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Abstract: In the framework of quasi-geostrophic theory different formulations of the omega equation 

for the diagnosis of vertical motion in synoptic-scale weather systems have been proposed. Here we 

will focus on the traditional and the �⃗� -vector adiabatic forms of this equation and compute them 

using the Jython programming environment of the IDV software to assess their applicability to the 

qualitative analysis of vertical motion in various case studies. We will also attempt to compute the 

diabatic contribution to evaluate to what extent it is reasonable to neglect it when performing this 

quasi-geostrophic diagnostic. 

  

 

I. INTRODUCTION 

Dynamic meteorology is primarily concerned with 

interpreting the observed structure of large-scale atmospheric 

motions using the equations for the conservation of 

momentum, mass and energy. Although these equations are 

rather complex, the fact that the flow for extratropical 

synoptic-scale weather systems is approximately in 

geostrophic and hydrostatic balance allows for a simplified 

form of these equations, the quasi-geostrophic system, which 

constitutes the basis of quasi-geostrophic theory (Q-G theory). 

Q-G theory emerged in the decade of the fifties and has 

established itself as the cornerstone of modern dynamic 

meteorology since it allows one to describe the baroclinic 

behavior of large-scale atmospheric motions qualitatively and 

quantitatively.    

The combination of the Q-G vorticity and thermodynamic 

energy equations gives rise to the Q-G omega equation, which 

provides a diagnostic for vertical motions in the atmosphere 

[1]. Its conventional adiabatic form can be written as  
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where 𝜔 ∝ −𝑤 is the vertical pressure velocity, being 𝑤 the 

vertical velocity; 𝜎 = −(𝑅𝑇/𝑝)(𝜕 ln 𝜃 /𝜕𝑝 ) is the stability 

parameter, being 𝜃 the potential temperature; 𝑓0 = 2Ω sin(𝜑) 

is the Coriolis parameter; �⃗� 𝑔 is the geostrophic wind; 
1

𝑓0
∇2𝜙 

and 𝑓 are the geostrophic relative vorticity and the planetary 

vorticity, respectively; and 𝑝, 𝜙 represent the pressure and the 

geopotential, respectively.  

The power of this expression lies in the fact that it provides an 

estimate of 𝜔 independent of accurate observations of the 

wind. The first term in the RHS is linked to the vertical 

derivative of the absolute vorticity advection by the 

geostrophic wind (AVA). Given the hydrostatic equation, the 

second term is proportional to minus the Laplacian of 

temperature advection (LTA), which, for wave-like 

perturbations is qualitatively similar to the temperature 

advection (TA) itself. Additionally, if one assumes that the 

vertical motion field exhibits a sinusoidal vertical profile, the 

LHS term is, to first order, proportional to −𝜔 or 𝑤. More 

accurately, the fact that the LHS operator contains vertical 

derivatives implies that the response to a forcing given by the 

RHS will not be localized but will be vertically spread above 

and below the level in which it occurs, particularly for large-

scale disturbances. Hence qualitatively, we have w ≃ DVA +
TA, where DVA stands for differential vorticity advection. 

From these considerations, it is deduced that regions that are 

characterized by cyclonic (anticyclonic) absolute vorticity 

advection increasing with height will exhibit upward 

(downward) vertical motion and those displaying a local 

maximum in warm (cold) temperature advection will be 

related to ascent (descent).  

Even though the two RHS terms of Eq. (1) appear to have 

separate physical interpretations, in practice there often exists 

a considerable amount of cancellation between them, yielding 

a non-conclusive result for the sign of the vertical motion. To 

overcome this issue, Trenberth [2] suggested an alternative 

approach to understanding the forcing of quasi-geostrophic 

vertical motions in the atmosphere in which the RHS of Eq. 

(1) can be approximated in terms of the advection of 

geostrophic absolute vorticity by the thermal wind. This 

method allows assessment of the vertical motion directly from 

the geopotential height and thickness contours. Although this 

approach eliminates the cancellation problem, it entails an 

approximation compared to the Eq. (1), which may restrict its 

applicability: the neglect of the so-called deformation term, 

which is related to the stretching and shearing deformations in 

the atmosphere. Trenberth, however, argued that the 

deformation term was only relevant in frontal regions. Martin 

[3] went further in examining its importance by studying its 

role during the evolution of a typical mid-latitude cyclone. He 
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concluded that the deformation forcing is negligible during the 

development and early mature stages of a cyclone life cycle, 

but it cannot be omitted as the cyclone begins to occlude and 

late in its life cycle. Parallelly to Trenberth, Hoskins et al. [4] 

presented yet another form of the traditional omega equation 

(1) that also constitutes an effective means of dealing with the 

Q-G cancellation problem and does not neglect the 

deformation term. The traditional form of the Q-G omega 

equation also includes the deformation term, but the �⃗� -vector 

formulation of Hoskins has the additional advantage that it 

does not involve calculations of vertical derivatives, apart 

from those inherent to the derivation of the temperature field 

from the hydrostatic equation. Its adiabatic expression can be 

written as [5] 
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where the �⃗� -vector [5] is given by: 
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where R is the constant for dry air. According to Eq. (2) and 

(3), convergence (divergence) of the Q⃗⃗ -vector implies upward 

(downward) vertical motion. 

 

This project then aims to explore the various methods for 

diagnosing vertical motion in mid-latitude weather systems in 

the framework of Q-G theory and assess their applicability to 

a few case studies. For brevity, we will not explore the 

Trenberth approach, but we will focus on the traditional and 

the �⃗� -vector formulations of the Q-G omega equation. 

II. DATA AND METHODOLOGY 

We will use the visualization tool IDV (Integrated Data 

Viewer) from Unidata [6], a freely available software that 

enables one to visualize and analyze three-dimensional 

geophysical data. IDV also provides a Jython programming 

environment that we will use to compute the different terms in 

the various formulations of the Q-G omega equation.   

We will perform the analysis using MERRA-2 data [7] 

(Modern-Era Retrospective analysis for Research and 

Applications, version 2), which is a database of 

meteorological variables generated by the Global Modeling 

and Assimilation Office from the Goddard Space Flight 

Center (NASA). It is based on reanalysis data and covers the 

period from 1980 to the present, being regularly updated. 

Reanalysis data are corrected and improved forecasts, built-up 

by assimilating data acquired from meteorological ground 

stations and satellites into a numerical model in order to make 

the predictions dynamically adjusted to the observations.  The 

power of these data sources is that they are often publicly 

available and provide the best three-dimensional description 

of past weather, being globally complete and consistent in 

time. 

Using IDV, the DVA term in Eq. (1) has been computed by 

approximating the vertical derivatives by centered finite 

differences. The minus Laplacian of thermal advection (LTA) 

term has also been explicitly calculated and added to the DVA 

to obtain the complete RHS of Eq. (1) and compare it with the 

also computed RHS of Eq. (2) as well as the analyzed omega. 

Both RHS have then been divided by the static stability 

parameter 𝜎 using a constant value (2.5 ⋅ 10−6 𝑚2𝑃𝑎−2𝑠−2) 

as is customary [5]. Yet, the units of the fields thus obtained 

differ from those of the analyzed omega because the LHS 

operator in these equations cannot be easily inverted. It will 

thus be meaningless to attempt a quantitative comparison of 

vertical motion estimates; instead, a qualitative study will be 

performed, taking into account that one should not anticipate 

a perfect match between the analyzed omega and the Q-G 

diagnosis.  

All displayed fields are smoothed out with a circular aperture 

smoothing. Importantly the smoothing also needs to be 

applied before multiplying fields that are themselves the result 

of nonlinear multiplications, to avoid aliasing of small-scale 

noise.  

Finally, the examination of the three-dimensional isosurfaces 

of the vertical pressure velocity has allowed us to infer the 

level of maximum vertical motion for the various case studies. 

It has been found that it is around 600-hPa for the textbook 

case and about 700-hPa for the chosen case studies; hence 

those have been the levels used for the calculations. 

III. A FIRST APPROACH: ANALYZING A 

TEXTBOOK CASE STUDY 

We will begin by analyzing the textbook mid-latitude surface 

low-pressure system accompanied by an upper-level trough 

depicted in Fig. 1 [8]. 

From the geopotential height field at the 600-hPa level, one 

would expect a local maximum of absolute vorticity advection 

along the trough axis, yielding cyclonic AVA ahead of the 

trough and anticyclonic AVA behind it. Likewise, contrasting 

the sea-level pressure and 600-hPa geopotential height fields, 

one would anticipate wind veering (backing) and, therefore, 

warm (cold) TA ahead of (behind) the trough. From these 

considerations, an area of ascent (descent) would be expected 

to the east (west) of the trough axis, and indeed this is what 

one can observe in each estimate of omega shown in Fig. 1. In 

this case, there is little cancellation between the DVA (Fig. 

1A) and the LTA (Fig. 1B), with both terms making 

approximately equal contributions. When comparing the 

traditional and the �⃗� -vector forms of the Q-G omega equation, 

even though they are mathematically equivalent, one should 

not expect a perfect agreement since the RHS term of Eq. (1) 

entails approximating a vertical derivative (the DVA term) 

while the RHS of Eq. (2) only involves horizontal derivatives. 

Nevertheless, one can see that there exists a reasonably good 

agreement between the diagnosis given by the traditional Q-G 

omega equation, the divergence of the �⃗� -vector, and the 

analyzed omega, particularly in the vicinity of the trough.   

This textbook case should then be taken as an illustration of 

how well the various formulations of the Q-G omega equation 
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apply when the quasi-geostrophic assumptions are satisfied. 

Note that these assumptions are based on the fulfillment of the 

hydrostatic and geostrophic balances and include the neglect 

of friction, horizontal advection of momentum by the 

ageostrophic wind, vertical advection of momentum, 

advection of the ageostrophic momentum by the geostrophic 

wind and orographic forcing.  

Next, we will discuss to what extent the usefulness of these 

diagnostics can be generalized to other case studies. 

IV. DEVIATIONS FROM Q-G THEORY: 

ANALYSIS OF PARTICULAR CASE 

STUDIES 

In the course of this work, we have examined many case 

studies, but here we will focus on three particular examples 

chosen to illustrate how one term in RHS of Eq. (1) may 

contribute more than the other, the ubiquity of the cancellation 

problem, and the advantages of the �⃗⃗� -vector formulation 

compared to the traditional form of the Q-G omega equation. 

 

A. Storm Aurore, 21/10/21 (18:00 UTC) – 700 hPa 

 

The analyzed omega field (Fig. 2E) for this storm does not 

exhibit a simple structure: there is ascent in northern 

Scandinavia and the Baltic Sea, together with downward 

motion in the southern UK, Norway, Netherlands and Poland. 

A diagnosis based on a separate analysis of the two RHS terms 

of Eq. (1) would lead to non-conclusive results since both 

fields are rather noisy despite the smoothing (Fig. 2A and Fig. 

2B). Additionally, there is an area of cancellation over the 

Baltics and Belarus and, according to Fig. 2C, neither term is 

dominant.  

Examining the RHS of the Q⃗⃗ -vector (Fig. 2D) and the 

traditional (Fig. 2C) formulations of the Q-G omega equation, 

delivers a similar diagnosis: both indicate ascent from 

Denmark to Southern Finland and descent from Northern 

Germany to Lithuania. These displays are less noisy than the 

DVA and LTA terms and present wider areas of upward and 

downward vertical motion that fairly agree with the actual one, 

inferred from the analyzed omega field. Hence, in this case, 

both the traditional form of the Q-G omega equation and the 

divergence of the �⃗� -vector provide a somewhat muddled but 

acceptable diagnosis for vertical motion. 

 

B. Storm Eunice, 18/02/22 (06:00 UTC) – 700 hPa 

 

The analyzed omega field (Fig. 2K) exhibits a large area of 

ascent north and northeast of the upper-level trough and a 

significant region of descent south and to the rear of the 

trough. This pattern is difficult to glean from just comparing 

the DVA and LTA terms of Eq. (1) (Fig. 2G and Fig. 2H, 

respectively) since they present a large amount of cancellation 

in this region. However, from their sum, shown in Fig. 2I, it 

can be seen that, in this case, the LTA term dominates.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1: 12:00 UTC 19 December 2009. A) Differential 

absolute vorticity advection by the geostrophic wind; B) 

minus the Laplacian of the temperature advection by the 

geostrophic wind; C) RHS of the adiabatic traditional form 

of the quasi-geostrophic omega equation; D) RHS of the 

adiabatic �⃗� -vector formulation of the quasi-geostrophic 

omega equation and vector field of the �⃗� -vector; E) analyzed 

omega. Each map includes the sea-level pressure field (solid 

line) and the geopotential height field at the 600-hPa level 

(dashed line). Note that red-shaded (blue-shaded) areas are 

related to upward (downward) vertical motion. 
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Fig. 2: Each column represents one of the analyzed case studies and displays: A), G), M) differential absolute vorticity 

advection by the geostrophic wind; B), H), N) minus the Laplacian of the temperature advection by the geostrophic wind; C), 

I), O) RHS of the adiabatic traditional form of the quasi-geostrophic omega equation; D), J), P) RHS of the adiabatic �⃗� -vector 

formulation of the quasi-geostrophic omega equation; E), K), Q) analyzed omega; and F), L), R) RHS of the diabatic �⃗� -vector 

formulation of the quasi-geostrophic omega equation. All fields are calculated at the 700-hPa level and include the geopotential 

height field at this level. Note that red-shaded (blue-shaded) areas are related to upward (downward) vertical motion. 

 

  

A. Storm Aurore, 21/10/21 (18:00 UTC) B. Storm Eunice, 18/02/22 (06:00 UTC) C. 08/03/22 (18:00 UTC) 
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[8]  G. Lackmann, B. E. Mapes and K. R. Tyle, Synoptic-Dynamic 

Meteorology Lab Manual, American Meteorological Society, 

2017.  

 

As for the Q⃗⃗ -vector (Fig. 2J), the areas of convergence 

(divergence) match the regions of upward (downward) 

vertical motion inferred from the traditional form of the Q-G 

omega equation (Fig. 2I) along the axis of the trough, and they 

also agree with the actual vertical motion in that region, given 

by the analyzed omega chart. Note that, for this case, these 

fields are less noisy than for the previous one, and, although 

they indicate more localized areas for ascent and descent than 

actually observed, both the Q⃗⃗ -vector and the traditional forms 

of the Q-G omega equation provide a better match to the real 

omega than in the previous case.  

 

C. 08/03/22 (18:00 UTC) – 700 hPa 

 

Focusing on the analyzed omega plot (Fig. 2Q), one can 

identify an extensive area of upward vertical motion in the 

western North Atlantic accompanied by a region of downward 

vertical motion to the west of the trough axis. No clear 

conclusion can be drawn from the comparison of the DVA and 

LTA terms (Fig. 2M and Fig. 2N, respectively) since, again, 

there is a large amount of cancellation between them. Here, 

the LTA term is also the dominant one (Fig. 2O), and it is also 

similar to the actual pattern of analyzed vertical motion given 

by the analyzed omega field.    

For this case, the traditional form of the Q-G omega equation 

(Fig. 2O) and the divergence of the Q⃗⃗ -vector (Fig. 2P) provide 

almost identical patterns for vertical motion, which in turn 

agree with the analyzed one. This is the case for which the best 

match between the Q-G diagnosis and reality is obtained. 

V. THE RELEVANCE OF THE NEGLECTED 

CONTRIBUTIONS 

The former discussion on the Q-G theory applicability for real 

case studies is based on the adiabatic forms of the traditional 

and Q⃗⃗ -vector formulations of the Q-G omega equation, but 

these equations can be rendered more complete by taking into 

account the contribution of diabatic heating (especially the 

latent heat release). This term cannot be computed explicitly, 

but for our purposes it may be obtained as a residual from the 

thermodynamic equation. Its contribution to Eq. (1) and (2) 

can be written as 
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where 𝜅 = 𝑅/𝑐𝑝, 𝑐𝑝 is the specific heat capacity at constant 

pressure, J the rate of heating, and V⃗⃗  the full wind vector. This 

residual has been added to the adiabatic expressions, Eq. (1) 

and (2) and is shown in the bottom row of Fig. 2 for each case. 

Even though diabatic heating appears to be less important in 

case C, in that it does not substantially change the pattern of 

vertical motion, we see that it cannot be neglected in cases A 

and B, since it provides an important contribution to the 

pattern. Note, however, that even accounting for latent 

heating, there are still discrepancies between the spatial 

distribution of vertical motion arising from the Q-G analysis 

and the actual one. These may be attributed to all the 

ageostrophic terms and the orographic forcing (upslope and 

downslope flow) that have been assumed to be negligible. 

VI. CONCLUSIONS 

• The assessment of vertical motion by separately analyzing 

the DVA and LTA terms of the traditional Q-G omega 

equation is problematic due to the cancellation problem. 

Additionally, there is not clear rule to establish which term 

is the most relevant as either can dominate depending on 

the particular case (not shown). 

• In general, the two appraised Q-G diagnostic methods (Eq. 

(1) and (2)) provide more accurate patterns for vertical 

motion along the axis of the trough.  

• Even though Eq. (1) involves vertical derivatives, which 

imply an additional approximation in the calculation, both 

formulations of the Q-G omega equation yield similar 

quality diagnostics. 

• Q-G analysis for diagnosing vertical motion provides 

accurate results when the Q-G assumptions are fulfilled, as 

shown for the textbook case. However, when examining 

real case studies, the diagnosed pattern for vertical motion 

matches the actual one only in certain regions within the 

low-pressure disturbances. The contribution of the 

neglected terms such as diabatic heating, the ageostrophic 

terms, or the orographic forcing accounts for the 

discrepancies between the Q-G-estimated and the actual 

vertical motion.  
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