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Self-dynamic structure factor of dense liquids: Theory and simulation
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The self-intermediate dynamic structure facky(k,t) of liquid lithium near the melting temperature is
calculated by molecular dynamics. The results are compared with the predictions of several theoretical ap-
proaches, paying special attention to the Lovesey model and the Wahnatrd Sjgren mode-coupling
theory. To this end the results for thg(k,t) second memory function predicted by both models are compared
with the ones calculated from the simulations.
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[. INTRODUCTION work [6] as well as those calculated from mode-coupling
theory. The main objective of this work is to check the reli-
The self-Van Hove distribution functiois(r,t) is a  ability of the different theoretical approaches by comparing
space- and time-dependent property normally used to stud%eil' predictions for a given potential with the corresponding
the single particle motions in liquidsl,2]. G«(r,t) can be  “exact” MD results. Moreover, the analysis &f(k,t) and
evaluated from experimental data since its space and timiés memory function at different wave numbers will allow us
Fourier transform is the well known self-dynamic-structure-to have a more complete picture of atomic motion in simple
factor Sy(k, ), which can be measured by neutron scatteringlense liquids. The study has been performed for liquid
[1]. For simple dense liquids these data can be compareithium and Lennard-JonedJ) fluids. However, we do not
with the theoretical predictions obtained from different mod-show the LJ results because they do not introduce any sig-
els[3,4]. However, under some circumstandspecially for  nificant additional information. The paper is divided into five
small frequencies and large wavelengtkise experimental Ssections. In the first we define some basic quantities and
error can hinder the comparison. In these cases ComputdﬁSCl’ibe the models and theories. Simulation details and the
simulation [5] constitutes an alternative to experiment be-methodology used to computés(k,t) from the different
cause on one hand the errors are smaller than those fromodels are described in the third section. Theoretical and
experiments, and on the other it allows us to calculate mor€xperimental results are compared in the fourth section. Fi-
basic properties, which cannot be directly obtained from exhally, the most relevant conclusions are summarized in Sec.
periments. V.
In an earlier paper de Jong and co-worki@kcompared
their neutron scatterings(k,w) results for dense liquid Il. THEORY
lithium with the theoretical predictions obtained using sev-
eral models. In particular they found that the Lovesey model
[7] gave the best agreement with their experimental data. In It is well known that the self-dynamic structure factor
this work we use the well known computer simulation tech-Sy(k,w) is the space and time Fourier transform of the self
nigue of molecular dynamicdvD) [5] to calculate the self- Van Hove distribution functiorG¢(r,t) [1]. However, from
intermediate scattering functidig(k,t), which is the space the theoretical point of view it is useful to define the self-
Fourier transform of54(r,t). In fact, F¢(k,t) is a more suit- intermediate scattering functidi,3]
able quantity to test models because many of them are di- ik [ () - 1(0)]
rectly based on assumptions abéu(k,t). One example is Fs(k,t)=(e ) 1)
the mode-coupling theory of Wahnstnoand Sjgren [8], . iy .
who dividedF 4(k,t) into two parts:(1) a binary term that is r® pelng the position of.a particle aridthe wave numper.
Time correlation functions such &s(k,t) can be studied

associated with short time events af®l a mode coupling . . .

term that incorporates the effects of more sophisticated prot_hrpug_h the formalism devel_oped by Zwanzig and Mori,

cesses that appear at longer times. The mode-coupling theoYV"Ch is based on a Volterra integral equati@],

has been applied to calculate several properties of simple dF(k.t) ;

liquids, such as the velocity autocorrelation functiGiit) ;:_J Mg(K,t")Fg(k,t—t")dt’, (2)

[4,9], the shear viscosity coefficieffi0,11], the dynamic dt 0

structure factor$9,11—14, and the transverse current corre- ) ] ) o

lation functions[9]. In all cases the theoretical results Ms(K.t) being the first memory function d¥(k,t). Simi-

showed a qualitative agreement with the simulation data. larly, the second memory functidis(k,t) is defined by
In this work we compare th& (k,t) data computed by

MD for several representative wave numbers with the results dM(k,t) __ ftN (Kt )M (K t—t")dt’ @)

obtained using the models described in the de Jenal. dt o TS '

A. Basic definitions
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Two simple relations between the Laplace transforms of 3. Nelkin-Ghatak model (NG)

Fs(k,t) andNy(k,t), which allow us to compute one func-  Nglkin and Ghatak17] suggested a model obtained by

tion from the other, can be obtained by Laplace transforming;qjying a linearized Boltzmann equation. The self-scattering

Egs.(2) and(3) [2,4], function is described by means of a probability integral with
a complex argument,

2 -1
Fuk2)=| -zt —0 ] (4) 1 [ 7
] - = ~ ! z
S —z+Ng(k,2) SNC(k,w) = —Re{—% 9
T 1—
_1 o
Ny(k,2)=z+W3| 2+ = (5 Wherez= Jmyw(z). w(z) is the probability integral for a
Fs(k,2) complex argument, which is a tabulated funct[d8]. z=x

+iy, x=—w/(\2kvy), y=al(\2kvy), v3=kgT/m, and«
wherew3=kgTk?/m. Ng(k,t) plays an important role in the is the averaged collision frequency, which in the sniall
study of single particle motions because many of the modelmit is @=v5/D. This model gives the correct behavior in
or theories commonly used are based on that fun¢@ed].  the limit of both small and largk& values.

B. Models 4. Lovesey (LO) model

_ o The Lovesey moddl7] assumes an exponential decay of
1. Simple diffusion (SD) the second memory function

The well known simple diffusion mod¢2—4] assumes an Lo P
exponential behavior of the self-intermediate scattering func- NO(k,t)=[2w5+ Q5le” (), (10
ton, with w3=kgTk?/m and Q3 being the square of the Einstein
frequency, which can be obtained from the radial distribution
function g(r) and the pair potentiadp(r) [4]. 7. (k) is ak
dependent collision time. In this work we have used the ap-
D being the diffusion coefficient. This model, which consti- proach  proposed by de Jongetal. [6]: 7.(K)

tutes a good approach in the range of large wavelen@es  — . T/[mD(202+Q32)]. One of the advantages of the
so-called hydrodynamic limit predicts a Lorentzian shape Lovesey model is thaséo(k,w) has an analytical form.

of the self-dynamic structure factor: Moreover, a good agreement was observed between its pre-
dictions and some experimental da#g.

FSO(k,t)=e %, (6)

Dk?

SSD Kw)=— ) 7 .. . ) .
s ( ) p w2+(Dk2)2 (7 5. Wahnstran and Sjagren (WS) mode-coupling theory

As mentioned above, the de Schepper and Ernst theory
2. de Schepper and Ernst (dSE) mode-coupling theory takes into account only the coupling of the particle motion

. with the shear modes. That is why this theory fails for liquids
de Schepper and Ern§15] proposed a mode-coupling near the melting point, just when the couplings to other

correction to the simple diffusion model, which is c:alcuIatedwammeS are not negligible4]. Wahnstion and Sjgren

by taking into account only the coupling between the particle(WS) [8,13 developed a more general theory that includes

motion and the shear modes. TH&{T(k, ) can be written e couplings to both density and shear modes. To sum up

as[16] they divided the second memory functibif’(k,t) into two
parts: a binary termNgg(k,t), which is associated with the
short time dynamics, and a mode-coupling te¥m, o(k,t),

' which incorporates more sophisticated events that appear at

®) longer times. The calculation of this last contribution is

based on the idea that the motion of a tagged particle is

influenced by the constraints collectively imposed by its

neighboring particle$4]:

iw+Dk?2
SDK?

S _ cSD . [
SUSEK,w) =S5 (k,w)+wkk*D.\e[G

with k* = 167 8mpD? and 8= 1/kgT, wherep is the number
density,65=D/(D +v), v= ns/mp, and 5y is the shear vis-

cosity. The complex functio(z) is given by NYS(k, ) = Ngg(k,t) + Ne(kb). (11)
(z—2)\z—1 Wahnstron and Sjgren divided the mode-coupling con-
G(z)=arcta N - 2 : tribution into four parts, which reflect, respectively, the cou-

plings of a moving atom to the density and the longitudinal

_ and transversésheay currents of the systei8,13],
The agreement between the theoretical results and the experi-

mental data is particularly good for “hot” liquids and dense Ngyc(K,t) =Ngoo(K,t) +Ngoi(K,t) + Ng11(K,t) + Ngo(K,t).
gased4,16). (12
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The Laplace transforms of these terms are stz(kvz):[NsB(kaz)+ﬁ500(k-z)+NSB(k!Z)ﬁ501(kvz)]
Nsoo(k,2)=Rsoo( k.2), X Reoa k,2)NWS K, 2). (13)

Nsoi(k,2) =Reos(k,2)[Ngg(k,2) + N¥' Ik, 2)],

- - - —w The Laplace transform of the total second memory function
Ne11(k,2) = Nsg(k,2)Rea(k, 2)NE' Sk, 2), can be written as

NS (k,z)
1—-Rya(k,2) — Nea(k, 2)Raa(k,2) — NS (k, 2)Repa( k,2)

NSk 2) = (14)

where where

NY'S (k,2) =Ngg(k,2) + Reoo(k,2) + Ngg(k, 2) AF(k,k',t)=F (VK2 + k'2— 2kk' cos,t)

X Reo1(k,2). —Fo( K2+ Kk'2=2kK'cosb,1),

~Rsij(k,z) are the Laplace transforms of the recollision termsp is the densityc(k) is the Fourier transform of the direct
Rsij(k,t) which are compiled in Ref$8,13]. The final form,  correlation function, andy (k) and y(k) are two

when spherical symmetry is assumed, is k-dependent quantities that are defined in Ré#19].
F(k,t) is the intermediate coherent scattering function,
pkgT [~ _ Ci(k,t) and C,(k,t) are, respectively, the longitudinal and

SReoo(k,t) = 477sz0 AF4(k,k’,t)cos 6 sinod o transverse current correlation functiofz4], and Fy(k,t)

=e“"3‘2’2 is the free particle limit form of the intermediate
scattering function.
Nsoo(k,t), which is in general the dominant term, starts as

t* and incorporates the effects of the coupling of the velocity
_ of a tagged particle with the density fluctuations of the sur-
f AF((k,k',t)co0sinode rounding_ medium. TheNS(,l(k_,t), Ns11(k,t), a_md Ns_zz(k,t) _

0 contributions reflect, respectively, the coupling with the first
derivative of the dynamic structure factor and with the lon-

xf k'4c2(k ) F (K t)dK’,
0

1
Rsoi(k,t)=—
sOl( ) 41720%

2 o, PkeT o gitudinal and transverse currer&13].
% fo ke(k )[VL(k )+ m kZe(k") In this study we will assume two different models for the
binary term. The first is based on a Gaussian approach to the
xaF(k”t)dk’ memory function and the second is obtained by solving a
at ' kinetic equation. Both treatments give the same result at

smallk’s, but produce important discrepancies at lakie
a. Gaussian binary term approach.is well known that

Raa(k,t)=— — 4f AF(k,k’,t)cogdsinhde the short time behavior of the velocity autocorrelation
4w pLlgto memory functiorK (t) is well described by a Gaussian func-
" pkeT 2 tion [4,20]. Due to the close relation betweéh(k,t) and
xf k'z[)’L(k')+ B k'?c(k") K(t) [2,4], some authors have also assumed a Gaussian de-
0 m cay for Ngg(k,t) [4],
Ci(k',t) 2,2
XC|(k’,0)dk,’ NS2YK, 1) =[2wi+ Q3le /70, (16)

76(k) being[14]

1 T
Re,o(K,t =——J AF(k,k’,t)(1—co)sinodo
s2A K, t) 2779080 s ) ) .
76(K)= —/—. (17
Ct(k,lt)

B 5
X | K'Y yr(k)]P————=dK/, 15 14 —w?r?
fo [VT( )] Ct(k',O) ( ) 2w07'0
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7o plays the role of an averaged collision time, which can be
calculated in terms ofi(r) and the first and second deriva-

30

S (k@) (107 ps)
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tives of ¢(r) [4]. Some authors also assumed a functional
form with a softer decay, such as s&diirg(k)] [4,12,21.
However, we carried out a careful analysis of béthsaze

that has shown that the short time dynamics is better de- 4
scribed by a Gaussian function. Similar conclusions were A
found in a previous study where the mode-coupling predic-
tions for K(t) were compared with the simulation dd&0].

b. Kinetic equation binary term approachVahnstron
and Sjogren[8] used a binary term that was obtained by
solving a kinetic equationN22-24 for the binary part
F<g(k,t) of the self intermediate scattering function. The so-
lution of this equation has the following analytical form
[8,13:

20 | . .
MD simulation (k=1.28A™")

® Experiment (k=1.3A7")

[<*(k,2)]"

“T(k2) S0 k) [p(k2)+1]- - [p(k2)+n]’
(18)

10 |

«?(k,z) andp(k,z) being

2

®2(k,z) (19

__ W
[T(k,2)]?

®(ps)

T(k,z) 20

p(k,2)=x%(k,2)—

FIG. 1. Experimental12] and MD results for the self dynamic

T'(k,2) is the Laplace transform of a generalized friction Stucture factor.

coefficient, which is assumed to decay following a Gaussialing the coherent intermediate scattering functibiik, ), the
functional form[8,13], longitudinal C(k,t) and transvers€,(k,t) current correla-
tion functions were calculated. THedependent properties
were determined for 20 differehts within the 0.185 Al
and 5 A linterval.

where thek-dependent time parameteg(k) is calculated In previous simulation§27,2§ it was shown that the
from Eq. (17). ThereforeFK"(k,z) is obtained using Eqs. Properties of liquid'Li calculated with the NPA potential

(18)—(21), and the so-called kinetic binary part of the second®9"€€ with the available experimental data. Moreover, subse-
Kin quent measurements of the dynamic structure faStkrw)

memory functionNsg (k.t) is calculated using Ed5). by inelastic x-ray scatterinf29—31] have also corroborated
the good agreement between the experimental and simulation
data. The self dynamic structure fact8y(k,w) calculated
from theF4(k,t) MD data atk=1.28 A1 is plotted in Fig.

1. This result is in good agreement with the inelastic neutron

The resglts presentgd in this paper Wea:r_e. obtained frongcattering measurementskat 1.3 A~ [12] which are also
.MD S|mulathns of part!cles.W|th the mass | by assum- displayed in Fig. 1. In relation to these measurements it
ing an effective potential with no adjustable parameters de-

should be noted that the neutron scattering spectrum for lig-
duced from thg neutral p§eudoat(1§NPA) method[25]. The uid lithium is proportional to a weighted sum of the coherent
thermodynamic  conditions areT=470 K and p

=0.044512 A3, which correspond to liquid lithium close S(k,@) and the incohereny(k,) dynamic structure fac-

. . . . . tors[1,6]. So, in general, it is difficult to calculat8(k, w).
toe:.gz.?sg'nngdgf'T(‘)np(‘j.gggg] b?exrewcl:g]n ;Z‘Z?egagi?ﬁai?: However, at sufficiently smalk’s, the incoherent term is
gl c|>ritlhm [ZUG] Wi%/h a tirlnle steW of 3 fs \I/vas u;sed for the greatly dominant. For instance, in the case of liquid lithium

gonthm {2 . p ot . atk=1.3 A1 the incoherent term is more than two orders
numerical integration of the motion equations. After an

equilibration period of 10 time steps, a run of Foconfigu- of magnitude higher than the coherent contribution.
rations was carried out to compute the incoherent intermedi-
ate scattering functionB4(k,t). Besides the radial distribu-

tion functiong(r), the mean square displacemef(t), the The MD results for the intermediate scattering function
shear viscosityys, and some-dependent properties, includ- FMP(k,t) and the corresponding second memory function

T(k,t)= 02 176®), (1)

IIl. COMPUTATIONAL PROCEDURE

A. Simulation details

B. Calculation of F4(k,t) and Ng(k,t)

011207-4
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NQ"D(k,t) were chosen as the “exact” or reference data. F(k,t)=Fy(k,t)=C,(k,t)/C,(k,0) = Fo(K t):e—wgtz/z
NMP(k,t) was computed fronk¥P(k,t) by solving Eqs(2)

and (3) according to the Berne and Harp metH&2]. and
Theoretical results were obtained using the equations in
Sec. Il B. The required values @f, s, andg(r) were taken C|(k,t)/C|(k,O)=(1—wétz)e‘wotz’z.

from the MD results in Refs[27,28. FSP(k,t) was com-
puted according to Eq6). FIS5k,t) and FYS(k,t) were
calculated from Eqg(8) and(9), respectivelyF-°(k,t) were
obtained using Eqs(4) and (10). The computation of A. Binary term

w W . . . :
Fe k,t) or Ng Sk,t) is more laborious and requires the Both the “Kinetic” NSK,'B“(k,t) and the “Gaussian”

previous calculation oNgy(k,t) andNgg(k,t).

The ), and 7, paramse'\'ggrs of the bi;gry termS2Y(k, 1) NE2Y(k, t) ap%oaches have been adopted by several authors
and NsKén(k,t) were computed frong(r) according to the t/(\)/ ChomF.UteNSds(Slf.’t)' TTe tklgetllp _dAnsatzwasduset)qdpy
procedure described in RgR0]. It should be noted that the [8]61 bns(rscnndan k.J?rﬁm. Oths udy '?u'. arfglc_m a;| rlfﬂ1|3]lum
static structure factoB(k), which is required for the compu- ana gy Suhi(r)nvgjsolzn?j.::%-wilrrkirs i/OSISStﬁ d;q;') dijr?”n neér its
tation of 75, was obtained by extending(r) to distances (%riple point [14]. The “Gaussian” approach is described in

alucani and Zoppf4]. However, to our knowledge, there

greater than the half length of the simulated cubic box usin
the prc_)cedure_ proposed_ by Verlg,33. To this end th(_e rTpas been no a comparison of the reliability of the two ap-
proaches. In this work botAnsaze are compared with the

Ornstein-Zernicke equation was solved using the algorith
designed by Z 34]. Th d dt : .

esigned by Zerah34] © same progedure was Uuse 0“exact” binary term N'SV'BD(k,t). This was evaluated accord-
to Eq.(11) by subtracting fromNYP(k,t) the theoretical

calculate the Fourier transform of the direct correlation func-
tion c(k), which is also required for the computation of N9 . trac .
Neyc(k,t). mode-coupling contributioNgyc(K,t) calculated according
Knowledge of theF (k,t), Fs(k,t), C|(k,t), andCt(k,t) to the procedure described in Sec. Il B:

functions for all wave numbers is needed to compute MD A MD .

Newc(k,t) [see Egs(12)—(15)]. However, MD simulation Nsg" (k)= N5 (k. D) = Nswc(kit). (22
allows calculation of these functions only for a finite set of
k’s compatible with the periodic boundary conditions. For

this reason we considered fokiregions and different treat-
ments were used for each of thegr]n. (1.28 A1), and large (4.18 AY) k’s. The results for a

1
For k<0.185 A1 the hydrodynamic model was as- Wave number (2.56 A) close to thek value whereS(k)

sumed. The thermodynamic and transport coefficients releaches its first maximunkf,= 2.50 A™Y) [27] are also dis-
quired to compute these functions were obtained from th@!ayed. All the funﬂ:}ons in Fig. 2 have been normalized by
energy and pressure fluctuatiof and using the Green- the correspondindls™(k,0) value. At smalk’s both models
Kubo relationg5,35], respectively. give the same result. However, for higts, NSK,'B”(k,t) ex-

An interpolation procedurg36] was been applied to the hibits some damped oscillations with a clear minimum,
MD results to obtain the correlation functions within the Which is deeper and appears at shorter timek @sreases.
0.185 A l<k=2 A linterval. In contrastNYy (k,t) shows only a shallow minimum at the

In the 2 A"'<k<5 A1 region, the functions change largestk value (4.18 A1), Similar discrepancies between
sharply and interpolation methods cannot be used. Thus, trgimulation findings and theoretical results obtained using the
viscoelastic model developed by Loveg@y] was assumed. ‘“kinetic” approach were also observed by Gudowsial.

It is based on the assumption of an exponential behavior dor liquid lead[13] and by Shimojo and co-workers for lig-
the second order memory function Btk,t) [4,37]. The co-  uid sodium[14]. It is important to note that, in the free
efficients appearing in the(k,t) expression can be obtained particle limit, the second memory function calculated assum-
from the radial distribution function, the pair potential, and ing Fs(k,t)ze—wgtzfz is similar to NSKé”(k,t)_ This is not ca-

its derivatives. This model has been checked for differentual because the “kinetic” approach satisfies both the hydro-
simple liquids[4,37—39 and in all cases it has rendered gynamic and the free particle limif23]. NMP(k,t) for large
good results fork's close to theS(k) maximum. The vis-  |’s exhibits a minimum after the initial decay that can be
coelastic model for the transverse current correlation funcassociated with the free particle limit behavior. Even though
tion can be constructed by an analogous procedure, but ifhe “Gaussian”Ansatzdoes not give rise to this minimum,
this case the kno_wledge of th(_a shear viscosity coefficignt Fig. 2 shows thaNS2'(k,t) fits the MD data better than
and the assumpt!on of a special cIosure.reIatlon, such as t'?@;é“(k,t). Thus, in this work we have computedﬁvs(k,t)
Akcasu and Daniels approach, are requirétl F(k,t) has using the “Gaussian” approximation

been computed by assuming a Gaussian approximgidh '

Fo(k,t)=e ¥r*06 \where r2(t) is the mean square dis-

IV. RESULTS

The resultingNS2Y(k,t), NK'(k,t), and NMP(k,t) are
monitored in Fig. 2 for small (0.18 Al), intermediate

B. Self-intermediate scattering function

placement.
Fork>5 A1 the free particle limit approacf2,4] was The F4(k,t) results from MD are compared with the SD,
assumed. Thus, dSE, NG, LO, and WS theoretical predictions in Fig. 3.
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FIG. 3. Self dynamic structure factor. Simulation resuitD),
simple diffusion model (SD) [2], Lovesey model(LO) [7],
Wahnstron and Sjgren mode-coupling theoi§VS) [8], de Schep-
per and Ernst theorydSB [15], and Nelkin-Ghatak modgING)

FMP(k,t) shows the characteristic monotonic time decayll”:
that becomes faster asincreasesFL°(k,t) and FP(k,t)
agree with the MD data for small (0.18 &) and interme-
diate (1.28 A1) wave numbers. However, important dis-
crepancies, which of course are more evident for the S
model, are observed at largér values (2.56 A! and
4.18 AY). Moreover, bothFY¢(k,t) and F¢55k,t) are in
marked desagreement wiFF‘Q"D(k,t), the discrepancies be-
ing even larger than foFS°(k,t). These results confirm the
conclusions of de Jong and co-worké¢fd, who compared
the Sy(k,w) factors calculated using the SD, LO, NG, and In order to under_stand why the Lovesey model shows
dSE models with their neutron scattering measurements. IRUch singular behavior and the reasons for the rather poor
particular, they stated that the LO model gives the besfesults obtained using the WS theory, a more accurate analy-
agreement with the experimental data. At very short time$iS Pased on the second memory fun%t|on hasvg)een carried
(t<0.1 ps)FLO(k,t) andFWk,t) are in excellent agree- OUt. T,\tl‘g normalized memory functiong °(kt), Ng S(k’t)j .
ment withFMP(k,t). This result can be explained by consid- @1dNs ~(k,t) are plotted in Fig. 4. The MD results are simi-
ering the short time expansidag(k,t)=1— %wgtz [3] and lar t_O those obtained bY ShmOJo and co-worl_«_ers for liquid
bearing in mind that botts-°(k,w) and Sk, ») satisfy sodium[14]. So, for allk’s, Ng - (k,t) takes positive values,

the three first moment conditions. However, at larger timed€Creases faster dsis raised, and shows a maximum tat

. -1 -
(t>0.1 ps) the Lovesey model shows a nonrealistic oscilla- 0.12 psfork=25 A% It should be emphasized that, for

tory behavior for all wave numbers, which is more obvious@!l Wave numbersl\:‘é"s(k,t) shows a better agreement with
at high k's (see the results fork=2.5 A™! and k the MD data tharNg~(k,t). This is particularly true at short
—4.18 A1). These oscillations give rise to the presence oftimes whereN¢' Xk, t) fits N&'®(k,t) very well, in contrast to
a spurious relative maximum in ti8°(k,w) spectra at high ~ the too slow and exponential decayf°(k,t) which gives
frequenciede.g., atv=60 ps ! for k=4.18 A~1). Notice- rise to the oscillations iff5°(k,t) observed in Fig. 3. There-
able discrepancies between the WS predictions and the siméore, the rather good agreement betwelébo(k,t) and

FIG. 2. Normalized binary term of the second memory function
of the self dynamic structure factér(k,t). Simulation datgMD),
Gaussian moddiGau [4], and Kinetic modelKin) [8].

lated data may also be observed in Fig. 3. This constrasts
with the results of Torcinet al.[12], who found an excellent
agreement between tH&(k,w) results calculated from the
Rvs theory and their simulation data for liquid lithium at 470
K. This suggests thafE(k,t) provides a more refined test
than Sy(k,w) for theoretical models.

C. Second memory function
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—NYSk,t)1/N¥P(k,0) using the fittedr'(k) parametergTable
I); long dashed line, the same but with the theoretié'fﬂ"(k) pa-
rameters(Table )); dotted line, normalized mode-coupling term
Nsmc(k,t)/NMP(k,0).

FIG. 4. Normalized values of the second memory function of
Fs(k,t). Simulation data(MD), Lovesey model(LO) [7], and
Wahnstron and Sjgren mode-coupling theorfv's) [8].

FMP(k,t) should be attributed to a cancellation of inaccura-

cies and cannot be considered as the result of a rigorous The resultingANg(k,t) functions are shown in Fig. 5. For
theory that properly includes the specific details of the indi-the sake of comparison the normalized mode-coupling con-
vidual atomic motion. Thus the WS theory seems more ‘“re-tributions NsMC(k,t)/NQ"D(k,O) have also been plotted in
alistic,” particularly for small wave numbers. However, for Fig. 5. For smalk’s N, c(k,t) is very similar to the mode-
large k's and short times there are some discrepancies becoupling term of the velocity autocorrelation first memory
tween the WS predictions and the MD results. This can bgunction [20]. For all k's Ngyc(k,t) exhibits a three peak
explained by bearing in mind that in the free particle limit, structure with the peaks located at the same time position. It
where Fs(k,t)ze*“’otz’z, Ng(k,t) presents a minimum lo- should be noted that the second pealgf;(k,t) gives rise
cated at very short times. For this reashlf°(k,t) atk to theNMP (k,t) maximum that may be observed in Fig. 4, at
=4.18 A~* exhibits a clear minimum at 0.04 ps. However, t~0.13 ps.

NZ'S(k,t), which has been calculated assuming the “Gauss- AN4(k,t) can be taken as the remaining term that should
ian” Ansatz Ng'(k,t), does not show this minimum. It is be included in the WS theory in order to obtain the “exact”
important to note that a minimum would appésee Fig. 2  MD result. However, as the time parametgi(k) of Eq.

if the “kinetic” approach NX§'(k,t) were assumed for the (16) has been calculated approximately, an accurate test of
binary term, which indeed satisfies the free particle limit.the WS theory can be made only if the “correctg(k)
However, in this case the minimum is too deep and theparameter is used. To this end the difference between
agreement with the MD results is still worse than usingNgﬂD(k,t) and Ngyc(k,t) has been fitted to the Gaussian

NS2Y(K,t). _ _ functional form given by Eq(16). The 7¢(k) values ob-
In orcheDr to analyzewmore carefully the discrepancies begained from the fitting and those calculated from Eij) are
tweenNg'®(k,t) andN;'Yk,t) we have calculated compared in Table I. In Fig. 5 has also been plotted the
NMP(k,t) — NWS(k, 1) difference ANI"(k,t) calculated using the fittedg(k) val-
ANg(k,t)= WD ues to computexlfg‘“(k,t). For small and intermediate wave
Ns (k.0 numbersANL”(k,t) shows positive values that are of the
NMP (k. t) — NS2Y(K t) — N K.t same order of magnitude as or even larger than those of the
_Ns(kt) S'\':D( )~ Nsmc(kit) (23)  mode-coupling termNgyc(k,t). At large k's ANL"(k,t)
Ng ~(k,0) shows a deep negative minimum at short times, which again
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TABLE I. Theoretical and fitted time parameterg(k). approachesF‘sNS(k,t) decays too fast, specially at lok
1 theo fit WhereasF"O(k,t) exhibits some nonrealistic oscillations,
KA e (00 6 (0 (9 which are Smore marked at high A detailed analysis based
0.185 31.40 35.50 on calculation of théNg(k,t) memory functions suggests that
1.28 28.42 30.45 the predictions of the Wahnstro and Sjgren theory are
2.56 22.81 23.28 more realistic than those of the Lovesey model.
4.18 17.04 18.42 Following the Wahnstnm and Sjgren schemeNY' Sk, t)

was computed as the sum of a binary and a mode-coupling
term. Two differentAnsdze for the binary term have been
illustrates the inadequacy of the “Gaussian” approach.compared with the binary term obtained from the simulation.
Moreover, at long times&NL"(k,t) takes negative values We found a good quantitative agreement between the results
and it looks like the mirror image dfgyc(k,t). This sug- obtained using the “Gaussian” approach and the “simula-
gests that the WS theory overemphasizes the mode couplirigon” results for all wave numbers. However, at largéhe
contribution at largek’s. The results of previous studies on binary function calculated from the simulation exhibits
the velocity autocorrelation function20,40 and the self damped oscillations which are not reproduced by the
scattering functiorf13,14,21 suggested that the decomposi- “Gaussian” approach. On the other hand, the “kineti&h-

tion of the memory function into two independent terms issatz which satisfies the free particle limit condition, overes-
unrealistic. Our results support this idea, since the largedimates the oscillatory behavior for intermediate and large
AN;'t(k,t) values correspond to the time interval for which k’s.

NSGE‘;"”(k,t) comes close to zer¢see Fig. 2 and Ngyc(k,t) Our findings suggest that an improvement of the WS
starts to rise. It should be emphasized that the correctivéeory would require the use of a more refined binary term.
terms that should be added to the WS results are of the sanioreover, the separation of the memory function into two

order of magnitude as the mode-coupling contributions. ~ independent parts corresponding to the binary and mode-
coupling terms seems rather unrealistic. So a modified ver-

sion of the WS theory that incorporates a certain degree of

interdependence between the binary and mode-coupling
We have compared thEy(k,t) data calculated by MD terms could significantly improve this theoretical approach.
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