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Abstract: Blood is a biological fluid composed mainly of water, red blood cells and other com-
ponents and it is a non-Newtonian fluid. Red blood cells play an important role in the rheological
properties of the blood and are the main responsible for the shear thinning behaviour of blood. Some
hematological diseases can change the geometrical shape of red blood cells and thus their viscosity.
In this work we have computed the viscosity of different blood samples that were obtained with
a microfluidic device and normalized the viscosities for hematocrit using statistical analysis tools.
We have also used different machine learning methods as Logistic Regressions or Artificial Neural
Networks (ANN) to predict if a sample of blood corresponds to healthy blood or to a blood with an
hematological disease. We have obtained different performance for the different methods, some of
them with very good results and an accuracy of 94% of correct prediction has been achieved with
an ANN model.

I. INTRODUCTION

We want to apply machine learning methods to a set of
measures of different blood samples. Different methods
will be used in order to test their performance to our data
[1,2].

A microfluidic device has been used to generate the
data that we need from different blood donors. This de-
vice consists in a microfluidic channel with a rectangular
section connected to a pump that send some fluid to a
given pressure. The fluid travels along the channel and
a set of electrodes (distributed in four groups of six elec-
trodes each group) can detect the advancement of the
fluid front [3]. In figure 1 we can see the device.

FIG. 1: Schematic representation of the principal components
of the microfluidic device. (a) Pump connected to the channel
by a micro tube with length lt and radius r. (b) Microfluidic
channel, with width w and height b, through which blood
advances with ∆P [3]. (c) Pattern of electrodes printed on
the glass substrate that work as switches and detect fluid front
advancement [3].

We can record the time that fluid front passes for an
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electrode and thus to know the dynamics of the fluid
inside the channel. If we solve the Navier-Stokes equa-
tion for the geometry of the microfluidic channel we can
know the viscosity for a Newtoninan fluid, and if we use
more than one pressure to pump the sample we can get
a curve of viscosity for shear rate for a non-Newtonian
fluid. Thus we can use the microdevice as a rheometer.

FIG. 2: Simplified diagram of the process where the principal
steps are shown. We start with raw data generated by the
microfluidic device and finish with a diagnosis.

The data set obtained with the microfluidic device and
from anonymous donors has measures from 274 donors
(some of them healthy and the rest have an hematolog-
ical disease), and for every donor, we have between 5
and 10 data rows corresponding to different pressures,
in order to get a viscosity curve. For every measure we
have 24 times (related to the electrode time detection), a
pressure, the hematocrit concentration, and other values
containing information about the acquisition process. So
in total our initial data set has 2018 rows and 37 columns.
Our objective (we can see a diagram of the process in

figure 2) is to process this raw data set in order to get
n and m coefficients that gives us a viscosity curve and
then to normalize this coefficient for hematocrit to get
nhtc and mhtc. With this processed data we want to use
a machine learning model to automatizes the diagnosis
of hematological disease.
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II. THEORETICAL MODEL AND VISCOSITY
COMPUTATION

A. Newtonian and non-Newtonian fluid behaviour
in the microfluidic device

We can use the Navier-Stokes equation and an expres-
sion that relates viscosity, η, with shear rate, γ̇ ≡ ∂vx

∂z , to
obtain the viscosity coefficients n and m [4-6].
For the relation η (γ̇) we can use the power-law model:

η (γ̇) = mγ̇n−1, (1)

that is suitable for both cases, Newtonian fluids, n = 1,
and non-Newtonian fluids, n ̸= 1. For non-Newtonian
fluids we can distinguish two behaviours depending on
the n value, for n < 1 we have shear-thinning behaviour,
and for n > 1 we have shear-thickening behaviour. Blood
presents a shear-thinning behaviour [6].

If we use both expressions (1) and Navier-Stokes equa-
tion for the boundary conditions of our microdevice we
will get [5,6]:

∆P = A(n,m)ḣn, (2)

where ∆P contains all the pressures involved in the pro-
cess, ḣ is the mean velocity of the fluid front on the
channel, and A(n,m) is a parameter that depends on the
geometry of the system and the power-law model param-
eters n and m. For our system A(n,m) can be expressed
as [6]:

A(n,m) = m
2lt
(
1
n + 3

)n
rn+1

(
bw

πr2

)n

, (3)

where lt is the length of the tube that connects the pump
with the channel, r is the radius of this tube, w is the
width of the channel and b is the height of the channel.

B. Blood and plasma viscosity determination

Using expressions (2) and (3) we can get n and m if we
know the other variables (are provided by the microde-
vice).

For Newtonian fluids we have n = 1 and with one
measure we can get the viscosity of the fluid:

η = m =
∆Pπr4

8ḣltwb
. (4)

We can use this expression to compute the viscosity of
the plasma (blood without red cells) since it behaves as
Newtonian fluid.

For non-Newtonian fluids we need more than one mea-
sure in order to determine n andm. If we have more than

one point
(
∆P, ḣ

)
, and using (2) and (3), we can do a

linear regression ln (∆P ) = α ln ḣ+ β, and with α and β
obtained we can get the power-law model parameters:{

n = α

m = eβ rn+1

2lt( 1
n+3)

n

(
πr2

bw

)n . (5)

With these we can determine the viscosity curve for non-
Newtonian fluid.

C. Blood viscosity normalization

In the last subsection we have studied how to get vis-
cosity curves for our blood samples, but in order to com-
pare between different viscosity curves it would be in-
teresting to normalize by hematocrite (percentage of red
cells) since we have samples of blood with different con-
centration of red cells.
We propose the following model [7]:

ηhtc = 1 +

(
η

ηp
− 1

)
ϕcontrol

ϕ
, (6)

where ηhtc is the normalized viscosity, η is the viscos-
ity we want to normalize, ηp is the viscosity of the
plasma, ϕ ∈ [0, 1] is the concentration of hematocrite,
and ϕcontrol = max (ϕi), i.e. the maximum concentra-
tion of red cells from a sample present in our data.
We are interested in obtaining the parameters of

power-law model for the normalized situation, thus if we
have ηhtc = mhtcγ̇

nhtc−1 and we have points (ηhtc, γ̇) we
can do a linear regression ln (ηhtc) = α ln γ̇ + β, so that:{

nhtc = α+ 1
mhtc = eβ

. (7)

III. MACHINE LEARNING METHODS

In this section we describe briefly the different machine
learning methods that we will use to automatize the di-
agnosis of hematological diseases.
We suppose that exists a function f(X) that given the

rheological data of our blood samples, X, is capable to
classify as healthy blood, 0, or hematological disease, 1.
Thus:

f(X) 7→ {0, 1}. (8)

We can use machine learning methods [1,2] to estimate

this function and get f̂(X) ≡ Ŷ , so that Y = Ŷ + ε,
where we want ε to be as small as possible in order to
get a model that classifies samples with the minimum
number of errors. In our case ε is related with classifying
incorrectly the samples in 0 or 1.
To do that we can define [1] an error function

E
(
Y − Ŷ

)
that gives us bigger values when Ŷ is less sim-

ilar to Y . The purpose of the machine learning method
is to minimize this function and thus to obtain a good Ŷ .
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If we have a data set with (Y,X), i.e. we know the
inpunt and output data, we can use supervised methods
[1,2], where we split the data set into train set that is

used to train the model and to get f̂(X), and test set

that is used to verify if f̂(X) is a good prediction of
f(X) with data never seen in the training in order to
avoid overfitting.

Now we can describe in a few words, some classification
models that can help to solve our problem.

A. Logistic Regression

We expect Ŷ can only take two values 0 or 1, so we
can try to model a sigmoid function as it saturates in 0
and 1. So we can use [1]:

Ŷ =
eβ0+β1X

1 + eβ0+β1X
, (9)

and find β0 and β1 that minimize the error function, E.

B. K-Nearest Neighbors

The idea of this method [1] is to classify an unknownX
the same class that belongs to their k nearest neighbors.
So if we want to classify Xx, Y (Xx) will be the Y more
frequent in Y (X1), Y (X2),..., Y (Xk), where Y (Xi) for
i = 1, ..., k are known.

C. Classification Tree and Random Forest

In classification tree model [1] the method splits the
data to predict asking diatomic questions about X (for
example, if X is bigger than 1), until it is capable to
assign the correct class to the maximum amount of splits.

Random forest model [1] generates a big number of
classification trees simultaneously and assigns the class
most predicted by the trees.

D. Deep Learning. Artificial Neural Networks

The minimum element of a neural network [1,2] is a
perceptron or neuron, that receives n inputs, xi, and add
them with weights, wi, and a bias, b, so

∑n
i=1 wixi + b.

To allow non-linear behaviour an activation function, σ,
is used, and there are some functions specially interesting
for this [2] like sigmoid function or rectified linear unit
function. The output from one perceptron will be:

σ (Σ) = σ

(
n∑

i=1

wixi + b

)
. (10)

To create an artificial neural network (ANN) [2] we
only have to create layers of neurons (the neurons in the

same layer are not connected between them) that receive
inputs and every one of them generates and output. The
first layers of neurons receive the inputs from X and the
following layers receive the outputs generated by the pre-
vious layer of neurons. The last layer is the output layer
that gives us Ŷ (X). If we have more than one layer of
neurons, we talk about deep learning [1,2].
The ANN has to adjust wi and bi in order to minimize

the error function E. Due the big size of the ANNs,
backpropagation algorithm [2] is used adjust the weights
and the biases.

IV. RESULTS

A. Viscosity curves

We have samples of blood from 274 donors (every
donor with more than one measure for different pres-
sures) with eight different conditions: healthy blood,
iron-deficiency anemia, beta thalassemia, hereditary
spherocytosis, sickle cell, vitamin B12 deficiency, me-
chanical hemolysis and hepatic cirrhosis.
117 samples correspond to blood with some concentra-

tion of red cells and the rest correspond to plasma for
the different conditions.

TABLE I: Mean viscosity value of plasma for healthy blood
and for each disease. Plasma is a Newtonian fluid so its vis-
cosity is constant for shear rate.

Disease η̄ [mPa · s]
Healthy blood 2.2± 0.5

Iron-deficiency anemia 2.3± 1.0

Beta thalassemia 2.1± 0.3

Hereditary spherocytosis 1.79± 0.08

Sickle cell 2.0± 0.7

Vitamin B12 deficiency 2.1± 0.4

Mechanical hemolysis 1.82± 0.15

Hepatic cirrhosis 2.4± 0.6

Using equation (4) we can obtain the viscosity for
plasma, and we can observe the results in table I. We can
see that all the values are similar and around 2 mPa · s,
as we expect because we suppose that rheological differ-
ences between diseases are consequence of red cells.
Now we can use equation (5) to obtain n and m. With

equation (7), the viscosities of plasma showed in table I,
and the n and m coefficients that we have just computed
we can obtain nhtc and mhtc.
We can observe the results in table II. We have plotted

the viscosity curves for each disease in the same scale to
compare. In figure 3 we have viscosity curves for n and
m, and in figure 4 we have normalized viscosity curves
obtained with nhtc and mhtc.
In this work we are interested in be able to distinguish

between healthy blood and non-healthy blood, so in ta-
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TABLE II: Mean values of n, m, nhtc and mhtc for the differ-
ent diseases with their respective errors.

Disease n̄ 103 · m̄ n̄htc m̄htc

Healthy blood 0.82± 0.11 19± 15 0.81± 0.11 12± 9

Iron-deficiency 0.88± 0.12 10± 20 0.87± 0.12 7± 9

Beta thalassemia 0.88± 0.06 10± 5 0.88± 0.06 6± 3

H. spherocytosis 0.91± 0.04 11± 7 0.90± 0.03 7± 2

Sickle cell 0.98± 0.02 4.7± 0.3 0.976± 0.19 2.5± 0.3

B12 deficiency 0.88± 0.6 11± 4 0.87± 0.07 6± 2

M. hemolysis 0.92± 0.03 6.2± 1.3 0.92± 0.03 3.7± 0.9

Hepatic cirrhosis 0.92± 0.04 8.8± 1.3 0.92± 0.04 4.4± 0.7
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FIG. 3: Viscosity curves for healthy blood and different dis-
eases with a logarithmic scale. The thick straight line is
the viscosity curve for n and m mean value, and the striped
straight lines are viscosity curves for n and m plus one stan-
dard deviation (top) and n and m minus one standard devia-
tion (down).

ble 3 and figure 5 we have n, m, nhtc, mhtc and normal-
ized viscosity curves but now for healthy blood and for
non-healthy blood that merge the values for the different
diseases.

TABLE III: Mean values of n, m, nhtc and mhtc for healthy
blood and for non-healthy blood with their respective errors.

Disease n̄ 103 · m̄ n̄htc m̄htc

Healthy blood 0.82± 0.11 19± 15 0.81± 0.12 12± 9

Non-healthy blood 0.87± 0.12 13± 19 0.89± 0.08 6± 5
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FIG. 4: Viscosity curves normalized by hematocrite for
healthy blood and different diseases with a logarithmic scale.
The thick straight line is the viscosity curve for nhtc and mhtc

mean value, and the striped straight lines are viscosity curves
for nhtc and mhtc plus one standard deviation (top) and nhtc

and mhtc minus one standard deviation (down).
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FIG. 5: Comparison between viscosity mean curve and one
standard deviation normalized by hematocrit for healthy
blood and for non-healthy blood in logarithmic scale.

The most important viscosity parameter is n because
it gives us information about how fast or slow the shear-
thinning behaviour happens for shear rate, m is a prefac-
tor that move η(γ̇ = 1) along the vertical axis. We can see
in table III that mean n value is different for healthy or
non-healthy blood and it is more clear for nhtc, although
if we take into account the error values for healthy and
non-healthy both values are compatible. Despite this, in
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figure 5 we can see that for small shear rate values the
viscosity curves are different.

We expect that with the values of n, m, nhtc and mhtc,
a machine learning method has enough information to
classify a donor as healthy or non-healthy.

B. Machine learning methods performance

Finally we have applied machine learning methods to
our raw and processed data. To evaluate our models we
count the number of true positives (TP), false positives
(FP), false negatives (FN) and true negatives (TN) ap-
plying the model to a test set.

We can start applying methods to raw data. Results
are showed in table IV.

TABLE IV: Machine learning performance for raw data. The
raw data set has 2018 samples, train set has 1412 samples and
test set has 606 samples.

ML method TP FP FN TN Accuracy

Logistic Regression 63 182 38 323 0.64

Artificial Neural Network 121 124 94 267 0.64

Finally, in table V we can see the results for data with
n, m, nhtc and mhtc using five different ML methods.
The best results are obtained with an ANN that has 4
layers of 16, 8, 4 and 2 neurons, respectively, and an
output layer of 1 neuron.

TABLE V: Machine learning performance for processed data,
using only n, m, nhtc and mhtc coefficients for the four groups
of electrodes. The processed data set has 117 samples, train
set has 81 samples and test set has 36 samples.

ML method TP FP FN TN Accuracy

Logistic Regression 14 3 2 17 0.86

K-Nearest Neighbors 13 4 10 9 0.61

Classification Tree 13 4 7 12 0.69

Random Forest 13 4 2 17 0.83

Artificial Neural Network 16 1 1 18 0.94

V. CONCLUSIONS

We have obtained the best performance for data with
n, m, nhtc and mhtc and it is something that we could
expect because machine learning methods have more in-
formation to learn, and because with nhtc and mhtc we
can train for samples with any hematocrit concentration
without taking into account the value of this concentra-
tion. We can see that not all methods have the same per-
formance and that is something positive because means
that the model is not overfitting.
With raw data we get a good accuracies (more than

50%), but we have to note that a lot of samples are clas-
sified incorrectly as FP.

So the best performance is for the normalized data
using an ANN, despite logistic regression and random
forest also perform with an accuracy above 80%.

Thus, it seems that is a good idea to use machine learn-
ing techniques to solve classification problems in medical
sciences doing a preprocessing to our data using physics
knowledge.

We can conclude that we can use the ANN model, the
preprocessing necessary to get normalized viscosity coef-
ficients and a not very big number of donors, to classify
the data generated by the microdevice as healthy or non-
healthy.
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