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Setting

• One sample is collected in one population.

• The variable to analyze can be qualitative or quantitative.

• Here the parameters to evaluate will be:

– Proportion if the variable is qualitative.
– Mean if the variable is quantitative.

• The analysis will involve:

– Confidence interval estimation.
– Hypothesis testing.

Intervals

Proportion

Common approach

Example. What is the proportion of women in UB students? The variable to analyze is
the gender (qualitative).
A sample of 500 students from the University of Barcelona is collected. A count of 288
women was observed.

• Estimator. The sample proportion.

• Sample distribution. Let X be the count of successes and n the total of subjects in
the sample.
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The sample proportion is p = X
n

Let π be the proportion in the population.
X follows a Binomial distribution with parameters n and π.
If the approximation Binomial to Normal is applied:

X ∼ Bin (n, π) −→ N
(

n · π,
√

n · π (1 − π)
)

Remember that this approximation is acceptable if n · π > 5 and n · (1 − π) > 5
With regards to relative frequency

p = X

n
∼ N

π,

√
π (1 − π)

n


• The approach based on Normal approximation can be inaccurate if n is not large

(continuity issue) or p is extreme.

• R uses Wilson score interval (WS) that improves the Normal approach.

We will use the prop.test function to obtain the confidence interval. The arguments are:

• x: counts of successes.
• n: counts of trials (sample size).
• conf.level: level of confidence, 95% by default.

prop.test(288,500)

1-sample proportions test with continuity correction

data: 288 out of 500, null probability 0.5
X-squared = 11.25, df = 1, p-value = 0.0007962
alternative hypothesis: true p is not equal to 0.5
95 percent confidence interval:
0.5312596 0.6195548

sample estimates:
p

0.576

The sample estimate of the proportion of women is 0.576. The 95% confidence interval is
(0.531, 0.620)
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Alternative approach

Example. An assay aims to estimate the proportion of people having a genetic abnormality.
A sample of 10 subjects was collected and the abnormality was found in 1 subject.
When n ·π < 5 or n ·(1 − π) < 5 the approximation to Normal distribution is too inaccurate.
In the example n · π = 1 and n · (1 − π) = 9.

• Clopper-Pearson (CP) approach is the exact alternative based on the Binomial dis-
tribution.

In R, CP method is implement in the binom.test function.

binom.test(1,10)

Exact binomial test

data: 1 and 10
number of successes = 1, number of trials = 10, p-value = 0.02148
alternative hypothesis: true probability of success is not equal to 0.5
95 percent confidence interval:
0.002528579 0.445016117

sample estimates:
probability of success

0.1

Sample size

• Resources to carry out a survey/experiment are usually limited.

• The cost of the study is directly linked to the sample size.

• However, the success of the study is also linked to the sample size.

• When estimating parameters, “success” means the confidence interval would be infor-
mative → the interval must be narrow enough.

• Sample size computation: to optimize the sample size in such a way that the study
aims are achieved.

• Confidence interval estimation: what is the minimum sample size needed to guarantee
the confidence interval width will not exceed some concrete value?

n ≥ Z2 · p · q

e2
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• Z : quantile from the standard normal distribution. Its value depends on the confidence
level. For example, Z = 1.96 for a confidence level of 95%.

• p: proportion/probability of success. Since its value is unknown (remember that we
aimed to estimate it) we have to use a guess about it. Three options:

1) Use the estimate from a a pilot sample (with low sample size, say 20 o 30 subjects).
2) Use information about p from the literature to guess its value.
3) Use p = 0.5 which brings the largest value of n.

• q: the opposite of p, i.e. (1 − p).

• e: half of the interval width.

Determining the sample size is a non trivial process. Let’s use an example to show it.
Example. Following with the example on the genetic abnormality, let’s suppose that the
research aims to estimate the proportion of such abnormality. It is required that the length
of the 95% confidence interval to be 0.1 as much. How many subjects must be sampled?
The level of confidence is 95%, so that Z = 1.96.
Concerning the value of p, researchers know that the probability of abnormality is low so it
does not make any sense to set p = 0.5. Potential values should be lower than 0.2. To be
more precise they decided to collect a small sample of 25 subjects and 4 of them showed the
abnormality.

binom.test(4,25)

Exact binomial test

data: 4 and 25
number of successes = 4, number of trials = 25, p-value = 0.0009105
alternative hypothesis: true probability of success is not equal to 0.5
95 percent confidence interval:
0.04537945 0.36082845

sample estimates:
probability of success

0.16

That gives an estimate of 0.16 with a 95% CI of 0.045 - 0.361.
If the value of 0.16 is used:
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(qnorm(0.975)ˆ2)*0.16*0.84/(0.05ˆ2)

[1] 206.5168

So that 207 subjects are needed to guarantee that the confidence interval length will be 0.1
as much.
However this assertion will be true if the proportion in the sample with 207 subjects is lower
than 0.16. Why? Let’s draw the function p · q in relation to p.

p<-seq(0,1,0.01)
pq<-p*(1-p)

plot(p,pq,type="l")
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The maximum of the function is reached at p = 0.5, that means that the maximum variability
and eventually the largest sample size is given at p = 0.5. Conversely, lower values are found
as p becomes more extreme.
Back to the example, if the sample proportion is higher than 0.16 the sample size will not be
enough to guarantee an interval length of 0.1. Let’s suppose that the sample of 207 subjects
is collected and 42 of them have the abnormality.
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x<-prop.test(42,207)
x$conf.int

[1] 0.1516244 0.2654695
attr(,"conf.level")
[1] 0.95

x$conf.int[2]-x$conf.int[1]

[1] 0.1138451

The length of the interval is higher than 0.1.
How to proceed? Two options:

• Use a safety margin. That means add a 10% or 20% more subjects than computed. In
the case of the example, add between 20 and 40 subjects more.

• Use the worst situation (in terms of variability) that we could find. Remember the
proportion’s confidence interval from the pilot sample.

binom.test(4,25)

Exact binomial test

data: 4 and 25
number of successes = 4, number of trials = 25, p-value = 0.0009105
alternative hypothesis: true probability of success is not equal to 0.5
95 percent confidence interval:
0.04537945 0.36082845

sample estimates:
probability of success

0.16

The closest value to 0.5 in the confidence interval is 0.361. Use this value to compute the
sample size.

(qnorm(0.975)ˆ2)*0.361*0.639/(0.05ˆ2)

[1] 354.4576

That gives a value of n = 355.
If the sample size is too large and unrealistic given that the resources to carry out the
research, the restrictions about the length of the interval must be relaxed.
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Mean

• Estimator. The sample mean.

• Sample distribution.

Let x1, . . . , xn the sample values. The expression of the sample mean is:

x = 1
n

n∑
i=1

xi

Give that xi can be considered as independent and identically distributed, and following the
Central Limit Theorem the sample distribution of the mean is a Normal distribution

xn = 1
n

n∑
i=1

xi ∼ N

(
µ,

σ√
n

)
.

• However this result is true if σ is known.

• How to proceed if σ is unknown?

Let s be the sample estimator of σ.

T = x̄ − µ
s√
n

T follows a t-Student distribution with n − 1 degrees of freedom.
t-Student distribution accounts for both mean and standard deviation sampling error.
Conditions:

• If the analyzed variable X follows a Normal distribution, the result is exact.

• If the analyzed variable X does not follow a Normal distribution, the result is asymp-
totic → large n needed (commonly n ≥ 30).

Common approach

One of the two following conditions must be held:

• X follows a Normal distribution.
• n is large. In practice n ≥ 30 is enough.
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Example. What is the mean of BMI in a population?
A sample of 100 subjects was collected and their BMI was measured. You may download
the data from the following link: bmi.txt
The sample mean and standard deviation were m = 21.78 and s = 2.72.
Since n is large enough we could apply the method based on t-student distribution. We have
to use the t.test(x,conf.level) function.

• x : vector with data values

• conf.level: confidence level. By default 0.95.

t.test(bmi)

One Sample t-test

data: bmi
t = 80.178, df = 99, p-value < 2.2e-16
alternative hypothesis: true mean is not equal to 0
95 percent confidence interval:
21.24158 22.31962

sample estimates:
mean of x

21.7806

The 95% confidence interval for the mean is 21.24 : 22.32

Alternative approach: bootstrap

• Bootstrap gets the sampling distribution by simulation.

• It is applicable to any estimator.

• It is a free distribution approach: no parametric model is assumed.

• Bootstrap is based on generating a huge number of samples (resamples) from the
original sample using sampling with replacement.

Example. A sample of 15 values is obtained. We aim to estimate the mean. The distribution
of the variable is unknown and unlikely to be a Normal distribution.

• Original sample:
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x=c(1,2,5:15,20,30)
x

[1] 1 2 5 6 7 8 9 10 11 12 13 14 15 20 30

Let’s generate three samples with replacement (resample) and compute the sample mean

set.seed(2019) # Just to set the random seed and get the same results
m1=sample(x,replace=T)
m1

[1] 11 15 12 7 15 1 10 9 15 14 5 12 11 15 12

mean(m1)

[1] 10.93333

m2=sample(x,replace=T)
m2

[1] 20 1 10 5 9 20 20 30 10 5 6 30 7 5 6

mean(m2)

[1] 12.26667

m3=sample(x,replace=T)
m3

[1] 7 30 9 11 14 1 20 30 9 14 8 14 8 1 30

mean(m3)

[1] 13.73333

• Generate a large number of resamples and apply the estimator at each resample.

We can use the function replicate(n,expr) for repeated evaluation of an expression.

• n: number of replications.

• expr: expression to evaluate.
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set.seed(2019) # Just to obtain the same results
mboot=replicate(1000,mean(sample(x,replace=T)))

We have generated the sample distribution of the mean.

plot(density(mboot))
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To build a (1 − α) % bootstrap confidence interval we’ll use the percentile approach: compute
the α/2 and 1 − α/2 quantiles of the bootstrap estimates.

quantile(mboot,probs=c(0.025,0.975))

2.5% 97.5%
7.46500 14.26667

Comments:

• Simulated sample distribution may be inaccurate with small samples.

• Percentile approach to estimate confidence intervals may give unrealistic intervals with
biased estimators → there exists alternatives.

• Different executions lead to different intervals → set the random seed.
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Sample size

Rule. Use the expression

n =
(

Z · s

e

)2

Z: 1 − α/2 quantile of the standard Normal distribution.
s: sample standard deviation.
e: half of the interval length.
It is necessary to know the value of s.

1) Take a pilot sample.

2) Use previous knowledge on s.

Example. Following the case of BMI mean estimation, let’s suppose that the sample of 100
subjects was a pilot study to obtain some knowledge about σ. Remember that the estimate
was s = 2.72. The aim of the main study is to estimate the mean with a 95% confidence
interval whose width must be lower than 0.5.

Z<-qnorm(0.975)
e<-0.5/2

(Z*s/e)ˆ2

[1] 453.572

The sample size must be 454 subjects at least.

Further Statistical Intervals

Prediction interval

• Aim: to predict a future observation of a variable using its probability model.

• The model parameters are unknown and must be estimated.

• Prediction needs to account for two kinds of variability:

– Sampling error.
– Randomness of the variable.
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• Confidence intervals are not appropriate because they only account for sampling error.

• Confidence intervals are devoted to estimate parameters instead of make predictions
of the variable.

• Only the Normal model case will be treated here.

Let x1, . . . , xn be a sample from a Normal population. The mean and variance are estimated
as x̄, s2.
The best predictor (less error) to estimate a new value xn+1 is the mean x̄.

E (xn+1 − x̄) = E (xn+1) − E (x̄) = µ − µ = 0

The variance of prediction error is:

V (xn+1 − x̄) = V (xn+1) + V (x̄) = σ2 + σ2

n
= σ2

(
1 + 1

n

)
Note that V (xn+1 − x̄) −→ σ2 as n → ∞
The (1 − α) % prediction interval is therefore defined as:

x̄ ± t · s

√(
1 + 1

n

)
where t stands for the 1 − α/2 percentile of a t-Student distribution with n − 1 degrees of
freedom.
Notice that whether n → ∞:

• Confidence intervals tends to 0.

• Prediction intervals tends to (1 − α) % probability interval.

Example. Let’s follow with the BMI example. Remember that n = 100, x̄ = 21.78 and s =
2.72
The 95% prediction interval is:

n<-100
m<-mean(bmi)
s<-sd(bmi)

(l.pred<-m-qt(0.975,n-1)*s*sqrt((1+1/n)))

[1] 16.36352
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(u.pred<-m+qt(0.975,n-1)*s*sqrt((1+1/n)))

[1] 27.19768

If a new subject is collected from the population, we have a confidence of 95% that its BMI
will be within 16.36 and 27.2.

Tolerance interval

A tolerance interval is a probability interval estimated with some confidence.
(1 − p) % probability interval: Interval that contains a probability of (1 − p) %.
In the Normal distribution case:

µ ± Zσ

where Z stands for the 1 − p/2 quantile of a standard Normal distribution.
For example, the interval [−1.96, 1.96] in a standard Normal distribution (mean 0 and stan-
dard deviation 1) contains the 95% of probability, therefore it is a 95% probability interval.
The problem arises when µ and σ are unknown and need to be estimated → sampling error.
In the Normal distribution case the tolerance interval takes the following form:

x̄ ± ks

where k is a value depending on the tolerance level (1 − p) and confidence level (1 − α)
Example Let’s use again the BMI example. We wish to estimate the 80% tolerance interval
with a 95% of confidence. That means the values of BMI that encloses the 80% of the
population.
To estimate the tolerance interval we have to install and load the tolerance package and
apply the normtol.int(x,alpha,P,side) with arguments:

• x. Vector data.

• alpha. The opposite of the confidence level. By default 0.05.

• P. Tolerance level. The proportion of the population to be covered by the interval.

• side. One-sided (1) or two-sided (2) interval. Default one sided.
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library(tolerance)
tolint<-normtol.int(bmi,alpha=0.05,P=0.8,side=2)
l.tol<-tolint$`2-sided.lower`
u.tol<-tolint$`2-sided.upper`
c(l.tol,u.tol)

[1] 17.81265 25.74855

The interval 17.81 - 25.75 includes the 80% of BMIs of this population with a 95% of
confidence.
Example. In an experiment it is aimed to determine the diameter in mm of a concrete
part of a machinery. A sample of 25 parts are randomly collected from the factory and their
diameter is accurately measured.
You may download the data from the following link: diameter.txt
The sample mean and standard deviation are

mean(x)

[1] 14.7236

sd(x)

[1] 1.619138

The 95% confidence interval of the mean

t.test(x)$conf.int

[1] 14.05525 15.39195
attr(,"conf.level")
[1] 0.95

We have a confidence of 95% that the true mean process is within 14.06mm and 15.39mm.
The 95% prediction interval

LL=mean(x)-qt(0.975,24)*sd(x)*sqrt(1+(1/25))
UL=mean(x)+qt(0.975,24)*sd(x)*sqrt(1+(1/25))
c(LL,UL)
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[1] 11.31568 18.13152

If we take a new part from the factory, with a confidence of 95%, its diameter will be within
11.32mm and 18.13mm
The 90% tolerance interval with 95% confidence

library(tolerance)
normtol.int(x,alpha=0.05,P=0.9,side=2)

alpha P x.bar 2-sided.lower 2-sided.upper
1 0.05 0.9 14.7236 11.13737 18.30983

We have a confidence of 95% that 90% of diameters of parts produced at the factory are
within 11.14mm and 18.31mm.
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Hypothesis testing

One proportion

Example. The efficacy (proportion of success) in a year of a new treatment is assessed.
Researchers think that the efficacy must be greater than 25% in order to move the production
of the treatment to the next stage.
The hypotheses are:

H0 : π0 = 0.25
H1 : π0 > 0.25

Common approach

• Based on the standard normal distribution

• Applicability conditions. All of them must be met:

1) n · π0 > 5
2) n · (1 − π0) > 5

Additionally it could be claimed the condition of n ≥ 30.
Example. A sample of 40 subjects underwent the new treatment. After a year of follow up
12 of them experienced a successful result.

n<-40
p0<-0.25
n*p0

[1] 10

n*(1-p0)

[1] 30

The applicability conditions are met.
Let’s obtain the p-value with the function prop.test. The syntax is similar to that of the
confidence interval, but now we have to account for the one-sided alternative hypothesis
(argument alt in the function) and null hypothesis π value (argument p in the function).
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prop.test(12,40,p=0.25,alt="greater")

1-sample proportions test with continuity correction

data: 12 out of 40, null probability 0.25
X-squared = 0.3, df = 1, p-value = 0.2919
alternative hypothesis: true p is greater than 0.25
95 percent confidence interval:
0.1862508 1.0000000

sample estimates:
p

0.3

The significance level is set to the common value of 5%.
Remember the rule:

• P − value < α → Reject the null hypothesis
• P − value ≥ α → Do not reject the null hypothesis

The p-value is 0.29, greater than 0.05 so the null hypothesis is not rejected.
We could not demonstrate that the efficacy is greater than 25%.

Alternative approach

Example. Let’s suppose the sample was of 15 instead of 40, and after a year of follow up 5
of them experienced a successful result.
Applicability conditions are not met:

n<-15
p0<-0.25
n*p0

[1] 3.75

n*(1-p0)

[1] 11.25

• Alternative: Binomial test.
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binom.test(5,15,p=0.25,alt="greater")

Exact binomial test

data: 5 and 15
number of successes = 5, number of trials = 15, p-value = 0.3135
alternative hypothesis: true probability of success is greater than 0.25
95 percent confidence interval:
0.141664 1.000000

sample estimates:
probability of success

0.3333333

The p-value is 0.31, greater than 0.05 so the null hypothesis is not rejected.

Sample size

In the hypothesis contrast setting the minimum sample size is computed to reach a lower
bound of power level.

• What difference is aimed to detect? We name this difference as δ. It means what
difference must be detected as significant.

• What is the aimed power? Power = 1 − β. Common values are above 70%.

Example. Following with the example of the new treatment’s efficacy let’s suppose that
researchers wish to detect a difference of 10% with a power of 80%. Given that they wanted
to demonstrate the proportion was greater than 25%, that ultimately means they want to
reject the null hypothesis with a probability of 80% (power) if the true proportion is 35% or
greater.
Let’s use the function pwr.p.test from pwr package to compute the sample size needed.
The main arguments of this function are:

• h: effect size. A value based on the difference to detect. To compute it we will use the
function ES.h.

• power : the aimed power of the test.
• alternative: the direction of the alternative hypothesis.

library(pwr)
h<-ES.h(0.35,0.25)
pwr.p.test(h=h,power=0.8,alternative="greater")
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proportion power calculation for binomial distribution (arcsine transformation)

h = 0.2189061
n = 129.0186

sig.level = 0.05
power = 0.8

alternative = greater

It gives a sample size of n = 130 subjects.
Furthermore, it is also possible to compute the power of a test. In the example we began
with a sample of 40 subjects and the null hypothesis was not rejected. What was the power
to detect a difference of 0.1 greater than 0.25? To answer that question just replace the
argument power by n.

h<-ES.h(0.35,0.25)
pwr.p.test(h=h,n=40,alternative="greater")

proportion power calculation for binomial distribution (arcsine transformation)

h = 0.2189061
n = 40

sig.level = 0.05
power = 0.3972893

alternative = greater

The power was about 40%, that means that was a probability of 40% of rejecting the null
hypothesis if the true proportion would have been of 0.35.

19



Multinomial: more than one proportion

Example. Do the births in a hospital follow a uniform time distribution? A sample of 1062
births in a hospital were collected.

Time 9h-13h 13h-17h 17h-21h 21h-1h 1h-9h
Number of births 150 207 180 210 315

Observed proportions 0.1412 0.1949 0.1695 0.1977 0.2966

The hypotheses are:

H0 : π = π0
HA : π ̸= π0

Notice that π is a vector of proportions, and π0 is the vector of proportions proposed in the
null hypothesis.
In the example there are six time sections, five of them are 4 hours length that implies a 1

6
of a day. The remaining time section is 8 hours length that suppose a 1

3 of a day. Thus, the
hypotheses according to test whether the births are uniformly distributed along a day are:

H0 : π1 = π2 = π3 = π4 = 1
6 ∩ π5 = 1

3
HA : π1 ̸= 1

6 ∪ π2 ̸= 1
6 ∪ π3 ̸= 1

6 ∪ π4 ̸= 1
6 ∪ π5 ̸= 1

3

• It is always two-sided.

Common approach

• Statistical test (chi-square test):

χ2 =
K∑

i=1

(Oi − Ei)2

Ei

• Oi: observed frequencies in the sample.

• Ei expected frequencies if H0 is true.

• Distribution under H0: χ2 distribution with K − 1 degrees of freedom where K is the
number of categories.

• Conditions. All Ei ≥ 5

• Pearson’s residuals. Useful when the null hypothesis is rejected.
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ri = Oi − Ei√
Ei

To solve the test we use the function chisq.test(x,p):

• x: vector with observed frequencies

• p: proportions under the null hypothesis

# Observed frequencies
fab=c(150,207,180,210,315)
# Create test object
test=chisq.test(fab,p=c(rep(1/6,4),1/3))
# Check the expected frequencies. All >5 --> OK
test$expected

[1] 177 177 177 177 354

# Test results
test

Chi-squared test for given probabilities

data: fab
X-squared = 19.703, df = 4, p-value = 0.0005714

P − value < 0.05 −→ H0 is rejected.
Conclusion. The births are not distributed uniformly across the daytime. Question: where
are the differences?

# Pearson residuals
test$residuals

[1] -2.0294443 2.2549381 0.2254938 2.4804319 -2.0728266

• A residual greater than 2 is indicative of a significant distance to H0.

• Negative residual −→ Observed < Expected

• Positive residual −→ Observed > Expected

• 1st and 5th time intervals: there are less births than expected.

• 2nd and 4th time intervals: there are more births than expected.
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Alternative approach

• Monte carlo simulation significance test procedure consist of the comparison of the
observed data with random samples generated in accordance with the hypothesis being
tested.

• The outcome of the test is determined by the rank of the test result with observed
data relative to the test results of the random samples.

Example. Is the genotype of a concrete gene in a population according to the following
proportions?

πAA = 0.25 ; πAa = 0.5 ; πaa = 0.25

A sample of 15 subjects is collected. The following frequencies are observed:

Genotype AA Aa aa
Observed 4 11 0

#Observed frequencies
fab=c(4,11,0)
#test
test=chisq.test(fab,p=c(0.25,0.5,0.25))
# Expected frequencies < 5
test$expected

[1] 3.75 7.50 3.75

Expected counts are lower than 5. Apply the alternative approach.

test<-chisq.test(fab,p=c(0.25,0.5,0.25),simulate.p.value=T)
# Test results
test

Chi-squared test for given probabilities with simulated p-value (based
on 2000 replicates)

data: fab
X-squared = 5.4, df = NA, p-value = 0.07746

Using a significance level of 5% the null hypothesis is not rejected.
Handycap: every execution gives a different p-value.
Solutions:
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• Set the random seed.

set.seed(2022)
test<-chisq.test(fab,p=c(0.25,0.5,0.25),simulate.p.value=T)
# Test results
test

Chi-squared test for given probabilities with simulated p-value (based
on 2000 replicates)

data: fab
X-squared = 5.4, df = NA, p-value = 0.08446

• Increase the number of simulations to make the result more steady. Default value is
2000 simulations. Let’s use 10000.

Two executions that give similar results.

test<-chisq.test(fab,p=c(0.25,0.5,0.25),simulate.p.value=T, B=10000)
# Test results
test

Chi-squared test for given probabilities with simulated p-value (based
on 10000 replicates)

data: fab
X-squared = 5.4, df = NA, p-value = 0.07509

test<-chisq.test(fab,p=c(0.25,0.5,0.25),simulate.p.value=T, B=10000)
# Test results
test

Chi-squared test for given probabilities with simulated p-value (based
on 10000 replicates)

data: fab
X-squared = 5.4, df = NA, p-value = 0.07639

• Combine the two solutions.
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set.seed(2022)
test<-chisq.test(fab,p=c(0.25,0.5,0.25),simulate.p.value=T, B=10000)
# Test results
test

Chi-squared test for given probabilities with simulated p-value (based
on 10000 replicates)

data: fab
X-squared = 5.4, df = NA, p-value = 0.07729

Sample size

To compute the sample size we will use the function pwr.chisq.test from the pwr package.
The main arguments are:

• w. Effect size. Related to the difference to detect. Consider a value of 0.1 as small,
0.3 as medium, and 0.5 as large.

• df : degrees of freedom, number of categories minus 1.

In the example, what is the sample size necessary to detect a small effect with a power of
80%? Remember that were five categories so four degrees of freedom.

library(pwr)
pwr.chisq.test(w = 0.1, df = 4, power = 0.8)

Chi squared power calculation

w = 0.1
N = 1193.529

df = 4
sig.level = 0.05

power = 0.8

NOTE: N is the number of observations

What was the power in the example to detect a small effect? Remember the sample size was
1062.

24



pwr.chisq.test(w = 0.1, df = 4, N = 1062)

Chi squared power calculation

w = 0.1
N = 1062

df = 4
sig.level = 0.05

power = 0.7453805

NOTE: N is the number of observations
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Mean

Example. The gum blood flow in 30 health patients has a velocity mean of 95 mm/s. Is
the velocity greater in patients with gingivitis?
Download the data from this link: flow.txt

Common approach

• Based on the t-student distribution with n − 1 degrees of freedom.

• Applicability conditions. At least one must be met:

1) Variable in analysis follows a Normal distribution.
2) n ≥ 30.

The hypotheses are:

H0 : µ = 95
HA : µ > 95

Let’s obtain the p-value with the function t.test(x,alternative,mu). The syntax is similar
to that of the confidence interval, but now we have to account for the one-sided alternative
hypothesis and null hypothesis µ value.

t.test(y,alternative="greater",mu=95)

One Sample t-test

data: y
t = 3.0762, df = 29, p-value = 0.002271
alternative hypothesis: true mean is greater than 95
95 percent confidence interval:
107.4129 Inf

sample estimates:
mean of x
122.7283

Null hypothesis is rejected at significance level α = 5%. We may affirm that the gum blood
flow mean is higher in patients with gingivitis.
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Alternative approaches

1) Bootstrap.

• Use the bootstrap resamples to generate the sample distribution of parameter.

• Problem: we have to generate the distribution under the null hypothesis!

Method. Given that a random sample x1, · · · , xn:

1) Center the values in relation to the sample mean

zi = xi − x

2) Add to the new zi values the mean on the null hypothesis

z∗
i = zi + µ0

3) Generate j = 1, · · · , B bootstrap resamples with z∗
i and compute the mean at each

sample Z
∗
j .

4) Compute the P-value as the relative position of the original sample mean in the set of
Z

∗
j .

If the alternative hypothesis is:

• Greater >

P =
#
(
Z

∗
> Xobs

)
B

where Xobs is the mean of xi.

• Lower <

P =
#
(
Z

∗
< Xobs

)
B

• Difference ̸=
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P =
#
(
abs

(
Z

∗)
< abs

(
Xobs

))
B

Example. A psychological questionnaire has been designed to be filled out in less than 30
minutes as average. To check that a sample of 12 subjects filled out the questionnaire and
the time in minutes was recorded.
Download the data from this link: time.txt
The hypotheses are:

H0 : µ = 30
HA : µ < 30

Conditions. The time to fill out the questionnaire can not be considered to follow a Normal
distribution. Furthermore, the sample size is low.
Let’s test the hypothesis using bootstrap.

1) Center the data and add the mean on the null hypothesis

z<-y-mean(y)+30

2) Generate the bootstrap samples. Here the random seed is set to generate the same
resamples so you will be able to obtain the same p-value as here when executing the
code.

set.seed(2020)
boot.z<-replicate(1000,mean(sample(z,replace=T)))

3) Compute the p-value

sum(boot.z<mean(y))/1000

[1] 0.165

hist(boot.z)
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Using a significance level of 5% the null hypothesis is not rejected.

2) Non-parametric test. One-sample Wilcoxon Signed Rank Test.

• Use the ranks of the variable.

• It is widely accepted that the test is about the median rather than the mean.

wilcox.test(y,mu=30,alternative="less")

Wilcoxon signed rank test with continuity correction

data: y
V = 26.5, p-value = 0.1728
alternative hypothesis: true location is less than 30

Using a significance level of 5% the null hypothesis is not rejected.
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Sample size

To compute the sample size we need to answer the following questions before:

• What is the difference to detect? Let’s name such difference as δ.

• How much power is desired? 1 − β

• What is the variance of the variable? σ2

To know the value of σ we may proceed as:

1) Take a pilot sample.

2) Use previous knowledge on σ.

To compute the sample size we will use the function pwr.t.test from pwr package. The main
arguments are:

• d. Effect size. The difference to detect δ divided by the standard deviation σ.

• type. Type of t test. In this case is “one.sample”.

Example. Let’s follow with the gum blood flow example.
Let’s suppose that we didn’t made any previous analysis so we are at the beginning of the
study. We do not have any information about σ. A pilot sample of 10 subjects is collected
and a value of s = 45 is obtained.
We wish to detect as significant at level α = 5% a difference of δ = 10 with a power of 80%.

pwr.t.test(d=10/45,type="one.sample",power=0.8, alternative = "greater")

One-sample t test power calculation

n = 126.5606
d = 0.2222222

sig.level = 0.05
power = 0.8

alternative = greater

The sample size necessary is 127.
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Goodness of fit to probability distribution models

A sample of n data has been collected from the random variable X.
Let F0 (X) be a concrete probability distribution function (model).
Hypotheses

H0 : X ∼ F0 (X)
HA : X ≁ F0 (X)

• Most common case: F0 (X) is the Normal distribution.

Alternatives of analysis:

• Exploratory analysis using Q-Q plots.
• Kolmogorov-Smirnov test.
• Shapiro-Wilks

Example. Let’s test if the 100 BMI values from the former example come from a Normal
model.
Remember you can download the data from the following link: bmi.txt

Exploratory analysis using Q-Q plots

Let’s use the qqnorm function that is specific to draw QQ plots for Normal models.
The function scale is to standardize the values. This is quite convenient because the function
qqnorm is going to compare the sample quantiles to those from a standardized Normal
model (mean 0, standard deviation 1).

qqnorm(scale(bmi),pch=16)
abline(0,1)
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Most of the points line up on the concordance line. So, it is reasonable to assume that data
may come from a Normal model.

Kolmogorov-Smirnov test.

• KS-test is based on comparing the observed (empirical) cumulative probability function
with the theoretical one.

• The test statistic D is the maximum distance between the two functions.

• D in a Q-Q plot would be the maximum distance to the concordance line.

• Limitations:

– Low power with small sample size.
– Too high power with large sample size.

The test is implemented in R with the function ks.test. The first argument is the data
values, the next arguments are the model under the null hypothesis and the values of the
related parameters.
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ks.test(x,"pnorm",mean(x),sd(x))

One-sample Kolmogorov-Smirnov test

data: x
D = 0.12777, p-value = 0.809
alternative hypothesis: two-sided

The hypothesis of Normal model is not rejected.

Shapiro-Wilks

• It is considered one of the most powerful tests for checking normality.

• Only valid for Normal model

shapiro.test(bmi)

Shapiro-Wilk normality test

data: bmi
W = 0.9868, p-value = 0.4246

The hypothesis of Normal model is not rejected.
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