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Working with samples

• Aim: to know the population value of parameters (mean, variance, proportion).

• Procedure: inferential statistics.

• Process:

1) Take a part of the population (sample).

2) Apply a statistical function (estimator) to the sample.

3) Translate the result (estimate) to the population.

Example. A research study aims to know the mean (parameter) of the body mass index
(BMI) in a population of adult healthy people. A sample of 50 subjects are collected from
the population and their BMI is computed.
We compute the arithmetic mean (estimator) of the sample values. The resulting mean of
the 50 subjects is 23.77. We call this value as the estimate of the mean.

• Sampling error: difference between the sample estimate and the true value of pa-
rameter. Remember that the value of the parameter is unknown, so the sampling error
is also unknown.

• Aim of inferential statistics: to know, assess and control the sampling error.

A parameter may have different estimators. The best estimator is that with best properties.
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Properties of the estimators

Let θ̂ be the estimator of parameter θ.

• The estimators are random variables because their values randomly change from one
sample to another.

Example. Following the BMI example, the researchers took a different sample of 50 subjects.
The mean BMI of this second sample was 24.25.
Given that estimators are random variables they have expectation and variance.

• Bias. An estimator is unbiased if E
(
θ̂
)

= θ

In the case of the sample mean, assuming that all the xi (data values) come from the same
population with mean µ, i.e E (xi) = µ

E (x̄) = E

(
1
n

n∑
i=1

xi

)
= 1

n

n∑
i=1

E (xi) = 1
n

nµ = µ

• Standard error. The standard deviation of an estimator is known as standard error.

Following the case of the sample mean, let’s determine its variance assuming that all the xi

are independent and come from the same population with variance σ2.

V ar (x̄) = V ar

(
1
n

n∑
i=1

xi

)
= 1

n2

n∑
i=1

V ar (xi) = 1
n2 nσ2 = σ2

n

The standard error of the sample mean is

SE (x̄) =
√

V ar (x̄) =
√

σ2

n
= σ√

n

The standard error also expresses the magnitude of the sampling error.

• Sampling error: ϵ = θ̂ − θ

V ar (ϵ) = V ar
(
θ̂ − θ

)
= V ar

(
θ̂
)

• Sample distribution. The probability distribution model of the estimator.
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Example. Let’s suppose that the BMI values in this population are distributed as a Normal
model with a mean of µ = 24 and a standard deviation of σ = 3.
Following central limit theorem, the sample distribution of the mean in samples of size n = 50
will be a Normal distribution with mean µ = 24 and standard deviation (standard error):

σ√
n

= 3√
50 = 0.424
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By knowing the sample distribution we can assess the sampling error. For example, with a
probability of 95% the sample means will take values between 23.168 and 24.832.
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95%

Confidence intervals

The sample distribution is determined by the parameters. However, the parameters are
unknown. The way to proceed is assign to parameters the estimates, so that the sample
distribution is guessed rather than known.
Additionally, the goal of the inference is to predict the parameter value. We could use the
estimate and affirm “the mean of BMI is 23.77”. However, the probability that this assertion
is true is 0 (remember that the probability of a particular value in a continuous variable is
0).
A better approach is giving a range of values that may include the parameter with a certain
probability.
Confidence interval: probability interval applied on the guessed sample distribution.
A (1 − α) confidence interval is a range of values that has a probability (1 − α) of including
the parameter value.
Example. Let’s suppose that we know the standard deviation is σ = 3 but the mean is
unknown. From the results of the sample we obtain an estimate of x̄ = 23.77. The guessed
sample distribution is a Normal distribution with mean 23.77 ans standard error 0.424.

• 95% confidence interval
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m<-mean(BMI)
sem<-3/sqrt(50)
ll95<-qnorm(0.025,m,sem)
ul95<-qnorm(0.975,m,sem)
c(ll95,ul95)

[1] 22.94246 24.60554

Our guess is that the mean (parameter) is between 22.942 and 24.606 with a 95% of confi-
dence.

Sample size

A confidence interval must be informative, i.e. precise. The precision of an interval is ex-
pressed by its length.
For example, let [23, 27] and [20, 30] be two confidence intervals about the mean of the BMI.
The first is narrower therefore more precise and informative.
The length of the confidence intervals depends on:

• The level of confidence. The higher is the confidence the wider is the interval.

• The sample size. The larger is the sample size the narrower is the interval.

• The standard error. The larger is the standard error the wider is the interval.

When the research is focused on estimating a parameter, the success is assessed by the degree
of precision of the confidence intervals.
The common way to control the confidence interval width is to compute the sample size before
collecting the sample. The computation approach depends on the parameter to estimate.
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Hypothesis testing

• Aim: take a decision about a research hypothesis.

• Hypothetical-deductive method:

1) Define the hypothesis.

2) Apply the falsifiability principle: try to demonstrate the hypothesis is false.

3) Not refusing a hypothesis does NOT mean the hypothesis is true.

Example. Let’s suppose we want to know if Biomedical Engineering students at UB are all
born in Barcelona province.

1) Define the hypothesis.

The Biomedical Engineering students at UB are all born in Barcelona

2) Apply the falsifiability principle: try to demonstrate the hypothesis is false.

Ask to students if they are born in Barcelona. If at least one answers “No” the hypothesis
will be false.

3) Not refusing a hypothesis does NOT mean the hypothesis is true.

If after asking to a number of students all the answers were “Yes”, it does not mean the
hypothesis is true (unless we asked to the whole population).

• Steps of hypothesis statistical testing procedure:

1) Set the statistical hypotheses
2) Statistical test
3) Expected results
4) Applicability conditions
5) Decision rule

Example. Following with the example of BMI, the researchers wish to test if they can affirm
that the mean BMI is greater than 22.5. This is the research hypothesis.
In terms of falsifiability principle, they must show that the statement “the mean BMI is
lower or equal than 22.5” is false to be able to demonstrate the mean BMI is greater than
22.5.
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1. Set the statistical hypotheses.

The statistical hypothesis testing involves expressing the research hypothesis in terms of
parameters.
In the example the parameter that is involved in the research hypothesis is the mean.
There are two statistical hypothesis:

• Null hypothesis. It is defined as a restriction of the parameter space (equality). It
is the hypothesis that we put on a trial to demonstrate its falsifiability.

In the example this hypothesis would be “lower or equal than 22.5”. However, the null
hypothesis must set the parameter to a value. The boundary value of 22.5 is the best choice.

• Alternative hypothesis: the opposite of the null hypothesis. In the example it
should be “greater than 22.5”.

It can be two-sided (difference) or one-sided (greater or lower) depending on the research
hypothesis.
So that, the statistical hypotheses in the example are:

H0 : µ = 22.5
H1 : µ > 22.5

2. Statistical test

Choose an appropriate statistical test to assess the falsifiability of the hypothesis.
The procedure usually involves defining a function that assesses the distance between what
is observed in data and what the null hypothesis says.
In the example the function could be the difference between the sample mean and the
proposed mean in the null hypothesis (µ0)

θ = x̄ − µ0
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3. Expected results

Define the expected results in case the hypothesis was true.
It means to determine the sample distribution of the statistical test if the null hypothesis
was true.
From the central limit theorem, we know that if the sample size is large enough the sample
mean is distributed as a Normal model.

x̄ ∼ N

(
µ,

σ√
n

)

If the null hypothesis was true µ = µ0

θ = (x̄ − µ0) ∼ N

(
0,

σ√
n

)

We could go further and standardize the statistical test, i.e. divide it by its standard error
σ/

√
n

θ = (x̄ − µ0)
σ/

√
n

∼ N (0, 1)

The statistical test θ follows a standard Normal model (Normal with mean of 0 and standard
deviation of 1).
If the null hypothesis is true, we expect θ comes from a standard normal distribution.

• What are therefore the expected values?

We could consider those values with a certain probability, say (1 − α), to appear in case the
true hypothesis is true. Commonly (1 − α) is set to be large, most common value is 95%,
i.e α = 5%.
In the case of the example, the expected values of θ are drawn in the next figure.
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In the figure, zone A would express the expected results. It does not mean that values in
areas B1 and B2 are impossible but less expected.
Concerning the example, remember that the null hypothesis was “lower or equal than 22.5”
though it had to be set to a particular value. Thus, lower values of θ would be also expected in
case the null hypothesis was true. This is a case of a one-sided (lower or greater) hypothesis
instead of a two-sided hypothesis (difference) as it was case of the former figure.
So that, in the example the expected values of θ are:
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Where area B includes now the unexpected values.
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4. Applicability conditions

Usually to determine the sample distribution of a statistic some conditions must be met
(sample size, normality,. . . ).
Thus, it is necessary to check if these conditions are fulfilled before proceeding with the
testing approach.
In the example, in order to assume that the sample mean follows a Normal model (or θ
ultimately) one out of two conditions must be met:

1) The variable of analysis, BMI in the example, follows a Normal model.
2) The sample size is large (commonly 30 is accepted).

5. Decision rule

The decision rule is based on the expected values and it is supported on a probabilistic rule.

• If the statistical test lies in the unexpected values area we are going to reject the
null hypothesis. We conclude that it is unlikely to observe such a result if the null
hypothesis is true.

• If the statistical test does not lie in the unexpected values area we are going to not
reject the null hypothesis. We conclude that it is quite probable to observe such a
result if the null hypothesis is true.

So that, the decision is binary: reject or not reject.
The reality is also binary: null hypothesis is true or false.
NOTE. It is never known if the null hypothesis is really TRUE or FALSE. We are just
guessing.

Type of decision errors

Based on the decision and reality it is possible to define the four situations that we could
deal with.

Decision
NO REJECT H0 REJECT H0

Reality
H0 TRUE Right Type I Error

Probability = 1 − α Probability = α

H0 FALSE Type II Error Right
Probability = β Probability = 1 − β
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• What is the value of α?

α = P (Reject H0|H0 is true)

It is also known as significance level.
Remember that “H0 is true” ultimately means θ follows a specific probability model that
assumes the null hypothesis is true.
The null hypothesis is rejected in front an unexpected result, hence the probability of reject-
ing is the area B (or B1 plus B2 in the two-sided case).
Therefore, the rejection area is defined when α is set. Most widely accepted value is α = 5%.
That means the risk of rejecting a true null hypothesis is 5%.

−4 −2 0 2 4

0.
0

0.
1

0.
2

0.
3

0.
4

Density Function of θ if H0 is true

D
en

si
ty

α

In case the alternative hypothesis was two-sided (difference) the rejection area has to be split
in two subareas with probability α/2.
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Power of the test

The probability of type-II error is:

β = P (No Reject H0|H0 is false)

The opposite probability is known as power of the test:

1 − β = P (Reject H0|H0 is false)

The power is understood as the ability of the test to find false null hypothesis.
To compute the power the alternative hypothesis must be set to a value.
Let’s suppose that under the alternative hypothesis θ ∼ N (2, 1)
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Red area: type-I error probability.
Green area: power of the test.
The power of the test depends on:

• The significance level.
• The difference to detect.
• The sample size.

The significance level

The greater is the significance level the greater is the power.
It means that increasing the risk of one error diminishes the other error risk.
Let’s draw the density plots again but now we are going to set α = 10%.
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The difference to detect

It means the minimum difference we want to detect as significant, i.e the difference that the
test has to detect as significant.
In the first densities chart, the difference was 2 because we had set the alternative hypothesis
to 2. Let’s see what happens if the alternative hypothesis is set to 3.
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Notice that:
Red area remains the same. Remember that α is pre-set.
Green area is larger. It means that it is easier to detect a bigger difference.

The sample size

The density function amplitude depends on the standard error.
The standard error depends on the sample size.
Let’s suppose that the sample size is increased in such a way that the standard error decreases
by half.
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When planning a research to carry out a hypothesis testing, the sample size is computed to
reach a lower bound of power. Common values for the desired power are between 70% and
80%.

P-value

The p-value is also known as degree of significance.
It is ultimately used as a decision rule.
In the example of BMI:

• Sample mean: 23.77
• Standard deviation: 3
• Sample size: 50
• Statistical test

θ = (x̄ − µ0)
σ/

√
n

= (23.77 − 22.5)
3/

√
50

= 2.99
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The value of the statistical test (θ) lies in the rejection area.
The P-value is the probability of a result as that observed (θ) or even farther from the null
hypothesis IF the null hypothesis is true.
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Green area: P-value.
The green area is lower than the red area → the P-value is lower than α

Rule of thumb:

• P-value < α → Reject the null hypothesis
• P-value ≥ α → Do not reject the null hypothesis

The P-value is also interpreted as the probability that the difference between the observed
result and the null hypothesis proposal is due to sampling variability (random difference).
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