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Self-dynamic structure factor of dense liquids: Theory and simulation
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The self-intermediate dynamic structure factorFs(k,t) of liquid lithium near the melting temperature is
calculated by molecular dynamics. The results are compared with the predictions of several theoretical ap-
proaches, paying special attention to the Lovesey model and the Wahnstro¨m and Sjo¨gren mode-coupling
theory. To this end the results for theFs(k,t) second memory function predicted by both models are compared
with the ones calculated from the simulations.
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I. INTRODUCTION

The self-Van Hove distribution functionGs(r ,t) is a
space- and time-dependent property normally used to s
the single particle motions in liquids@1,2#. Gs(r ,t) can be
evaluated from experimental data since its space and
Fourier transform is the well known self-dynamic-structu
factorSs(k,v), which can be measured by neutron scatter
@1#. For simple dense liquids these data can be compa
with the theoretical predictions obtained from different mo
els @3,4#. However, under some circumstances~specially for
small frequencies and large wavelengths! the experimental
error can hinder the comparison. In these cases comp
simulation @5# constitutes an alternative to experiment b
cause on one hand the errors are smaller than those
experiments, and on the other it allows us to calculate m
basic properties, which cannot be directly obtained from
periments.

In an earlier paper de Jong and co-workers@6# compared
their neutron scatteringSs(k,v) results for dense liquid
lithium with the theoretical predictions obtained using se
eral models. In particular they found that the Lovesey mo
@7# gave the best agreement with their experimental data
this work we use the well known computer simulation tec
nique of molecular dynamics~MD! @5# to calculate the self-
intermediate scattering functionFs(k,t), which is the space
Fourier transform ofGs(r ,t). In fact,Fs(k,t) is a more suit-
able quantity to test models because many of them are
rectly based on assumptions aboutFs(k,t). One example is
the mode-coupling theory of Wahnstro¨m and Sjo¨gren @8#,
who dividedFs(k,t) into two parts:~1! a binary term that is
associated with short time events and~2! a mode coupling
term that incorporates the effects of more sophisticated
cesses that appear at longer times. The mode-coupling th
has been applied to calculate several properties of sim
liquids, such as the velocity autocorrelation functionC(t)
@4,9#, the shear viscosity coefficient@10,11#, the dynamic
structure factors@9,11–14#, and the transverse current corr
lation functions @9#. In all cases the theoretical resul
showed a qualitative agreement with the simulation data

In this work we compare theFs(k,t) data computed by
MD for several representative wave numbers with the res
obtained using the models described in the de Jonget al.
1063-651X/2000/63~1!/011207~9!/$15.00 63 0112
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work @6# as well as those calculated from mode-coupli
theory. The main objective of this work is to check the re
ability of the different theoretical approaches by compar
their predictions for a given potential with the correspondi
‘‘exact’’ MD results. Moreover, the analysis ofFs(k,t) and
its memory function at different wave numbers will allow u
to have a more complete picture of atomic motion in sim
dense liquids. The study has been performed for liq
lithium and Lennard-Jones~LJ! fluids. However, we do not
show the LJ results because they do not introduce any
nificant additional information. The paper is divided into fiv
sections. In the first we define some basic quantities
describe the models and theories. Simulation details and
methodology used to computeFs(k,t) from the different
models are described in the third section. Theoretical
experimental results are compared in the fourth section.
nally, the most relevant conclusions are summarized in S
V.

II. THEORY

A. Basic definitions

It is well known that the self-dynamic structure fact
Ss(k,v) is the space and time Fourier transform of the s
Van Hove distribution functionGs(r ,t) @1#. However, from
the theoretical point of view it is useful to define the se
intermediate scattering function@2,3#

Fs~k,t !5^e2 ik•[ r (t)2r (0)]&, ~1!

r ~t! being the position of a particle andk the wave number.
Time correlation functions such asFs(k,t) can be studied

through the formalism developed by Zwanzig and Mo
which is based on a Volterra integral equation@2,4#,

dFs~k,t !

dt
52E

0

t

Ms~k,t8!Fs~k,t2t8!dt8, ~2!

Ms(k,t) being the first memory function ofFs(k,t). Simi-
larly, the second memory functionNs(k,t) is defined by

dMs~k,t !

dt
52E

0

t

Ns~k,t8!Ms~k,t2t8!dt8. ~3!
©2000 The American Physical Society07-1
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Two simple relations between the Laplace transforms
Fs(k,t) and Ns(k,t), which allow us to compute one func
tion from the other, can be obtained by Laplace transform
Eqs.~2! and ~3! @2,4#,

F̃s~k,z!5F2z1
w0

2

2z1Ñs~k,z!
G21

, ~4!

Ñs~k,z!5z1w0
2Fz1

1

F̃s~k,z!
G21

, ~5!

wherev0
25kBTk2/m. Ns(k,t) plays an important role in the

study of single particle motions because many of the mod
or theories commonly used are based on that function@2–4#.

B. Models

1. Simple diffusion (SD)

The well known simple diffusion model@2–4# assumes an
exponential behavior of the self-intermediate scattering fu
tion,

Fs
SD~k,t !5e2Dk2t, ~6!

D being the diffusion coefficient. This model, which cons
tutes a good approach in the range of large wavelengths~the
so-called hydrodynamic limit!, predicts a Lorentzian shap
of the self-dynamic structure factor:

Ss
SD~k,v!5

1

p

Dk2

v21~Dk2!2
. ~7!

2. de Schepper and Ernst (dSE) mode-coupling theory

de Schepper and Ernst@15# proposed a mode-couplin
correction to the simple diffusion model, which is calculat
by taking into account only the coupling between the parti
motion and the shear modes. ThenSs

dSE(k,v) can be written
as @16#

Ss
dSE~k,v!5Ss

SD~k,v!1
1

pkk* D
ReFGS iv1Dk2

dDk2 D G ,

~8!

with k* 516pbmrD2 andb51/kBT, wherer is the number
density,d5D/(D1n), n5hs /mr, andhs is the shear vis-
cosity. The complex functionG(z) is given by

G~z!5arctanS 1

Az21
D 2

~z22!Az21

z2
.

The agreement between the theoretical results and the ex
mental data is particularly good for ‘‘hot’’ liquids and dens
gases@4,16#.
01120
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3. Nelkin-Ghatak model (NG)

Nelkin and Ghatak@17# suggested a model obtained b
solving a linearized Boltzmann equation. The self-scatter
function is described by means of a probability integral w
a complex argument,

Ss
NG~k,v!5

1

pa
ReF z̄

12 z̄
G , ~9!

where z̄5Apyw(z). w(z) is the probability integral for a
complex argument, which is a tabulated function@18#. z5x
1 iy , x52v/(A2kv0), y5a/(A2kv0), v0

25kBT/m, anda
is the averaged collision frequency, which in the smalk
limit is a5v0

2/D. This model gives the correct behavior
the limit of both small and largek values.

4. Lovesey (LO) model

The Lovesey model@7# assumes an exponential decay
the second memory function

Ns
LO~k,t !5@2v0

21V0
2#e2t/tL(k), ~10!

with v0
25kBTk2/m andV0

2 being the square of the Einstei
frequency, which can be obtained from the radial distribut
function g(r ) and the pair potentialf(r ) @4#. tL(k) is a k
dependent collision time. In this work we have used the
proach proposed by de Jonget al. @6#: tL(k)
5kBT/@mD(2v0

21V0
2)#. One of the advantages of th

Lovesey model is thatSs
LO(k,v) has an analytical form.

Moreover, a good agreement was observed between its
dictions and some experimental data@4#.

5. Wahnström and Sjögren (WS) mode-coupling theory

As mentioned above, the de Schepper and Ernst the
takes into account only the coupling of the particle moti
with the shear modes. That is why this theory fails for liqui
near the melting point, just when the couplings to oth
quantities are not negligible@4#. Wahnstro¨m and Sjo¨gren
~WS! @8,13# developed a more general theory that includ
the couplings to both density and shear modes. To sum
they divided the second memory functionNs

WS(k,t) into two
parts: a binary termNsB(k,t), which is associated with the
short time dynamics, and a mode-coupling termNsMC(k,t),
which incorporates more sophisticated events that appea
longer times. The calculation of this last contribution
based on the idea that the motion of a tagged particle
influenced by the constraints collectively imposed by
neighboring particles@4#:

Ns
WS~k,t !5NsB~k,t !1NsMC~k,t !. ~11!

Wahnstro¨m and Sjo¨gren divided the mode-coupling con
tribution into four parts, which reflect, respectively, the co
plings of a moving atom to the density and the longitudin
and transverse~shear! currents of the system@8,13#,

NsMC~k,t !5Ns00~k,t !1Ns01~k,t !1Ns11~k,t !1Ns22~k,t !.
~12!
7-2
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The Laplace transforms of these terms are

Ñs00~k,z!5R̃s00~k,z!,

Ñs01~k,z!5R̃s01~k,z!@ÑsB~k,z!1Ñs
WS~k,z!#,

Ñs11~k,z!5ÑsB~k,z!R̃s11~k,z!Ñs
WS~k,z!,
m

01120
Ñs22~k,z!5@ÑsB~k,z!1R̃s00~k,z!1ÑsB~k,z!R̃s01~k,z!#

3R̃s22~k,z!Ñs
WS~k,z!. ~13!

The Laplace transform of the total second memory funct
can be written as
Ñs
WS~k,z!5

Ñs
WS8~k,z!

12R̃s01~k,z!2ÑsB~k,z!R̃s11~k,z!2Ñs
WS8~k,z!R̃s22~k,z!

, ~14!
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Ñs
WS8~k,z!5ÑsB~k,z!1R̃s00~k,z!1ÑsB~k,z!

3R̃s01~k,z!.

R̃si j(k,z) are the Laplace transforms of the recollision ter
Rsi j(k,t) which are compiled in Refs.@8,13#. The final form,
when spherical symmetry is assumed, is

sRs00~k,t !5
rkBT

4p2m
E

0

p

DFs~k,k8,t !cos2u sinudu

3E
0

`

k84c2~k8!F~k8,t !dk8,

Rs01~k,t !52
1

4p2V0
2E0

p

DFs~k,k8,t !cos2u sinudu

3E
0

`

k82c~k8!FgL~k8!1
rkBT

m
k82c~k8!G

3
]F~k8,t !

]t
dk8,

Rs11~k,t !52
1

4p2rV0
4E0

p

DFs~k,k8,t !cos2u sinudu

3E
0

`

k82FgL~k8!1
rkBT

m
k82c~k8!G2

3
Cl~k8,t !

Cl~k8,0!
dk8,

Rs22~k,t !52
1

4p2rV0
4E0

p

DFs~k,k8,t !~12cos2u!sinudu

3E
0

`

k82@gT~k8!#2
Ct~k8,t !

Ct~k8,0!
dk8, ~15!
s

where

DFs~k,k8,t !5Fs~Ak21k8222kk8cosu,t !

2F0~Ak21k8222kk8cosu,t !,

r is the density,c(k) is the Fourier transform of the direc
correlation function, andgL(k) and gT(k) are two
k-dependent quantities that are defined in Refs.@4,19#.
F(k,t) is the intermediate coherent scattering functio
Cl(k,t) and Ct(k,t) are, respectively, the longitudinal an
transverse current correlation functions@2,4#, and F0(k,t)

5e2v0
2t2/2 is the free particle limit form of the intermediat

scattering function.
Ns00(k,t), which is in general the dominant term, starts

t4 and incorporates the effects of the coupling of the veloc
of a tagged particle with the density fluctuations of the s
rounding medium. TheNs01(k,t), Ns11(k,t), and Ns22(k,t)
contributions reflect, respectively, the coupling with the fi
derivative of the dynamic structure factor and with the lo
gitudinal and transverse currents@8,13#.

In this study we will assume two different models for th
binary term. The first is based on a Gaussian approach to
memory function and the second is obtained by solving
kinetic equation. Both treatments give the same resul
small k’s, but produce important discrepancies at largek’s.

a. Gaussian binary term approach.It is well known that
the short time behavior of the velocity autocorrelati
memory functionK(t) is well described by a Gaussian fun
tion @4,20#. Due to the close relation betweenNs(k,t) and
K(t) @2,4#, some authors have also assumed a Gaussian
cay for NsB(k,t) @4#,

NsB
Gau~k,t !5@2v0

21V0
2#e2t2/tG

2 (k), ~16!

tG(k) being @14#

tG~k!5
t0

A11
5

2
v0

2t0
2

. ~17!
7-3
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t0 plays the role of an averaged collision time, which can
calculated in terms ofg(r ) and the first and second deriva
tives of f(r ) @4#. Some authors also assumed a functio
form with a softer decay, such as sech2@ t/tG(k)# @4,12,21#.
However, we carried out a careful analysis of bothAnsätze
that has shown that the short time dynamics is better
scribed by a Gaussian function. Similar conclusions w
found in a previous study where the mode-coupling pred
tions for K(t) were compared with the simulation data@20#.

b. Kinetic equation binary term approach.Wahnstro¨m
and Sjogren@8# used a binary term that was obtained
solving a kinetic equation@22–24# for the binary part
FsB(k,t) of the self intermediate scattering function. The s
lution of this equation has the following analytical for
@8,13#:

F̃sB~k,z!5
1

G̃~k,z!
(
n50

`
@k̃2~k,z!#n

r̃~k,z!@ r̃~k,z!11#•••@ r̃~k,z!1n#
,

~18!

k̃2(k,z) and r̃(k,z) being

k̃2~k,z!5
w0

2

@G̃~k,z!#2
, ~19!

r̃~k,z!5k̃2~k,z!2
z

G̃~k,z!
. ~20!

G̃(k,z) is the Laplace transform of a generalized frictio
coefficient, which is assumed to decay following a Gauss
functional form@8,13#,

G~k,t !5V0
2e2t2/tG

2 (k), ~21!

where thek-dependent time parametertG(k) is calculated
from Eq. ~17!. ThereforeF̃sB

Kin(k,z) is obtained using Eqs
~18!–~21!, and the so-called kinetic binary part of the seco
memory functionNsB

Kin(k,t) is calculated using Eq.~5!.

III. COMPUTATIONAL PROCEDURE

A. Simulation details

The results presented in this paper were obtained f
MD simulations of particles with the mass of7Li by assum-
ing an effective potential with no adjustable parameters
duced from the neutral pseudoatom~NPA! method@25#. The
thermodynamic conditions are T5470 K and r
50.044 512 Å23, which correspond to liquid lithium close
to the melting point. A cubic box with 1750 particles an
periodic boundary conditions@5# were considered. Beeman
algorithm @26# with a time step of 3 fs was used for th
numerical integration of the motion equations. After
equilibration period of 104 time steps, a run of 105 configu-
rations was carried out to compute the incoherent interm
ate scattering functionsFs(k,t). Besides the radial distribu
tion functiong(r ), the mean square displacementr 2(t), the
shear viscosityhs , and somek-dependent properties, includ
01120
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ing the coherent intermediate scattering functionsF(k,t), the
longitudinal Cl(k,t) and transverseCt(k,t) current correla-
tion functions were calculated. Thek-dependent propertie
were determined for 20 differentk’s within the 0.185 Å21

and 5 Å21 interval.
In previous simulations@27,28# it was shown that the

properties of liquid7Li calculated with the NPA potentia
agree with the available experimental data. Moreover, sub
quent measurements of the dynamic structure factorS(k,v)
by inelastic x-ray scattering@29–31# have also corroborated
the good agreement between the experimental and simula
data. The self dynamic structure factorSs(k,v) calculated
from theFs(k,t) MD data atk51.28 Å21 is plotted in Fig.
1. This result is in good agreement with the inelastic neut
scattering measurements atk51.3 Å21 @12# which are also
displayed in Fig. 1. In relation to these measurements
should be noted that the neutron scattering spectrum for
uid lithium is proportional to a weighted sum of the cohere
S(k,v) and the incoherentSs(k,v) dynamic structure fac-
tors @1,6#. So, in general, it is difficult to calculateSs(k,v).
However, at sufficiently smallk’s, the incoherent term is
greatly dominant. For instance, in the case of liquid lithiu
at k51.3 Å21, the incoherent term is more than two orde
of magnitude higher than the coherent contribution.

B. Calculation of F s„k,t… and Ns„k,t…

The MD results for the intermediate scattering functi
Fs

MD(k,t) and the corresponding second memory funct

FIG. 1. Experimental@12# and MD results for the self dynamic
structure factor.
7-4
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Ns
MD(k,t) were chosen as the ‘‘exact’’ or reference da

Ns
MD(k,t) was computed fromFs

MD(k,t) by solving Eqs.~2!
and ~3! according to the Berne and Harp method@32#.

Theoretical results were obtained using the equation
Sec. II B. The required values ofD,hs , andg(r ) were taken
from the MD results in Refs.@27,28#. Fs

SD(k,t) was com-
puted according to Eq.~6!. Fs

dSE(k,t) and Fs
NG(k,t) were

calculated from Eqs.~8! and~9!, respectively.Fs
LO(k,t) were

obtained using Eqs.~4! and ~10!. The computation of
Fs

WS(k,t) or Ns
WS(k,t) is more laborious and requires th

previous calculation ofNsMC(k,t) andNsB(k,t).
The V0 andt0 parameters of the binary termsNsB

Gau(k,t)
and NsB

Kin(k,t) were computed fromg(r ) according to the
procedure described in Ref.@20#. It should be noted that the
static structure factorS(k), which is required for the compu
tation of t0, was obtained by extendingg(r ) to distances
greater than the half length of the simulated cubic box us
the procedure proposed by Verlet@5,33#. To this end the
Ornstein-Zernicke equation was solved using the algorit
designed by Zerah@34#. The same procedure was used
calculate the Fourier transform of the direct correlation fu
tion c(k), which is also required for the computation
NsMC(k,t).

Knowledge of theF(k,t), Fs(k,t), Cl(k,t), andCt(k,t)
functions for all wave numbers is needed to comp
NsMC(k,t) @see Eqs.~12!–~15!#. However, MD simulation
allows calculation of these functions only for a finite set
k’s compatible with the periodic boundary conditions. F
this reason we considered fourk regions and different treat
ments were used for each of them.

For k,0.185 Å21 the hydrodynamic model was as
sumed. The thermodynamic and transport coefficients
quired to compute these functions were obtained from
energy and pressure fluctuations@5# and using the Green
Kubo relations@5,35#, respectively.

An interpolation procedure@36# was been applied to th
MD results to obtain the correlation functions within th
0.185 Å21<k<2 Å21 interval.

In the 2 Å21<k<5 Å21 region, the functions chang
sharply and interpolation methods cannot be used. Thus
viscoelastic model developed by Lovesey@37# was assumed
It is based on the assumption of an exponential behavio
the second order memory function ofF(k,t) @4,37#. The co-
efficients appearing in theF(k,t) expression can be obtaine
from the radial distribution function, the pair potential, a
its derivatives. This model has been checked for differ
simple liquids @4,37–39# and in all cases it has rendere
good results fork’s close to theS(k) maximum. The vis-
coelastic model for the transverse current correlation fu
tion can be constructed by an analogous procedure, bu
this case the knowledge of the shear viscosity coefficienhs
and the assumption of a special closure relation, such as
Akcasu and Daniels approach, are required@4#. Fs(k,t) has
been computed by assuming a Gaussian approximation@3,4#
Fs(k,t)5e2k2r 2(t)/6, where r 2(t) is the mean square dis
placement.

For k.5 Å21 the free particle limit approach@2,4# was
assumed. Thus,
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F~k,t !5Fs~k,t !5Ct~k,t !/Ct~k,0!5F0~k,t !5e2v0
2t2/2,

and

Cl~k,t !/Cl~k,0!5~12v0
2t2!e2v0t2/2.

IV. RESULTS

A. Binary term

Both the ‘‘kinetic’’ NsB
Kin(k,t) and the ‘‘Gaussian’’

NsB
Gau(k,t) approaches have been adopted by several aut

to computeNs
WS(k,t). The ‘‘kinetic’’ Ansatzwas used by

Wahnstro¨m and Sjo¨gren to study liquid argon and rubidium
@8#, by Gudowskiet al. in their analysis of liquid lead@13#,
and by Shimojo and co-workers to study sodium near
triple point @14#. The ‘‘Gaussian’’ approach is described
Balucani and Zoppi@4#. However, to our knowledge, ther
has been no a comparison of the reliability of the two a
proaches. In this work bothAnsätze are compared with the
‘‘exact’’ binary term NsB

MD(k,t). This was evaluated accord
ing to Eq.~11! by subtracting fromNs

MD(k,t) the theoretical
mode-coupling contributionNsMC(k,t) calculated according
to the procedure described in Sec. III B:

NsB
MD~k,t !5Ns

MD~k,t !2NsMC~k,t !. ~22!

The resultingNsB
Gau(k,t), NsB

Kin(k,t), and Ns
MD(k,t) are

monitored in Fig. 2 for small (0.18 Å21), intermediate
(1.28 Å21), and large (4.18 Å21) k’s. The results for a
wave number (2.56 Å21) close to thek value whereS(k)
reaches its first maximum (km52.50 Å21) @27# are also dis-
played. All the functions in Fig. 2 have been normalized
the correspondingNs

MD(k,0) value. At smallk’s both models
give the same result. However, for highk’s, NsB

Kin(k,t) ex-
hibits some damped oscillations with a clear minimu
which is deeper and appears at shorter times ask increases.
In contrastNsB

MD(k,t) shows only a shallow minimum at th
largestk value (4.18 Å21). Similar discrepancies betwee
simulation findings and theoretical results obtained using
‘‘kinetic’’ approach were also observed by Gudowskiet al.
for liquid lead @13# and by Shimojo and co-workers for liq
uid sodium @14#. It is important to note that, in the fre
particle limit, the second memory function calculated assu

ing Fs(k,t)5e2v0
2t2/2 is similar toNsB

Kin(k,t). This is not ca-
sual because the ‘‘kinetic’’ approach satisfies both the hyd
dynamic and the free particle limits@23#. NsB

MD(k,t) for large
k’s exhibits a minimum after the initial decay that can
associated with the free particle limit behavior. Even thou
the ‘‘Gaussian’’Ansatzdoes not give rise to this minimum
Fig. 2 shows thatNsB

Gau(k,t) fits the MD data better than
NsB

Kin(k,t). Thus, in this work we have computedNs
WS(k,t)

using the ‘‘Gaussian’’ approximation.

B. Self-intermediate scattering function

The Fs(k,t) results from MD are compared with the SD
dSE, NG, LO, and WS theoretical predictions in Fig.
7-5
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Fs
MD(k,t) shows the characteristic monotonic time dec

that becomes faster ask increases.Fs
LO(k,t) and Fs

SD(k,t)
agree with the MD data for small (0.18 Å21) and interme-
diate (1.28 Å21) wave numbers. However, important di
crepancies, which of course are more evident for the
model, are observed at largerk values (2.56 Å21 and
4.18 Å21). Moreover, bothFs

NG(k,t) andFs
dSE(k,t) are in

marked desagreement withFs
MD(k,t), the discrepancies be

ing even larger than forFs
SD(k,t). These results confirm th

conclusions of de Jong and co-workers@6#, who compared
the Ss(k,v) factors calculated using the SD, LO, NG, an
dSE models with their neutron scattering measurements
particular, they stated that the LO model gives the b
agreement with the experimental data. At very short tim
(t,0.1 ps) Fs

LO(k,t) and Fs
WS(k,t) are in excellent agree

ment withFs
MD(k,t). This result can be explained by consi

ering the short time expansionFs(k,t).12 1
2 v0

2t2 @3# and
bearing in mind that bothSs

LO(k,v) and Ss
WS(k,v) satisfy

the three first moment conditions. However, at larger tim
(t.0.1 ps) the Lovesey model shows a nonrealistic osci
tory behavior for all wave numbers, which is more obvio
at high k’s ~see the results fork52.5 Å21 and k
54.18 Å21). These oscillations give rise to the presence
a spurious relative maximum in theSs

LO(k,v) spectra at high
frequencies~e.g., atv560 ps21 for k54.18 Å21). Notice-
able discrepancies between the WS predictions and the s

FIG. 2. Normalized binary term of the second memory funct
of the self dynamic structure factorFs(k,t). Simulation data~MD!,
Gaussian model~Gau! @4#, and Kinetic model~Kin! @8#.
01120
y

D

In
st
s

s
-

f
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lated data may also be observed in Fig. 3. This constr
with the results of Torciniet al. @12#, who found an excellent
agreement between theSs(k,v) results calculated from the
WS theory and their simulation data for liquid lithium at 47
K. This suggests thatFs(k,t) provides a more refined tes
thanSs(k,v) for theoretical models.

C. Second memory function

In order to understand why the Lovesey model sho
such singular behavior and the reasons for the rather p
results obtained using the WS theory, a more accurate an
sis based on the second memory function has been ca
out. The normalized memory functionsNs

LO(k,t), Ns
WS(k,t),

andNs
MD(k,t) are plotted in Fig. 4. The MD results are sim

lar to those obtained by Shimojo and co-workers for liqu
sodium@14#. So, for allk’s, Ns

MD(k,t) takes positive values
decreases faster ask is raised, and shows a maximum att
;0.12 ps fork<2.5 Å21. It should be emphasized that, fo
all wave numbers,Ns

WS(k,t) shows a better agreement wit
the MD data thanNs

LO(k,t). This is particularly true at shor
times whereNs

WS(k,t) fits Ns
MD(k,t) very well, in contrast to

the too slow and exponential decay ofNs
LO(k,t) which gives

rise to the oscillations inFs
LO(k,t) observed in Fig. 3. There

fore, the rather good agreement betweenFs
LO(k,t) and

FIG. 3. Self dynamic structure factor. Simulation results~MD!,
simple diffusion model ~SD! @2#, Lovesey model ~LO! @7#,
Wahnstro¨m and Sjo¨gren mode-coupling theory~WS! @8#, de Schep-
per and Ernst theory~dSE! @15#, and Nelkin-Ghatak model~NG!
@17#.
7-6
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Fs
MD(k,t) should be attributed to a cancellation of inaccu

cies and cannot be considered as the result of a rigo
theory that properly includes the specific details of the in
vidual atomic motion. Thus the WS theory seems more ‘‘
alistic,’’ particularly for small wave numbers. However, fo
large k’s and short times there are some discrepancies
tween the WS predictions and the MD results. This can
explained by bearing in mind that in the free particle lim

where Fs(k,t)5e2v0
2t2/2, Ns(k,t) presents a minimum lo

cated at very short times. For this reasonNs
MD(k,t) at k

54.18 Å21 exhibits a clear minimum at 0.04 ps. Howeve
Ns

WS(k,t), which has been calculated assuming the ‘‘Gau
ian’’ Ansatz NsB

Gau(k,t), does not show this minimum. It i
important to note that a minimum would appear~see Fig. 2!
if the ‘‘kinetic’’ approach NsB

Kin(k,t) were assumed for the
binary term, which indeed satisfies the free particle lim
However, in this case the minimum is too deep and
agreement with the MD results is still worse than usi
NsB

Gau(k,t).
In order to analyze more carefully the discrepancies

tweenNs
MD(k,t) andNs

WS(k,t) we have calculated

DNs~k,t !5
Ns

MD~k,t !2Ns
WS~k,t !

Ns
MD~k,0!

5
Ns

MD~k,t !2NsB
Gau~k,t !2NsMC~k,t !

Ns
MD~k,0!

. ~23!

FIG. 4. Normalized values of the second memory function
Fs(k,t). Simulation data~MD!, Lovesey model~LO! @7#, and
Wahnstro¨m and Sjo¨gren mode-coupling theory~WS! @8#.
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The resultingDNs(k,t) functions are shown in Fig. 5. Fo
the sake of comparison the normalized mode-coupling c
tributions NsMC(k,t)/Ns

MD(k,0) have also been plotted i
Fig. 5. For smallk’s NsMC(k,t) is very similar to the mode-
coupling term of the velocity autocorrelation first memo
function @20#. For all k’s NsMC(k,t) exhibits a three peak
structure with the peaks located at the same time positio
should be noted that the second peak ofNsMC(k,t) gives rise
to theNs

MD(k,t) maximum that may be observed in Fig. 4,
t;0.13 ps.

DNs(k,t) can be taken as the remaining term that sho
be included in the WS theory in order to obtain the ‘‘exac
MD result. However, as the time parametertG(k) of Eq.
~16! has been calculated approximately, an accurate tes
the WS theory can be made only if the ‘‘correct’’tG(k)
parameter is used. To this end the difference betw
Ns

MD(k,t) and NsMC(k,t) has been fitted to the Gaussia
functional form given by Eq.~16!. The tG(k) values ob-
tained from the fitting and those calculated from Eq.~17! are
compared in Table I. In Fig. 5 has also been plotted
differenceDNs

f it(k,t) calculated using the fittedtG(k) val-
ues to computeNsB

Gau(k,t). For small and intermediate wav
numbersDNs

f it(k,t) shows positive values that are of th
same order of magnitude as or even larger than those o
mode-coupling termNsMC(k,t). At large k’s DNs

f it(k,t)
shows a deep negative minimum at short times, which ag

f

FIG. 5. Solid line DNs(k,t)5@Ns
MD(k,t)

2Ns
WS(k,t)#/Ns

MD(k,0) using the fittedtG
f it(k) parameters~Table

I!; long dashed line, the same but with the theoreticaltG
theo(k) pa-

rameters~Table I!; dotted line, normalized mode-coupling term
NsMC(k,t)/Ns

MD(k,0).
7-7
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illustrates the inadequacy of the ‘‘Gaussian’’ approa
Moreover, at long timesDNs

f it(k,t) takes negative value
and it looks like the mirror image ofNsMC(k,t). This sug-
gests that the WS theory overemphasizes the mode cou
contribution at largek’s. The results of previous studies o
the velocity autocorrelation function@20,40# and the self
scattering function@13,14,21# suggested that the decompos
tion of the memory function into two independent terms
unrealistic. Our results support this idea, since the larg
DNs

f it(k,t) values correspond to the time interval for whic
NsB

Gau(k,t) comes close to zero~see Fig. 2! and NsMC(k,t)
starts to rise. It should be emphasized that the correc
terms that should be added to the WS results are of the s
order of magnitude as the mode-coupling contributions.

V. CONCLUSIONS

We have compared theFs(k,t) data calculated by MD
with the results obtained using the models and theories
simple diffusion @2#, Nelkin-Ghatak@17#, Lovesey @7#, de
Schepper and Ernst@15#, and Wahnstro¨m and Sjo¨gren @8#.
We have found how the predictions obtained using
Wahnstro¨m and Sjo¨gren theory and the Lovesey model sho
the best agreement with the simulation data at different w
numbers. However, there are noticeable discrepancies
tween the results from MD and those from these theoret

TABLE I. Theoretical and fitted time parameterstG(k).

k(Å 21) tG
theo(k) ~fs! tG

f it(k) ~fs!

0.185 31.40 35.50
1.28 28.42 30.45
2.56 22.81 23.28
4.18 17.04 18.42
on
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approaches.Fs
WS(k,t) decays too fast, specially at lowk,

whereasFs
LO(k,t) exhibits some nonrealistic oscillations

which are more marked at highk. A detailed analysis base
on calculation of theNs(k,t) memory functions suggests tha
the predictions of the Wahnstro¨m and Sjo¨gren theory are
more realistic than those of the Lovesey model.

Following the Wahnstro¨m and Sjo¨gren scheme,Ns
WS(k,t)

was computed as the sum of a binary and a mode-coup
term. Two differentAnsätze for the binary term have bee
compared with the binary term obtained from the simulatio
We found a good quantitative agreement between the res
obtained using the ‘‘Gaussian’’ approach and the ‘‘simu
tion’’ results for all wave numbers. However, at largek the
binary function calculated from the simulation exhibi
damped oscillations which are not reproduced by
‘‘Gaussian’’ approach. On the other hand, the ‘‘kinetic’’An-
satz, which satisfies the free particle limit condition, overe
timates the oscillatory behavior for intermediate and la
k’s.

Our findings suggest that an improvement of the W
theory would require the use of a more refined binary te
Moreover, the separation of the memory function into tw
independent parts corresponding to the binary and mo
coupling terms seems rather unrealistic. So a modified v
sion of the WS theory that incorporates a certain degree
interdependence between the binary and mode-coup
terms could significantly improve this theoretical approac
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