifiers of
stochastic resonance, i.e., the signal to noise ratio, the escape time distribution, and the mean first passage time.
We also discuss the limitations and role of the linear response theory in its applications to the theory of
stochastic resonance.
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I. INTRODUCTION

The dynamics of periodically driven stochastic syste
has been an active field of research in recent years@1#. This
kind of system arises frequently in the fields of physi
chemistry, and biology. Examples are found in problems
volving transport at the cellular level@2,3#, optical and elec-
tronic devices@4#, and signal transduction in neuronal tiss
@5,6#, to cite just a few.

A particularly interesting phenomenon, occurring in pe
odically driven nonlinear noisy systems, is stochastic re
nance~SR! @7#. This term refers to the enhancement of t
response of the system to a coherent signal when the in
sity of the noise grows, instead of the degradation that
naively expects. The mechanism leading to this phenome
is quite simple. Imagine a system that exhibits an energ
activation barrier. In the presence of noise, the system ca
assumed to surmount this barrier with a rate proportiona
e2DE/D, whereDE is the height of the barrier andD is the
intensity of the noise acting on the system. The inverse
this rate defines the average waiting timeT(D) between two
noise-induced transitions. In the presence of a periodic fo
ing, the height of the barrier is periodically raised and lo
ered. When the period of the external force synchroni
with 2T(D), the barrier surmounting will be enhanced by t
cooperative effect of the noise and the periodic forcing.

Although originally proposed for systems in a doub
well potential, this original scheme has been extended
fact, it is known that SR is exhibited by several classes
monostable system, among which one might mention ex
able and threshold systems@8–11# or systems that do no
follow an activated dynamics but a relaxational dynam
@12,13#.

In this paper we will show that a magnetic dipole im
mersed in a shear flow exhibits stochastic resonance wh
weak oscillating magnetic field is acting on it. The presen
of this flow takes the system out of equilibrium causing c
tain peculiarities in the behavior of the system. In order
treat this problem we will analyze the response of the sys
in the linear regime. A previous study of the dynamics o
dipole under an oscillating magnetic field has revealed
linear response theory~LRT! predicts a monotonically de
creasing behavior for the ratio between the output signal
the output noise or signal-to-noise ratio~SNR!, i.e., for very
1063-651X/2001/63~4!/041112~12!/$20.00 63 0411
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weak applied fields the dipole does not exhibit SR@13#. In
the present case there is a new ingredient, absent in@13#: the
presence of the shear flow, which is the determinant
many interesting aspects of the dynamics of this system.
ditionally, although we show the existence of SR in the l
ear regime, we discuss the limitations and role of LRT in
application to the theory of SR, mainly related to questio
concerning the fluctuation-dissipation theorem.

The paper is organized as follows. In Sec. II we analy
the dynamics of a dipole in a shear flow and find the fix
points. Section III is devoted to studying the response of
system to an oscillating magnetic field by computing t
susceptibility. In Sec. IV we calculate the power spectru
and the signal-to-noise ratio. In Sec. V we compute the
cape time distribution and from it the mean first passa
time. Finally, in Sec. VI we discuss our results.

II. DYNAMICS OF A DIPOLE IN A SHEAR FLOW:
FIXED POINTS AND THEIR STABILITY

We consider a dilute colloidal suspension of ferroma
netic dipolar spherical particles, with magnetic momentmW

5msRŴ , whereRŴ is a unit vector accounting for the orienta
tion of the dipole; the magnetic moment is therefore rigid
attached to the particles. Each dipole is under the influe

of a shear flow with vorticityVW 52v0zŴ, with zŴ being the unit
vector along thez axis, and of an oscillating fieldHW

5He2 ivtxŴ , with xŴ being the unit vector along thex axis. The
dynamics of these dipoles is governed by the following eq
tion of motion:

I
dVW p

dt
5mW 3HW 1j r S 1

2
VW 2VW pD , ~1!

where I is the moment of inertia of the particles,j r
58ph0a3 is the rotational friction coefficient,h0 the sol-
vent viscosity, anda the radius of the particle. Fort@t r ,
with t r5I /j r being the inertial time scale, the motion of th
particle enters the overdamped regime. This time scale
fines a cutoff frequencyv r5t r

21 , such that the condition for
overdamped motion is equivalent tov!v r . In this case Eq.
©2001 The American Physical Society12-1
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~1! yields the balance condition between the magnetic
hydrodynamic torques acting on each particle,

mW 3HW 1j r S 1

2
VW 2VW pD50, ~2!

which, together with the rigid rotor evolution equation

dRŴ

dt
5VW p3RŴ , ~3!

leads to the dynamic equation forRŴ ,

dRŴ

dt
5v0$zŴ1l~ t !~RŴ 3xŴ !%3RŴ . ~4!

Here l(t)[(msH/j rv0)e2 ivt, with VW p being the angular
velocity of the particle.

The computation of the fixed points of Eq.~4! when the
magnetic field is held constant, i.e.,l(t)5l05const, and
their linear stability analysis are given in detail in Append
A. After some algebra Eq.~4! becomes

dRŴ

dt
5v0@zŴ3RŴ 1lxŴ2lRŴ ~RŴ •xŴ !#. ~5!

For l0>1, this equation has only a linearly stable statio
ary state. The orientation of the suspended particles is fi
to

RŴ s5A12l22xŴ1l21yŴ . ~6!

This means that in this regime the hydrodynamic torq
which tends to cause the rotation of the particles, is insu
cient to overcome the magnetic torque, which maintains th
constant orientation.

For l0,1, which is the case we are interested in, t
particles undergo a rotation around a fixed axis lying in
y-z plane, the director of this axis being given by

RŴ s56A12l2yŴ1lzŴ. ~7!

In this case the hydrodynamic torque is strong enough

make the dipole precess around the orientationRŴ s , Eq. ~7!
~see Appendix A!.

III. RESPONSE TO AN OSCILLATING MAGNETIC FIELD

The analysis of Sec. II was carried out for the determ
istic dynamics of a magnetic dipole in a shear flow. Fluctu
tions are introduced by means of a Brownian torque. T
corresponding Langevin equation is

dRŴ

dt
5v0H l~ t !~RŴ 3xŴ !1zŴ1

1

j rv0
~RŴ 3FW B~ t !!J 3RŴ , ~8!
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where FW B(t) is a Gaussian white noise of zero mean a
correlation function

^FW B~ t !FW B~ t8!&52j rkBTd~ t2t8!. ~9!

The Fokker-Planck equation corresponding to Eq.~8! is
given by

] tC~RŴ ,t !5@L01l~ t !L1#C~RŴ ,t !, ~10!

whereL0 andL1 are operators defined by

L052v0zŴ•RW 1DrRW 2, ~11a!

L152v0RŴ •xŴ2v0~RŴ 3xŴ !•RW , ~11b!

with Dr5kBT/j r being the rotational diffusion coefficien

andRW 5RŴ 3]/]RŴ the rotational operator. Notice that the fir
and second terms on the right hand side of Eq.~11a! corre-
spond to convective and diffusive terms, respectively. Mo
over, Eq.~10! which, according to Eq.~8!, rules the Brown-
ian dynamics in the case of overdamped motion, is valid
the diffusion regime. This regime is also characterized by
condition t@t r , or equivalentlyv!v r , which implicitly
involves the white noise assumption.

To solve the Fokker-Planck equation~10! we will assume
that l0[ul(t)u constitutes a small parameter such that t
equation can be solved perturbatively. Thus up to first or
in l the solution of the Fokker-Planck equation~10! is

C~RŴ ,t !5e(t2t0)L 0C0~ t0!1E
t0

t

dt8l~ t8!e(t2t8)L0L1C0~ t8!.

~12!

HereC0(t8)5e(t82t0)L 0C0(t5t0) is the zero order solution
at time t8, and

C0~RŴ ,t5t0!5d~RŴ 2RŴ 0!, ~13!

with RŴ 0 being an arbitrary initial orientation. As follows
from Eq. ~11a!, the unperturbed operatorL0 is composed of
the operatorsRz andR 2, which are proportional to the or
bital angular momentum operators of quantum mechanicsLz
andL2, respectively, and, therefore, their eigenfunctions
the spherical harmonics@14#

RzYl m~RŴ !5 imYl m~RŴ !, ~14a!

R 2Yl m~RŴ !52 l ~ l 11!Yl m~RŴ !. ~14b!

Given that we know howRW acts on the spherical harmon
ics, it is convenient to expand the initial condition in seri
of these functions, since the spherical harmonics constitu
complete set of functions that are a basis in the Hilbert sp
of the integrable functions over the unit sphere@15#:
2-2
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C0~RŴ ,t0!5d~RŴ 2RŴ 0!5(
l 50

`

(
m52 l

l

Yl m* ~RŴ 0!Yl m~RŴ !.

~15!

Using this expansion in Eq.~12!, for the first order correction
to the probability densityDC[C2C0, we obtain

DC~RŴ ,t !5(
l 50

`

(
m52 l

l E
t0

t

dt8l~ t8!Yl m* ~RŴ 0!

3e(t2t8)L0L 1e(t82t0)L0Yl m~RŴ !. ~16!

Notice that the integral ofDC(RŴ ,t) over the entire solid
angle is zero, in agreement with the fact that the unpertur

solutionC0(RŴ ,t) is normalized.
Since we are interested in the asymptotic behavior we

set t0→2`. In this limit, Eq. ~12! becomes

C~RŴ ,t !5
1

4p H 11E
2`

t

dt8l~ t8!e(t2t8)L02RŴ •xŴ J , ~17!

where now

DC~RŴ ,t !5
1

4pE2`

t

dt8l~ t8!e(t2t8)L02RŴ •xŴ , ~18!

and

C0~RŴ ,t !5
1

4p
~19!

is the uniform distribution function on the unit sphere.
From Eq.~18! the contribution of the ac field to the mea

value of the orientation vectorRŴ can be obtained as

RŴ ~ t !5E dRŴ RŴ DC5
1

4pE2`

t

dt8l~ t8!E dRŴ RŴ e(t2t8)L02RŴ •xŴ .

~20!

This equation can be written in the more compact form

R̂i~ t !5E
2`

t

dt8l~ t8!x i~ t2t8!, ~21!

where the response function@16# has been defined as

x i~t!5
1

4pE dRŴ R̂ie
tL02RŴ •xŴ ~22!

for t.0.
By causality, we can writet→` in the upper limit of the

integral in Eq.~21!; hence, this equation becomes

R̂i~ t !5x i~v!l~ t !, ~23!

wherex i(v) is the generalized susceptibility, which is th
Fourier transform ofx i(t),
04111
d
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x i~v!5
1

4pE2`

`

dteivtE dRŴ R̂ie
tL02RŴ •xŴ . ~24!

From this equation we obtain the components of the susc
tibility:

xx~v!5
1

3 H F 2Dr

4Dr
21~v2v0!2

2 i
~v02v!

4Dr
21~v2v0!2G

1F 2Dr

4Dr
21~v1v0!2

1 i
~v01v!

4Dr
21~v1v0!2G J ,

~25!

xy~v!5
1

3 H F ~v02v!

4Dr
21~v2v0!2

1 i
2Dr

4Dr
21~v2v0!2G

1F ~v01v!

4Dr
21~v1v0!2

2 i
2Dr

4Dr
21~v1v0!2G J ,

~26!

xz~v!50. ~27!

The quantitiesxx andxy have poles atv56v062Dri . The
inverse of the imaginary part of these poles (2Dr)

21 defines
the Brownian relaxation time.

IV. POWER SPECTRUM

In order to discern whether or not SR is present in
relaxation process of the system under consideration
compute the power spectrum, which, following the Wien
Khinchine theorem, is given by the Fourier transform of t
correlation function@17,1#. Since we will take as output sig

nal the projection ofRŴ parallel to the magnetic field, i.e.,R̂x ,
we compute only the correlation function of this quantity.

The correlation function ofR̂x is defined by

^R̂x~ t !R̂x~ t1t!uRŴ 0~ t0!&

5E dvŴ E duŴ ûxv̂xC~vŴ ,t;uŴ ,t1tuRŴ 0 ,t0!, ~28!

where the initial condition is taken asC(RŴ ,t0)5d(RŴ 2RŴ 0).
The above quantity can be calculated from the solution of
Fokker-Planck equation simply by recalling the followin
properties of a Markov process@17#:

C~vŴ 1 ,t1 ; . . . ;vŴ n ,tn!

5C~vŴ 1 ,t1!C~vŴ 1 ,t1uvŴ 2 ,t2 ; . . . ;vŴ n ,tn!,

C~vŴ 1 ,t1uvŴ 2 ,t2 ; . . . ;vŴ n ,tn!5C~vŴ 1 ,t1uvŴ 2 ,t2!. ~29!

wheret1.t2.•••.tn . By combination of these two prop
erties Eq.~28! becomes
2-3
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^R̂x~ t !R̂x~ t1t!uRŴ 0~ t0!&

5E dvŴ v̂xC~vŴ ,tuRŴ 0 ,t0!E duŴ ûxC~uŴ ,t1tuvŴ ,t !.

~30!

To proceed further, we compute first the integral overuŴ in
Eq. ~30!. From Eq.~12!, if t.0,

C~uŴ ,t1tuvŴ ,t !5etL0d~uŴ 2vŴ !1E
t

t1t

dsl~s!

3e(t1t2s)L0L 1esL0d~uŴ 2vŴ !

5C0~uŴ ,t1tuvŴ ,t !1DC~uŴ ,t1tuvŴ ,t !;

~31!

thus we have

E duŴ ûxC~uŴ ,t1tuvŴ ,t !5E duŴ ûxC0~uŴ ,t1tuvŴ ,t !

1E duŴ ûxDC~uŴ ,t1tuvŴ ,t !.

~32!

The results of these integrals are

E duŴ ûxC0~uŴ ,t1tuvŴ ,t !52A2p

3
@e2(2Dr2 iv0)tY11~vŴ !

1e2(2Dr1 iv0)tY121~vŴ !#,

~33a!

E duŴ ûxDC~uŴ ,t1tuvŴ ,t !

52(
l 50

`

(
m52 l

l

Ylm* ~vŴ !E
t

t1t

dsl~s!E duŴ

3A2p

3
$@e2(2Dr2 iv0)(t1t2s)Y11~uŴ !

1e2(2Dr1 iv0)(t1t2s)Y121~uŴ !#e2[ l ( l 11)Dr1 imv0]s

3L1Ylm~uŴ !%. ~33b!

~for the detailed derivation, see Appendix B!.
After introducing these expressions into Eq.~30! we ob-

tain three terms corresponding to an expansion of the co
lation function in powers ofl(t), of zeroth, first, and secon
order, respectively. The presence of this driving yields
explicit dependence of the correlation function on the timt,
instead of its depending only on the time difference, as
curs in the stationary case. The method for removing
dependence on the initial time is to average the correla
function over a period of the driving@1#. After doing this the
04111
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first order term vanishes, and consequently we do not wo
about it and compute only those whose average gives a
zero contribution, i.e., the zeroth and second order ter
Taking this into account, and by applying Eq.~12! to

C(vŴ ,tuRŴ 0 ,t0),

^R̂x~ t !R̂x~ t1t!uRŴ 0~ t0!&

;E dvŴ E duŴ ûxv̂xC0~vŴ ,tuRŴ 0 ,t0!C0~uŴ ,t1tuvŴ ,t !

1E dvŴ E duŴ ûxv̂xDC~vŴ ,tuRŴ 0 ,t0!DC~uŴ ,t1tuvŴ ,t !,

~34!

where the sign; indicates that the terms which vanish aft
averaging over the period of the driving have been neglec
~although the average has not been performed yet!. After

introducing the corresponding expressions forC(vŴ ,tuRŴ 0 ,t0)
and by using Eq.~33! we obtain

^R̂x~ t !R̂x~ t1t!&;S 4p

3 D 2

2e22Drt cos~v0t!1S 2p

3 D 3

l2~ t !

3eivtU E
0

`

dt8eivt8xx~ t8!U2

~35!

~the details of this computation are given in Appendix B!,
where we have defined

^R̂x~ t !R̂x~ t1t!&[
1

4pE dRŴ 0^R̂x~ t !R̂x~ t1t!uRŴ 0~ t0!&.

~36!

At this stage, and before applying the Fourier transform
the correlation function to obtain the power spectrum of
processR̂x(t), we average Eq.~35! to obtain

^R̂x~ t !R̂x~ t1t!&5
v

2pE0

2p/v

dt^R̂x~ t !R̂x~ t1t!&

5S 4p

3 D 2

2e22Drt cos~v0t!

1S 2p

3 D 3

l0
2eivtU E

0

`

dt8eivt8xx~ t8!U2

.

~37!

This computation has been carried out with the assum
tion thatt is a positive quantity. To extend our computatio
to t,0 we have to use the backward Fokker-Planck eq
tion. The operator that generates the backward evolution
the probability distribution is2L † @18#, L being the Fokker-
Planck operator andL † its adjoint operator. Consequentl
the formal solution of the backward Fokker-Planck, equiv
lent to Eq.~12!, is given by (t,t0)
2-4
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C~RŴ ,t !5e2(t2t0)L 0
†
C0~ t0!

1E
t0

t

dt8l~ t8!e2(t2t8)L 0
†L 1C0~ t8!. ~38!

As in the case of the operatorL0, the spherical harmonics ar
eigenfunctions of2L 0

† with eigenvalues given by

2L 0
†Ylm~RŴ !5@ l ~ l 11!Dr2 imv0#Ylm~RŴ !. ~39!

Thus the process to follow in the calculation of the corre
tion function fort,0 is identical to the corresponding com
putation fort.0 but changing the eigenvalues of the ope
tor L0 to those of2L 0

† , which yields

FIG. 1. Signal-to-noise ratio as a function of the inverse of
Péclet number Pe215Dr /v0. We have represented nondimension
quantities.
th

io

e
in
le

ec
an
e
s
po

04111
-

-

^R̂x~ t !R̂x~ t1t!&5S 4p

3 D 2

2e2Drt cos~v0t!

1S 2p

3 D 3

l0
2eivtU E

0

`

dt8eivt8xx~ t8!U2

~40!

for t,0.
We now apply to this averaged correlation function~now

defined for 2`,t,`) the Wiener-Khinchine theorem
which states that the power spectrum and the correla
function are related through a Fourier transform. Thus,

Q~V!5E
2`

`

dt^R̂x~ t !R̂x~ t1t!&eiVt

5N~V!1S~v!d~V2v!, ~41a!

N~V!5S 4p

3 D 2F 2Dr

4Dr
21~V1v0!2

1
2Dr

4Dr
21~V2v0!2G ,

~41b!

S~v!5S 2p

3 D 3

l0
2uxx~v!u2. ~41c!

Since our purpose is to discern whether or not SR
present in the relaxation process of the quantityR̂x(t), we
proceed to compute the signal-to-noise ratioR, i.e., the ratio
between the weight of thed function in Eq.~41a! and the
noisy part ofQ(V) computed at the frequency of the driv
ing. From Eqs.~25! and ~41! we achieve

e
l

R5
S~v!

N~v!
5l0

2 6

p

3
$2Dr /@4Dr

21~v1v0!2#12Dr /@4Dr
21~v2v0!2#%21$~v1v0!/@4Dr

21~v1v0!2#1~v2v0!/@4Dr
21~v2v0!2#%2

2Dr /@4Dr
21~v1v0!2#12Dr /@4Dr

21~v2v0!2#
.

~42!
go

me
etic
to

e-
This quantity has been plotted in Fig. 1 as a function of
inverse of the Pe´clet number Pe215Dr /v0, which measures
the ratio between the time scales associated with diffus
~thermal noise! and flow. The presence of a maximum inR
for a nonzero value of this parameter shows the existenc
stochastic resonance in the relaxation process of a dipole
shear flow. In addition to the slow relaxation to the sing
attractor of the dynamics, our model includes another eff
which hides, to some extent, the SR profile. To underst
this, note that even though the signal is too weak, it nev
theless causes the position of the attractor of the dynamic
vary, and so the output will always have a nonzero com
e

n

of
a

t,
d
r-
to
-

nent at the signal frequency. This fact causes the SNR to
to infinity in the zero noise limit@19#.

V. MEAN FIRST PASSAGE TIME

In this section we study the behavior of the escape ti
distribution and the mean first passage time of the magn
dipole immersed in a shear flow. To this end, we have
account for the fixed point orientations of Eq.~4! in the case
l0,1. In this situation there is a single fixed point corr
sponding to an orientation contained in the planex50 or,
equivalently,f5p/2. However, whenl(t).0 this station-
2-5
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ary orientation is in the subspacez.0 (cosu.0) and in the
subspacez,0 (cosu,0) if l(t),0. Therefore, we are go
ing to study the escape from the regionz.0 (cosu.0) as-
suming that the initial orientation of the dipole is contain
in this region. Consequently, we have to solve the Fokk
Planck equation~10! with absorbing boundary conditions i
the plane cosu50 @20,21#, i.e.,

C~cosu50,f,t !50. ~43!

Since this escape problem will be treated perturbative
the first step is to analyze the eigenvalue problem of
operatorL0 @Eq. ~11!# under the boundary condition~43!. It
is easy to check that the eigenfunctions and the eigenva
are the same with the restriction that only those spher
harmonics that vanish at cosu50 are solutions of this eigen
value problem. From the parity properties of the associa
Legendre functions@15#, one can see that Eq.~43! selects
only the spherical harmonics such thatl 1m52n11 with
n50,1, . . . .Thus, we have

C~RŴ ,t !5 (
^ l ,m&

alm~ t !Ylm~RŴ !, ~44!

where ^ l ,m& denotes that the sum is carried out over 0< l
,` and2 l<m< l restricted byl 1m52n11.

In order to evaluate the mean first passage time~MFPT!,

we have to compute first the survival probabilityS(RŴ 0 ,t)
and the escape time distribution~ETD!, which are related
through

r~RŴ 0 ,t !52
d S~RŴ 0 ,t !

dt
, ~45!

whereS(RŴ 0 ,t) is defined by

S~RŴ 0 ,t !5E
R

dRŴ C~RŴ ,tuRŴ 0!

5E
0

2p

dfE
0

1

d~cosu!C~cosu,f,tuRŴ 0!, ~46!

with R the region from which we are studying the esca

problem~in the present case cosu.0), andRŴ 0PR the initial
orientation of the dipole. The probability distributio

C(RŴ ,tuRŴ 0) is obtained from Eq.~12! with the boundary con-
ditions ~43! and the initial condition

C~RŴ ,t50!5d~RŴ 2RŴ 0!5 (
^ l ,m&

Ylm* ~RŴ 0!Ylm~RŴ !. ~47!

Before proceeding to obtain the survival probability, the
are some facts to consider that will facilitate further comp
tation. Looking at Eq.~46!, one can see that, due to th
integration over the azimuthal angle, only terms withm50

contribute to S(RŴ 0 ,t). Consequently, the selection rulel
04111
r-

,
e

es
al

d

e

-

1m52n11 reduces to keeping only the odd values ofl. In
addition, we are interested only in the modes with grea
relaxation times. Therefore, from the whole series Eq.~44!
we are interested only in the terml 51, m50. Thus, our
purpose is to obtain the coefficienta10(t) up to first order in
l(t) from Eqs.~10! and ~43!. Up to zeroth order, we have

a10
(0)~ t !5e22DrtY10~RŴ 0!. ~48!

Obtaining the first order contributiona10
(1)(t) requires

somewhat more elaborate calculation. To proceed furt

with this computation, the operatorL1 acting on Ylm(RŴ )
yields

L1Ylm~RŴ !522v0A2p

3
@Y11~RŴ !1Y121~RŴ !#Ylm~RŴ !

2v0FA4p

3
Y10~RŴ !Ry

2 iA2p

3
@Y11~RŴ !2Y121~RŴ !#RzGYlm~RŴ !,

~49!

where the action ofRz on Ylm(RŴ ) is given by Eq.~14a! and

RyYlm~RŴ !52
1

2
$A~ l 2m!~ l 1m11!Ylm11~RŴ !

2A~ l 1m!~ l 2m11!Ylm21~RŴ !%. ~50!

From Eqs.~49! and ~50! together with the rules for the ad
dition of angular momenta familiar from quantum mechan
@14# and the selection rulel 1m52n11 imposed by the
boundary condition~43!, one can deduce that only the ter

Y261(RŴ ) contributes toa10
(1)(t). The rules of addition of an-

gular momenta imply that the product of two spherical h
monicsYlmYpq has a projection onto a third spherical ha
monic Yrs only when m1q5s. On the other hand, thes
same rules impose the restriction that the productYlmYpq

projects only onto subspaces such thatu l 2pu<r< l 1p. By
using these restrictions one can see that when one takl
51 andm50 in Eq. ~49! one obtains a vanishing contribu
tion and only whenl 52 andm561 is the contribution to
a10

(1)(t) different from zero. All other contribution of highe
valuesl are explicitly excluded by the ruleu l 2pu<r< l 1p.

Taking these considerations into account and by using
results
2-6
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3

4pE0

2p

dfE
0

1

d~cosu!Y11~RŴ !Y221~RŴ !Y10~RŴ !

5
9

80p
A 5

3p
,

3

4pE0

2p

dfE
0

1

d~cosu!Y121~RŴ !Y21~RŴ !Y10~RŴ !

5
9

80p
A 5

3p
,

3

4pE0

2p

dfE
0

1

d~cosu!Y10~RŴ !Y20~RŴ !Y10~RŴ !

5
3

20p
A 5

4p
. ~51!

we obtain the first order correction to the coefficienta10(t):

a10
(1)~ t !52v0

l0

40
A15

4pSA2

2
12A3D

3H Y21~RŴ 0!
4Dr1 i ~v2v0!

16Dr
21~v2v0!2

1Y221~RŴ 0!
4Dr1 i ~v1v0!

16Dr
21~v1v0!2J . ~52!

Equations~48! and ~52! together with Eqs.~44! and ~46!

allows us to obtain the survival probabilityS(RŴ 0 ,t), which is
given by
04111
S~RŴ 0 ,t !5pA 3

4p
Y10~RŴ 0!e22Drt2

v0

40
A15

4pSA2

2
12A3D

3H Y21~RŴ 0!e22DrtE
0

t

dtl~t!e2(4Dr1 iv0)t

1Y221~RŴ 0!e22DrtE
0

t

dtl~t!e2(4Dr2 iv0)tJ .

~53!

This quantity is directly related to the MFPT, since

T~RŴ 0!5E
0

`

dt t r~RŴ 0 ,t !5E
0

`

dt S~RŴ 0 ,t !, ~54!

where we have used Eq.~45!. Consequently, the MFPT is
given by

T~RŴ 0![T0~RŴ 0!1DT~RŴ 0!,

T0~RŴ 0!5pA 3

4p

A12l2

2Dr
,

DT~RŴ 0!5T0Fl0
2

40
A15

4pSA2

2
12A3D

33v0A 5

24pH ~v2v0!

16Dr
21~v2v0!2

1
~v1v0!

16Dr
21~v1v0!2J G , ~55!

where we have takenRŴ 05RŴ s . In Fig. 2 we have plotted the
quantityDT/T0. The figure shows that this quantity exhibi
a minimum, as required for the appearance of SR.

The knowledge of the survival probability allows us

obtain the ETDr(RŴ 0 ,t). From Eqs.~45! and~53! the ETD is
given by
r~RŴ 0 ,t !5e22DrtF2DrpA 3

4p
Y10~RŴ 0!2l0

2Dr

40
A15

4pSA2

2
12A3D

3H Y21~RŴ 0!
2Dr1 i ~v2v0!

16Dr
21~v2v0!2

Y221~RŴ 0!
2Dr1 i ~v1v0!

16Dr
21~v1v0!2J 1l0

1

40
A15

4pSA2

2
12A3D

3$Y21~RŴ 0!e2[4Dr1 i (v2v0)] tY221~RŴ 0!e2[4Dr1 i (v1v0)] t%G ~56!

By taking RŴ 05RŴ s , we finally obtain

e2Drt

2DrA12l0
2
Dr5

v0l0
2

40p
A75S A2

2
12A3D H e24Drt

2
$sin@~v2v0!t#1sin@~v1v0!t#%

2F ~v2v0!

16Dr
21~v2v0!2

1
~v1v0!

16Dr
21~v1v0!2G J , ~57!
2-7
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whereDr[r2r0 , r0 being the corresponding ETD whe
the amplitude of the oscillating field is set to zero.

The succession of maxima in the ETD~see Fig. 3! indi-
cates that the dynamics of a magnetic dipole suspended
shear flow under a periodic field exhibits SR.

VI. DISCUSSION

We have shown that the relaxation process of a dip
immersed in a shear flow exhibits SR upon application o
weak periodic field. To this end we have computed th
quantities typically used to characterize SR, namely,
signal-to-noise ratio, the escape time distribution, and
mean first passage time. All of them behave as expected
a process in which SR occurs.

Previous work devoted to analyzing whether or not SR
present in the relaxation process of an overdamped dipo
a fluid at rest has shown that this phenomenon does not o
in the linear regime@13#. Effectively, linear response theor
predicts a maximum in the signal, i.e., in the susceptibil
as a function of the noise level. However, the SNR decrea
monotonically with the noise level. This behavior can
easily understood. In the limit of zero noise the output of
system has a small component~proportional to the applied
field! at the frequency of the signal whereas the backgro
noise vanishes at zero noise level, this behavior being
sponsible for the monotonic dependence of the SNR on
noise intensity.

In our case, the situation is completely different. Wh
the fluid in which the dipole is suspended is submitted t
pure rotation~vortex flow!, both output signal and outpu
background noise exhibit a peak at the same value ofDr ~see
Fig. 4!. Consequently, although the background noise v
ishes whenDr goes to zero, the characteristic SR profile
the SNR cannot be completely hidden, as shown in Fig
This feature arises as a consequence of the presence of
acting on the suspension; thus, the appearance of SR in
system studied in this paper is a nonequilibrium feature.

In a sense, the mechanism yielding SR in this system
similar to the one operating in SR in threshold devic

FIG. 2. Mean first passage time as a function of the param
a5v/v0. The presence of a minimum reveals the existence
stochastic resonance. Pe215Dr /v050.08. We have represente
nondimensional quantities.
04111
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@9,10#. Due to the presence of noise, the dipole can even
ally acquire enough energy to get out from its stable ori
tation by crossing the absorbing barrier~the threshold!
cosu50. After this, the system is driven to its stable po
tion. This process produces a short spike in the magnet
tion. Of course, the time that the system takes to return to
fixed point has to be smaller than the semiperiod of the
cillating magnetic field. Thus, SR in this system can be u
derstood in the same way as, for example, the SR in le
crossing detectors@9#.

LRT has been one of the most widely used tools in
study of stochastic resonance@22#. When the system is in
thermal equilibrium in the absence of the external perio
force, a very adequate way of describing stochastic re
nance is in terms of the susceptibility. This is because
noisy part of the power spectrum is given directly by t
susceptibility through the fluctuation-dissipation theorem,

Im x~V!5
V

2Dr
N~V!. ~58!

er
f

FIG. 3. Escape time distribution for a dipole in a shear flo
under an oscillating magnetic field. The succession of maxima
signature of the presence of stochastic resonance in this sys
Pe215Dr /v050.08 and a5v/v050.7. We have represente
nondimensional quantities.

FIG. 4. Output signal and output background signal as functi
of the inverse of the Pe´clet number. Solid line represents the qua
tity S(Pe21)v0 /l0

2 whereas dashed line representsN(Pe21). We
have takena50.1. We have represented nondimensional quantit
2-8
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This result is correct when the fluctuations whose spec
density is given byN(V) have the thermal equilibrium stat
as reference state@16#.

However, in the present case we are dealing with a sys
that is maintained in an out-of-equilibrium steady state d
to the presence of a shear flow. It is evident from Fig.
where we have plotted the imaginary part of the suscept
ity corresponding toR̂x and the noisy part of the power spe
trum, that these two quantities are clearly different. N
that, if v050, i.e., the system in the absence of the perio
field is in equilibrium, the relation~58! is fulfilled. Thus we
have shown that, although we can define a susceptibility
describes the response of our system to a small perturba
we cannot describe SR by means of LRT. The reason ca
found in the fact that due to the nonequilibrium nature of
attractor of the dynamics the fluctuation-dissipation theor
fails to be valid.
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APPENDIX A: LINEAR STABILITY ANALYSIS
OF THE FIXED POINTS OF EQ. „4…

From Eqs.~3! and~4! one can see that the time derivativ

of RŴ vanishes either whenVW p50W or whenVW p3RŴ 50W . In the
first case we have

VW p5v0$zŴ1l0~RŴ s3xŴ !%50⇒zŴ52l0RŴ s3xŴ . ~A1!

FIG. 5. Comparison between the imaginary part of the susc

tibility of the signal R̂x ~solid line! and the noisy part of the spec
trum computed from the Fokker-Planck equation~dashed line!.
Pe215Dr /v050.08. We have represented nondimensional qua
ties.
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From this equation, and taking into account thatuRŴ su51, we
obtain that the stationary orientation is

RŴ s56A12l0
22xŴ1l0

21yŴ . ~A2!

This solution exists only whenl0>1 and corresponds to
fixed orientation of the dipoles, given that the intensity of t
magnetic field is high enough to maintain this fixed dire
tion.

The second possibility leads to

zŴ3RŴ s52l0~RŴ s3xŴ !3RŴ s52l0@xŴ2~xŴ•RŴ s!RŴ s#. ~A3!

Equation~A3! provides two equations for three unknowns.
one setsR̂z50 one recovers Eq.~A2!. If, by contrast one
makesR̂x50 then a different stationary orientation is o
tained,

RŴ s5l0yŴ6A12l0
2zŴ, ~A4!

which exists only whenl0<1. This orientation gives rise to
a rotation of the dipoles with angular velocity

VW s5v0A12l0
2$A12l0

2zŴ6l0yŴ %, ~A5!

since, in this case, the field is not strong enough to inhibit
rotation caused by the shear flow.

The linear stability of these fixed points is better analyz
in spherical coordinates. Taking into account that

~RŴ 3xŴ !3RŴ 5xŴ2RŴ ~RŴ •xŴ !, ~A6!

we obtain

1

v0

dR̂x

dt
5l0~12R̂x

2!2R̂y ,

1

v0

dR̂y

dt
52l0R̂xR̂y1R̂x , ~A7!

1

v0

dR̂z

dt
52l0R̂xR̂z .

After expressing the components ofRŴ in spherical coordi-
nates, we obtain the following bidimensional dynamical s
tem:

1

v0

du

dt
5l0 cosu cosf,

~A8!
1

v0

df

dt
52l0

sinf

sinu
11,

whereu and f are the polar and azimuthal angles, resp
tively. By linearization of Eqs.~A8! around thel0>1 fixed
points we obtain the matrix

p-

i-
2-9
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TOMÁS ALARCÓN AND AGUSTÍN PÉREZ-MADRID PHYSICAL REVIEW E 63 041112
A~l0>1!5S 7l0A12S 1

l0
D 2

0

0 7l0A12S 1

l0
D 2D ,

~A9!

which implies that, ifl0 is positive, the orientation corre
sponding to chosing the sign1 in Eq. ~A2! is stable, while
the other one is unstable.

The same linearization procedure carried out around
l,1 fixed points leads to

A~l0,1!5S 0 l0
2A12l0

2

2l0
2A12l0

2 0
D . ~A10!

The eigenvalues of this matrix are given by

a56 il0
2A12l0

2. ~A11!

APPENDIX B: COMPUTATION OF EQS. „33… AND „35…

In this Appendix we work out in detail some steps of t
computation of the power spectrum corresponding to the
laxation process of a dipole under an oscillating magn
field in a shear flow; in particular, we calculate the integr
that yield Eqs.~33! and ~35!. From Eqs.~31! and ~32!,

E duŴ ûxC~uŴ ,t1tuvŴ ,t !5I 11I 2 , ~B1a!

I 15E duŴ ûxC0~uŴ ,t1tuvŴ ,t !5E duŴ ûxe
tL0d~uŴ 2vŴ !,

~B1b!

I 25E duŴ ûxDC~uŴ ,t1tuvŴ ,t !

5E duŴ ûxE
t

t1t

dsl~s!e(t1t2s)L0L1esL0d~uŴ 2vŴ !.

~B1c!

To begin with we focus on the integralI 1, which can be
rewritten as

I 15E duŴ ~etL 0
†
ûx!d~uŴ 2vŴ !, ~B2!

whereL 0
† is the adjoint operator ofL0 defined by

E duŴ A~L0B!5E duŴ ~L 0
†A!B ~B3!

with A and B two arbitrary observables. Explicitly,L 0
† is

given by

L 0
†5v0RŴ 0•RW 1DrR 2,

L 0
†Ylm~RŴ !5@2 l ~ l 11!Dr1 iv0m#Ylm~RŴ !, ~B4!
04111
e

e-
ic
s

and therefore Eq.~B2! reads

I 152A2p

3 E duŴ @e2(2Dr2 iv0)tY11~uŴ !

1e2(2Dr1 iv0)tY121~uŴ !#d~uŴ 2vŴ !

52A2p

3
@e2(2Dr2 iv0)tY11~vŴ !1e2(2Dr1 iv0)tY121~vŴ !#,

~B5!

leading to Eq.~33a!. In Eq. ~B5! we have used the relation

ûx52A2p

3
@Y11~uŴ !1Y121~uŴ !#. ~B6!

To compute the integralI 2, we have to use the following
representation of thed function:

d~uŴ 2vŴ !5(
l 50

`

(
m52 l

l

Ylm* ~vŴ !Ylm~uŴ !. ~B7!

After introducing this expression into Eq.~B1c! we obtain

I 25(
l 50

`

(
m52 l

l

Ylm* ~vŴ !E
t

t1t

dsl~s!E duŴ ~e(t1t2s)L 0
†
ûx!

3L 1esL0Ylm~uŴ !

5(
l 50

`

(
m52 l

l

Ylm* ~vŴ !E
t

t1t

dsl~s!e2[ l ( l 11)Dr1 imv0]s

3E duŴ ~e(t1t2s)L 0
†
ûx!L1Ylm~uŴ !, ~B8!

and, by using Eq.~B6!, Eq. ~B8! yields Eq.~33!, i.e.,

I 252A2p

3 (
l 50

`

(
m52 l

l

Ylm* ~vŴ !E
t

t1t

dsl~s!

3E duŴ $@e2(2Dr2 iv0)(t1t2s)Y11~uŴ !

1e2(2Dr1 iv0)(t1t2s)Y121~uŴ !#

3e2[ l ( l 11)Dr1 imv0]sL1Ylm~uŴ !%. ~B9!

Once these expressions have been obtained we can
pute the correlation function given by Eq.~34!,

^R̂x~ t !R̂x~ t1t!uRŴ 0~ t0!&;E dvŴ v̂xC0~vŴ ,tuRŴ 0 ,t0!I 1

1E dvŴ v̂xDC~vŴ ,tuRŴ 0 ,t0!I 2 ,

~B10!
2-10



lly

se
tr

ns

cs,

STOCHASTIC RESONANCE IN A SUSPENSION OF . . . PHYSICAL REVIEW E 63 041112
C0(vŴ ,tuRŴ 0 ,t0) andDC(vŴ ,tuRŴ 0 ,t0) being given by

C0~vŴ ,tuRŴ 0!5etL0d~vŴ 2RŴ 0!

5(
l 50

`

(
m52 l

l

Ylm* ~RŴ 0!e2[ l ( l 11)Dr1 imv0] tYlm~vŴ !,

DC~vŴ ,tuRŴ 0!5E
0

t

dr l~r !e(t2r )L0L 1erL0d~vŴ 2RŴ 0!

5(
l 50

`

(
m52 l

l

Ylm* ~RŴ 0!E
0

t

dr l~r !

3e2[ l ( l 11)Dr1 imv0] re(t2r )L0L1Ylm~vŴ !,

~B11!

where the initial timet0 has been fixed to zero and Eq.~B7!
has been used.

Equations~B11! provide the evolution of the probability
distribution under the condition of the system being initia

in the stateRŴ 0. Sincea priori nothing is known about this

initial condition, we assume thatRŴ 0 is a random variable
uniformly distributed over the orientation space; con
quently we average the correlation function over the dis
bution of initial states@Eq. ~36!#. Taking into account that

1

4pE dRŴ 0Ylm* ~RŴ 0!5d l ,0dm,0 , ~B12!
04111
-
i-

the average of the correlation function over initial conditio
is given by

^R̂x~ t !R̂x~ t1t!&;I 31I 4 , ~B13a!

I 3[
1

4pE dvŴ v̂xI 1 , ~B13b!

I 4[
1

A4p
E dvŴ v̂xE

0

t

dr l~r !e(t2r )L0L1Y00~vŴ !I 2 .

~B13c!

After introducing Eqs.~B5! and~B6! into ~B13b!, we obtain

I 35
1

4pE dvŴ
2p

3
@Y11~vŴ !1Y121~vŴ !#

3@e2(2Dr2 iv0)tY11~vŴ !1e2(2Dr1 iv0)tY121~vŴ !#

5
4p

9
e22Drt cos~v0t!, ~B14!

where the orthogonality relation for the spherical harmoni

E dvŴ Ypq* ~vŴ !Ylm~vŴ !5
4p

2l 11

~ l 1m!!

~ l 2m!!
d l ,pdm,q ,

~B15!

has been used. On the other hand, from Eqs.~B9! and
~B13c!,
I 452
1

3
A2p

3 (
l 50

`

(
m52 l

l E
0

t

dr l~r !E
t

t1t

dsl~s!E dvŴ H [Y11(vŴ )1Y121(vŴ )][ e2(2Dr2 iv0)(t2r )Y11(vŴ )

1e2(2Dr1 iv0)(t2r )Y121(vŴ )]Ylm* (vŴ )E duŴ $[e2(2Dr2 iv0)(t1t2s)Y11(uŴ )1e2(2Dr1 iv0)(t1t2s)Y121(uŴ )]

3e2[ l ( l 11)Dr1 imv0]sL1Ylm(uŴ )J . ~B16!

Let us focus our attention on the integral overvŴ :

E dvŴ @Y11~vŴ !1Y121~vŴ !#@e2(2Dr2 iv0)(t2r )Y11~vŴ !1e2(2Dr1 iv0)(t2r )Y121~vŴ !#Ylm* ~vŴ !

5E dvŴ Y11~vŴ !e2(2Dr2 iv0)(t2r )Y11Ylm* ~vŴ !1E dvŴ Y121~vŴ !e2(2Dr1 iv0)(t2r )Y121~vŴ !Ylm* ~vŴ !

1E dvŴ Y121~vŴ !e2(2Dr2 iv0)(t2r )Y11~vŴ !Ylm* ~vŴ !1E dvŴ Y11~vŴ !e2(2Dr1 iv0)(t2r )Y121~vŴ !Ylm* ~vŴ !. ~B17!
2-11



iar
o
-

nl
g

r,
i

h

n-
e

g
.
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From the rules of addition of angular momenta famil
from quantum mechanics, which imply that the product
two spherical harmonicsYpqYrs has a nonvanishing projec
tion over a third spherical harmonicYlm only when the rela-
tions up2r u< l<r 1p and q1s5m are fulfilled, it is easy
to see that these integrals will give a nonzero result o
when l 50,1,2 @14#. In addition, for the integrals containin

the productsY161(vŴ )Y161(vŴ ) the parameterm has to be
m562 whereas it must bem50 for the integrals with

Y161(vŴ )Y171(vŴ ) to yield a nonzero contribution. Howeve
although these integrals give a nonvanishing contribution
principle, note that when we perform the integral over t

variableuŴ in Eq. ~B16! the terms introduced by these co
tributions finally yield, by the orthogonality property of th
spherical harmonics, a vanishing result. Thus, onlyl 50 and
m50 contributes toI 3. Taking this into account and usin
Eq. ~B15!,
tt

v.

-

04111
f

y

n
e

I 45S 2p

3 D 3E
0

t

dr l~r !$e2(2Dr2 iv0)(t2r )1e2(2Dr1 iv0)(t2r )%

3E
t

t1t

dsl~s!$e2(2Dr2 iv0)(t1t2s)

1e2(2Dr1 iv0)(t1t2s)%. ~B18!

Finally, performing the changes of variablest85t2r and
t95t1t2s and using Eq.~25! we obtain

I 45S 2p

3 D 3

l2~ t !e2 ivtS E
0

`

dt e2 ivtxx~ t ! D 2

. ~B19!

In this integral the upper limit goes to infinity by causality
s

m-

-
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