
Survival data analysis

Introduction to survival analysis
Survival analysis focuses on the analysis of the time to some event of interest, which is a
common question of interest in biomedical research. This event represents a change on the
status of the subject, that is, the subject acquires a trait that it did not have before. However,
the focus of survival analysis is not studying if subjects had experienced the event or not,
but the time from some fixed starting point to the occurrence of the event of interest. Some
examples of survival times are time to death or the time a battery takes to run out.

Thus, in survival analysis the dependent variable is a continuous variable, T , which identifies
the time to the occurence of the event of interest. This T is defined by two instants: the
initial instant and the final instant. The initial instant is defined by the moment in which the
individuals start being at risk of changing their status, whereas the final instant is defined
by the moment in which this change happens. For example, if we think about the general
mortality, the initial instant is birth and the final instant is death. Nevertheless, if we think
about lethality (deaths caused by a disease), the initial instant is the moment in which the
subject contracts the disease. Hence, it is not always easy to define initial or final instants.

Ideally, the initial instant should be the same for all subjects. This is possible in some cases,
like in the example about the lifetime of a battery. We can fully charge a sample of batteries
and turn them on all at once. Unfortunately, this is quite unusual in biomedical research
(ordinarily, different individuals start being at risk at different moments). When this is
not possible, we can at least choose an initial instant that is equivalent among all subjects.
Some examples are the date of birth, the date of diagnosis of a disease or the date of liver
transplantation in a group of transplanted patients. In these situations, the initial instant is
equivalent although the cronological moments are different, as illustrated in Figure 1.

The initial instant and the event of interest define the variable that we should analyse. In the
example about the liver transplantation, if the event of interest is death, our outcome variable
is survival time from transplantation. Here we only study those phenomena in which the
event of interest is unique and implies that the subject leaves the study. Hence, we exclude
the situations in which the event can occur more than once or there are two or more events
of interest.

The random variable T

We call T the outcome of interest, the time to event. This random variable presents some
particular features, which implies that we must use specific statistical methods to analyse
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Figure 1: Survival times of 10 individuals

it. We define t as the realization of the random variable T . Some properties of T are the
following:

• T is non-negative, that is, ti ≥ 0 for any individual i.
• T usually follows an asymmetric probability distribution model. Frequently, some

individuals present high values of T , which leads to a left-skewed probability distribution.
• Often, the event of interest is not observed in all subjects of the sample within the

follow-up time of the study, as illustrated in Figure 2.

Censoring
Censoring is a phenomenon related to incomplete information in which the value of an
observation is only partially known. The determination of the survival time is incomplete.
We distinguish between three types of censoring:

• Right censoring: the initial time is known and the subject is followed-up, but this
follow-up ends before the occurrence of the event of interest. Thus, we assume that the
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Figure 2: Design with the same initial instant and fixed follow-up period. The dashed line
indicates the time-point when the follow-up ends. Stars indicate the censored times

event will happen after the last follow-up (to the right of the observed time), so the
survival time is greater than the follow-up time.

• Left censoring: this happens when we know that the event of interest occurred prior
to a certain follow-up time, but the exact time of occurrence is unknown (the event
occurred before, or to the left, of the observed time).

• Interval censoring: the initial time is known but the follow-up of the subject has been
intermittent and the event of interest has occurred between two follow-ups. Hence,
interval censoring occurs when the event of interest is known to have occurred between
two time-points.

Here we only focus on right censoring since this is the most common situation we find in
biomedical research.

Non-informative censoring occurs when the cause of censoring is unrelated to the event
of interest. This condition must be satisfied in all the analysis techniques described in this
document.

Studies with right censoring can be classified in different types according to how we define
the follow-up period. If the initial instant is the same for all individuals and the study design
considers some fixed follow-up time C, the survival time for the censored observations must
be equal to this constant (see Figure 2). Other studies are designed such that the follow-up
time is enough for observing a pre-specified proportion of events. Figure 3 is an example of
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such study designs.

Figure 3: Study design that ends the follow-up when the 80% of the sample has experienced
the event. The dashed line indicates the time-point when the follow-up ends. Stars indicate
the censored times

The most common design in biomedical research consists of a recruitment period, in which the
individuals presenting the initial event (for example, the diagnosis of the disease of interest)
are included in the study, then the sample is followed-up during some pre-specified time
period, such that censoring times are random (see Figure 4).

In presence of right censoring, the information collected for each subject consists of two
variables, (yi, δi). yi represents the observed time for each individual i, whereas δi is the
event indicator. Thus, δi = 1 means that subject i has experienced the event, so in this case
the survival time equals the observed time (yi = ti). δi = 0 means that subject i has not
experienced the event (that is, it has been censored) so the observed time is lower than the
survival time (yi < ti).

Apart from the censored observations resulting from the study design, there are more situations
in which the survival time cannot be determined and also led to censored observations. These
observations are related to loss to follow up. These subjects can be lost to follow up for a
wide range of reasons: change of address, accidental death, death unrelated to the disease
under study, refusal to continue in the study, etc. Here we assume that any censoring caused
by a loss to follow-up is non-informative.
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Figure 4: Study design with a 80-day recruitment period and 30 days of follow-up. The
dashed line indicates the time-point when the follow-up ends. Stars indicate the censored
times

Functions related to survival data analysis
As we have seen before, our variable of interest is T , the time from some fixed starting
point to the occurrence of a given event. There are some functions related to T that help us
understand and interpret it.

• Probability distribution function, F (t):

F (t) = P (T ≤ t) ,

which is defined for any t ≥ 0. F (t) is the probability that a subject experiences the
event before t. When the event of interest is death, it is called cumulative mortality
function.

• Density function, f(t):

f (t) = δF (t)
δt

.

• Survival function, S(t):

S (t) = P (T > t) = 1 − P (T ≤ t) = 1 − F (t) .

S(t) is defined as the probability that an individual survives longer than t (where
surviving means not having experienced the event). Since it is a probability, its domain
is [0, 1] (the same domain than that of the probability distribution function). S(t)
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verifies S(0) = 1 (the probability of surviving to t = 0 is 1) and S (∞) = 0. In Figure 5
we can see that S(t) is a non-increasing function, that is, given two time-points t1 and
t2 such that t1 < t2, we have S (t2) ≤ S (t1).

Figure 5: Example of survival function

For example, let us assume that we have data about the times to death from a sample of
some population of interest. The initial time is birth and the event of interest is death. As
these are annual data, graphs will be stepped. In Figure 6 we can see the density function
f(t) of these data, which shows the change in the cumulative probability of dying for different
ages. Notice that the probability of dying during the first year of life is quite high, then it
becomes almost zero with a small increase during adolescence. Then we observe a minor
increase in this probability, which grows higher from age 50. The probability of dying shows
a maximum at age 85 and falls thereafter. If we accumulate this function we obtain F (t)
(Figure 7) and its complementary is the survival function S(t) (Figure 8).

• Hazard function, h(t): It is defined as the hazard of presenting the event of interest at
time t, given that the event has not occurred before t. It quantifies the instantaneous
hazard of event taking into account the number of deaths in a certain time interval
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Figure 6: Example of density function

as well as the number of subjects at risk of experiencing the event at the beginning
of that interval (notice that subjects that had already experienced the event cannot
experience it again). For example, if survival decreases a 5% in one year, we have
S (t) − S (t + 1) = 0.05. If at the beginning of this interval survival is high, the
instantaneous risk will be low, whereas this risk will be high if only a small fraction
of the individuals has not experienced the event at the beginning of the interval. The
hazard function is defined as follows:

h (t) = lim
∆t→0

P (T ≤ t + ∆t|T ≥ t)
∆t

= f (t)
S (t) .

Notice that h(t) can be expressed as the ratio between the density function and the
survival function. The hazard function is not a probability, but an infinitessimal
indicating the intensity of mortality, so it can take values between 0 and ∞. In Figure
9 we show h(t) for the data in the previous example.

If h(t) is constant, for any t, a fixed percentage of individuals that had not dead at time t
will experience the event in the following instant. This is an usual situation in the industrial

7



Figure 7: Example of distribution function

context but not very common in biomedical research. For example, in patients diagnosed
with leukemia the starting value of h(t) tends to lightly increase just after the diagnosis, and
then it increases rapidly since the greater the survival time, the worst the prognosis and the
higher the probability of dying in the following instant. Other survival problems present the
opposite situation, where h(t) is high at first, but as individuals survive in time, their hazard
of death tends to decrease. An example of these situations is the survival of post-surgical
patients, in which the risk of post-surgical complications decreases over time.

• Cumulative hazard function, H(t): It is obtained from the integration of h(t) (Figure
10).

This function is related to the survival function because it can be shown that

H (t) = −ln (S (t)) ,

and so
S (t) = e−H(t).
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Figure 8: Example of survival function

Goals of survival analysis
Since T is a continuous variable, we could use the standard regression techniques to describe
or model T and estimate its expected value, when the event of interest is supposed to happen.
However, T is usually right-censored, which makes standard methods inappropriate. Moreover,
in survival analysis the interest lies in estimating the probability of survival for different
values of t or the instantaneous hazard, since they allow us to model the mechanism that
leads to the occurrence of the event of interest. For all these reasons, the main goal of survival
analysis is to describe and interpret the survival function S(t) and/or its corresponding
hazard function h(t). A secondary objective is to compare survival functions among two or
more different populations or groups.
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Figure 9: Example of hazard function

Estimation of the survival function
We consider two ways of estimating S(t) under the assumption that all subjects in the sample
follow the same survival function:

• Parametric method: we assume that T follows some probability distribution model,
such as exponential or Weibull model. Then we estimate S(t) by simply estimating the
parameters of the distribution model. If the model is correct, this kind of estimations
will be more precise that the ones obtained with the non-parametric method.

• Non-parametric method: we do not assume any parametric probability distribution
model for T . We make an empirical estimation of the survival function, which is known
as the Kaplan-Meier survival curve. These estimations are less precise than the
ones obtained with parametric models, but the main advantage of this approach is that
we do not have to assume any parametric model when it is unknown. It is one of the
most widely used methods in survival analysis.
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Figure 10: Example of cumulative hazard function

The Kaplan-Meier method: estimation of S(t) with right-censored
data
Let’s illustrate the Kaplan-Meier method with an example. Suppose that a research group
sampled 200 patients from the population of interest to participate in a study to investigate
the time to the development of a certain complication after a new treament. This study was
carried out in two hospitals, A and B. Each hospital recruited 100 patients and followed
them from the administration of the treatment. Hospital A followed the patients for a year,
whereas hospital B did so for two years.

After a year from the beginning of the study, 25 patients from hospital A and 20 from hospital
B had experienced the complication. Two patients out of the remaining 80 patients from
hospital B experienced the complication in the second year of follow-up. These data are
described in Table 1:
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Hospital A Hospital B
Follow-up year # individuals at risk # events # individuals at risk # events

1 100 25 100 20
2 75 ?? 80 2

Table 1: Example: estimation of S(t) with censored data

Since the number of subjects that presented the complication during the second year is
unknown, we cannot calculate the probability of surviving (not experiencing the event) after
2 years using the data from both hospitals. Some alternative approaches to compute this
probability are the following:

• Exclude the information from hospital A since this is incomplete:

S (1) = 100 − 20
100 = 0.8,

S (2) = 100 − 22
100 = 0.78.

Notice that with this approach we are excluding relevant (althought incomplete) infor-
mation from hospital A.

• Use all the complete information available: use data from both hospitals to estimate
1-year survival and use data from hospital B to estimate 2-year survival:

S (1) = 200 − (20 + 25)
200 = 0.775,

S (2) = 100 − 22
100 = 0.78.

It seems to be a good way of using all the available information, but it can lead to
inconsistent results, like in this example, in which S(1) < S(2).

• Estimate survival separately for each period (year) and then combine these estimations:

S (1) = 200 − (20 + 25)
200 = 0.775,

S (2|T > 1) = 78
80 = 0.975.

Notice that the probability of surviving to the second year (in hospital B) has been
conditioned to having survived to the first year. Thus, the probability of surviving (not
experiencing the complication) through all the 2-year period is:

S (2) = S (2|t > 1) · S (1) = 0.78 · 0.975 = 0.756.

With this approach we obtain an estimate that is consistent with S(1) = 0.78 and we
have used all the information, whether censored or not, we had available. This method
allows us to calculate the cumulative probability of surviving in a period (divided into
intervals) by multiplying the conditionate probabilities corresponding to each interval
(for this reason, this method is called product limit estimator).
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The application of this method to pre-specified intervals is known as life table estimation,
whereas if we use the times observed in the sample instead of time intervals, this method is
called Kaplan-Meier estimation.

Comparing survival curves
Now we can consider the problem of comparing survival curves among groups. The logrank
test is one of the most widely used tests for comparing survival curves. This test can only
be applied if the following conditions are satisfied:

• The observations of the groups we want to compare are independent.
• Censoring pattern is similar in all groups.
• The hazards of event are proportional among groups (in particular, the survival curves

do not cross).

The last condition means that, for any t, the hazard of the population A is equal to that of
the population B multiplied by a constant θ:

hA (t) = θ · hB (t)

The parameter θ is known as hazard ratio. This last assumption is called proportional
hazards assumption. In terms of survival:

SA (t) = SB (t)θ .

Thus, comparing survival curves is equivalent to the following hypothesis test:

H0 : θ = 1
HA : θ ̸= 1

Cox models
The logrank test allows us to compare survival curves among the (two or more) groups
defined by a qualitative variable. However, sometimes our aim is to analyze the effect of a
quantitative variable in survival times, or to analyze the effect of several variables in the
survival curve. This can be achieved by using Cox models, which are a useful tool to identify
risk or prognostic factors. Examples of research questions that can be addressed with Cox
models are:

• What is the effect of ethnicity, gender and socio-economic status on the risk of developing
a certain disease?

• In patients with cancer, is the risk of relapse higher/lower for older patients? Can we
quantify this increase/decrease in risk?

• Can we compare the risk of death for different types of patients?
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Cox models are also known as proportional hazard models.

Let h(t) be the hazard function. It represents the hazard of experiencing the event of interest
(e.g, hazard of death) at time t. A Cox model has the form:

h (t|Z1, Z2, . . . , Zp) = h0 (t) · exp (β1Z1 + β2Z2 + · · · + βpZp) ,

where Z1, . . . , Zp are the variables of interest (patient characteristics or covariates; e.g, age,
sex, treatment, cholesterol levels), h0(t) is the baseline hazard function and β1, . . . , βp are
the regression coefficients of each variable. Notice that h0(t) is the hazard function of an
individual with Z1 = · · · = Zp = 0.

The estimates of the parameters of the model, β̂1, . . . , β̂p indicate the magnitude of the effects
of their corresponding variables. Thus, if β̂i > 0, the risk of the event occurring increases. If
β̂i < 0, then the risk of the event occurring decreases. Finally, if β̂i = 0, the risk of the event
occurring remains the same. For i = 1, . . . , p, the p-values associated with those estimates
correspond to the following test {

H0: βi = 0
H1: βi ̸= 0

and they indicate the if the ith variable has a statistically significant effect on survival or the
hazard of event.

The hazard ratio (HR) corresponding to the ith variable is estimated as exp(β̂i) = eβ̂i . For
quantitative variables, it indicates the change in the risk of the event occurring for each unit
increase in the variable. For qualitative variables, it quantifies the change in the risk of the
event occurring with respect to the reference category. More generally, we can also calculate
the hazard ratio of two individuals with different variables. Notice that hazard ratios greater
than 1 indicate that the risk of the event occurring increases, whereas hazard ratios lower
than 1 indicate that the risk of the event occurring decreases. When the hazard ratio is equal
to 1, the risk of the event occurring remains the same.

Cox models assume that the proportional hazards assumption is met for each Zi (that is, the
hazards of event are proportional among groups).

Survival analysis with R

Data management
The R package survival contains functions to perform survival analysis.
library(survival)

The example dataset we use, aml, is included in the survival package. This dataset contains
the survival times from 23 patients with acute myelogenous leukemia (AML). The main goal
of the study was investigate whether the standard course of chemotherapy should be extended
for additional cycles.
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data(aml)
head(aml)

time status x
1 9 1 Maintained
2 13 1 Maintained
3 13 0 Maintained
4 18 1 Maintained
5 23 1 Maintained
6 28 0 Maintained

The dataset contains 3 variables:

• time: time to death of last follow-up, in months (survival or censoring time)

• status: censoring status (1=death–the event of interest has occurred, 0=alive–the event
of interest has not occurred, the patient has been censored)

• x: maintenance chemotherapy given? (Nonmaintained=standard course of chemother-
apy, Maintained=additional cycles of chemotherapy)

In survival analysis, we usually create a Surv object. It indicates if survival times are observed
or censored (+):
t <- Surv(aml$time, aml$status)
t

[1] 9 13 13+ 18 23 28+ 31 34 45+ 48 161+ 5 5 8 8
[16] 12 16+ 23 27 30 33 43 45
class(t)

[1] "Surv"

Kaplan-Meier estimator
Here we will see how to estimate and plot survival curves. The Kaplan-Meier estimation for
the entire sample is calculated using the following code:
km.fit <- survfit(t~1, data=aml)
summary(km.fit)

Call: survfit(formula = t ~ 1, data = aml)

time n.risk n.event survival std.err lower 95% CI upper 95% CI
5 23 2 0.9130 0.0588 0.8049 1.000
8 21 2 0.8261 0.0790 0.6848 0.996
9 19 1 0.7826 0.0860 0.6310 0.971

12 18 1 0.7391 0.0916 0.5798 0.942
13 17 1 0.6957 0.0959 0.5309 0.912
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18 14 1 0.6460 0.1011 0.4753 0.878
23 13 2 0.5466 0.1073 0.3721 0.803
27 11 1 0.4969 0.1084 0.3240 0.762
30 9 1 0.4417 0.1095 0.2717 0.718
31 8 1 0.3865 0.1089 0.2225 0.671
33 7 1 0.3313 0.1064 0.1765 0.622
34 6 1 0.2761 0.1020 0.1338 0.569
43 5 1 0.2208 0.0954 0.0947 0.515
45 4 1 0.1656 0.0860 0.0598 0.458
48 2 1 0.0828 0.0727 0.0148 0.462

The output generated consists of a table containing the following columns:

• time: event times in our sample (notice that this output excludes censored times)
• n.risk: number of subjects at risk immediately before time
• n.event: number of events occurred at time
• survival: Kaplan-Meier estimate of the survival curve at time – probability of surviving

until time
• std.err: Standard error of survival
• lower 95% CI and upper 95% CI: 95% confidence interval for survival

If we want to estimate the survival function separately for two or more groups, we just have
to change the 1 in the formula for the grouping variable:
km.fit.x <- survfit(t~x, data=aml)
summary(km.fit.x)

Call: survfit(formula = t ~ x, data = aml)

x=Maintained
time n.risk n.event survival std.err lower 95% CI upper 95% CI

9 11 1 0.909 0.0867 0.7541 1.000
13 10 1 0.818 0.1163 0.6192 1.000
18 8 1 0.716 0.1397 0.4884 1.000
23 7 1 0.614 0.1526 0.3769 0.999
31 5 1 0.491 0.1642 0.2549 0.946
34 4 1 0.368 0.1627 0.1549 0.875
48 2 1 0.184 0.1535 0.0359 0.944

x=Nonmaintained
time n.risk n.event survival std.err lower 95% CI upper 95% CI

5 12 2 0.8333 0.1076 0.6470 1.000
8 10 2 0.6667 0.1361 0.4468 0.995

12 8 1 0.5833 0.1423 0.3616 0.941
23 6 1 0.4861 0.1481 0.2675 0.883
27 5 1 0.3889 0.1470 0.1854 0.816
30 4 1 0.2917 0.1387 0.1148 0.741
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33 3 1 0.1944 0.1219 0.0569 0.664
43 2 1 0.0972 0.0919 0.0153 0.620
45 1 1 0.0000 NaN NA NA

This allows us to describe the survival experience of each group. See Table 2 for conclusions
about the 12-month survival.

Maintained Nonmaintained
# deaths at t = 12 0 1

# deaths until t = 12 1 5
S(12) 0.909 0.583

Table 2: Some results about the 12-month survival in the AML data

We can also plot the survival curves:
# entire sample: curve + confidence interval
plot(km.fit, mark.time=TRUE)
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# mark.time=TRUE adds marks in censored times

# remove confidence interval and enhance the plot
plot(km.fit, mark.time=TRUE, conf.int=FALSE, xlab="Time (months)",

ylab="Survival", xlim=c(0, 200), lwd=3)
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# according to x
plot(km.fit.x, mark.time=TRUE, lty=1:2, xlab="Time (months)",

ylab="Survival", xlim=c(0, 200), lwd=3)
legend("topright", levels(aml$x), lty=1:2)
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From the survival curves we can also calculate some quantiles (such as the median or the
first or third quantile). The median survival time is defined as t such that S(t) = 0.5. Let us
see how we can calculate the median from the Kaplan-Meier estimate: we draw a straight
line in S(t) = 0.5 and look for the t in which this straight line crosses the survival curve. Let
us do it for the Nonmaintained group:
plot(km.fit.x, mark.time=TRUE, lty=1:2, xlab="Time (months)",

ylab="Survival", xlim=c(0, 200), lwd=3)
legend("topright", levels(aml$x), lty=1:2)
lines(c(0,23), c(0.5, 0.5), lty=4, col=2, lwd=2)
lines(c(23, 23), c(0.5, -1), lty=4, col=2, lwd=2)
axis(1, 23, col=2)
axis(2, 0.5, col=2)
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Thus, the median survival time is 23 months. If we look at the table we generated previously,
we see that 23 is the first value such that survival is lower than 0.5. The quantile function
applied to a Surv object gives us (by default) the median, the first and the third quantiles.
quantile(km.fit.x)

$quantile
25 50 75

x=Maintained 18 31 48
x=Nonmaintained 8 23 33

$lower
25 50 75

x=Maintained 13 18 34
x=Nonmaintained 5 8 27

$upper
25 50 75

x=Maintained NA NA NA
x=Nonmaintained 30 NA NA

This function also gives us the 95% confidence intervals of these measures ($lower and
$upper). NA values indicate that either the survival curve or its corresponding 95% confidence
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interval do not fall to the desired quantile.

Comparing survival curves
To compare the survival curves among groups, we can use the logrank test. For example, if
our research question is whether maintenance treatment changes the survival of patients, the
logrank test can be applied with the function survdiff:
survdiff(t~x, data=aml) # logrank test

Call:
survdiff(formula = t ~ x, data = aml)

N Observed Expected (O-E)^2/E (O-E)^2/V
x=Maintained 11 7 10.69 1.27 3.4
x=Nonmaintained 12 11 7.31 1.86 3.4

Chisq= 3.4 on 1 degrees of freedom, p= 0.07

We obtain p = 0.07. If we set the type I error α to 5%, we do not reject the null hypothesis,
so we cannot conclude that survival is different between the patients treated with standard
course of chemotherapy and those treated with additional cycles.

Cox models
The R package boot contains the dataset melanoma, which consists of measurements made on
patients with malignant melanoma. Each patient had their tumour removed by surgery, which
consisted of complete removal of the tumour together with about 2.5cm of the surrounding
skin. Among the measurements taken were the thickness of the tumour and whether it was
ulcerated or not. These are thought to be important prognostic variables in this context.
library(boot)
data("melanoma")

This dataset contains the following variables:

• time: time in days since the surgery.

• status: The patients’ status at the end of the study. 1 indicates that they had died
from melanoma, 2 indicates that they were still alive and 3 indicates that they had
died from causes unrelated to their melanoma. Since the event of interest is death from
melanoma, status 2 and 3 indicate censored observations.

• sex: patient sex, 1=male, 0=female.

• age: age of the patient in years at the time of surgery.

• year: year of operation.

• thickness: tumor thickness in mm.
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• ulcer: indicator of ulceration of the tumor; 1=present, 0=absent.

First, we need to create a column containing a censoring status indicator:
melanoma$status_cens <- ifelse(melanoma$status==1, 1, 0)
# 1: dead from melanoma, 0: censored

Then, we fit a Cox model to explore if the age of the patients is associated with the survival
time:
cox1 <- coxph(Surv(time, status_cens) ~ age, data=melanoma)
summary(cox1)

Call:
coxph(formula = Surv(time, status_cens) ~ age, data = melanoma)

n= 205, number of events= 57

coef exp(coef) se(coef) z Pr(>|z|)
age 0.019220 1.019406 0.008769 2.192 0.0284 *
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

exp(coef) exp(-coef) lower .95 upper .95
age 1.019 0.981 1.002 1.037

Concordance= 0.572 (se = 0.042 )
Likelihood ratio test= 5 on 1 df, p=0.03
Wald test = 4.8 on 1 df, p=0.03
Score (logrank) test = 4.83 on 1 df, p=0.03

The variable age has an associated p-value of 0.028. Thus, we can conclude that age has a
significant effect in the time to death. The HR associated to age is 1.019, with 95% confidence
interval from 1.002 to 1.037. This indicates that the risk of death from melanoma increases
when age increases. In fact, the risk of death increases in a 1.9% for each 1-year increase in
the age of the patient.

To extract the parameter estimates of the model, the hazard ratios and their confidence
intervals, we can use the following commands:
summary(cox1)$coefficients

coef exp(coef) se(coef) z Pr(>|z|)
age 0.01922016 1.019406 0.00876905 2.191818 0.02839263
summary(cox1)$conf.int

exp(coef) exp(-coef) lower .95 upper .95
age 1.019406 0.9809634 1.002035 1.037078
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We can also study if an ulcerated tumor conferes poor vital prognosis. First, we need to
encode the variable ulcer as a factor.
melanoma$ulcer <- factor(melanoma$ulcer,

labels=c("Ulceration absent",
"Ulceration present"))

cox2 <- coxph(Surv(time, status_cens) ~ ulcer, data=melanoma)
summary(cox2)

Call:
coxph(formula = Surv(time, status_cens) ~ ulcer, data = melanoma)

n= 205, number of events= 57

coef exp(coef) se(coef) z Pr(>|z|)
ulcerUlceration present 1.4717 4.3567 0.2954 4.982 6.29e-07 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

exp(coef) exp(-coef) lower .95 upper .95
ulcerUlceration present 4.357 0.2295 2.442 7.773

Concordance= 0.689 (se = 0.029 )
Likelihood ratio test= 28.44 on 1 df, p=1e-07
Wald test = 24.82 on 1 df, p=6e-07
Score (logrank) test = 29.56 on 1 df, p=5e-08

The results indicate that the risk of death from melanoma is 4.4 times higher in patients with
ulcerated tumors compared to those with no ulceration of the tumor.

If we want to assess the effect of both the age and the ulceration of the tumor in the time to
death, we can adjust a multivariate Cox model:
cox3 <- coxph(Surv(time, status_cens) ~ age+ulcer, data=melanoma)
summary(cox3)

Call:
coxph(formula = Surv(time, status_cens) ~ age + ulcer, data = melanoma)

n= 205, number of events= 57

coef exp(coef) se(coef) z Pr(>|z|)
age 0.015315 1.015432 0.008508 1.800 0.0719 .
ulcerUlceration present 1.436067 4.204128 0.296439 4.844 1.27e-06 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
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exp(coef) exp(-coef) lower .95 upper .95
age 1.015 0.9848 0.9986 1.033
ulcerUlceration present 4.204 0.2379 2.3515 7.516

Concordance= 0.712 (se = 0.034 )
Likelihood ratio test= 31.79 on 2 df, p=1e-07
Wald test = 28.15 on 2 df, p=8e-07
Score (logrank) test = 32.95 on 2 df, p=7e-08

Here, we are adjusting the following model:

h(t|age, ulceration) = h0(t) (0.015 · age + 1.436 · {ulceration=present})

Then, the risk of death from melanoma between a 25-year-old patient with no ulceration and
a 60-year-old patient with an ulcerated tumor can be compared using the hazard ratio:

HR = h(t|age=25, ulceration=absent)
h(t|age=60, ulceration=present)

= h0(t) (0.015 · 25 + 1.436 · 0)
h0(t) (0.015 · 60 + 1.436 · 1)

= 0.161.

The proportional hazards assumption can be tested with the function cox.zph():
cox.zph(cox3)

chisq df p
age 1.42 1 0.234
ulcer 3.62 1 0.057
GLOBAL 5.29 2 0.071

In this test, the null hypothesis of proportionality of hazards for each variable in the model is
tested against the alternative hypothesis of non-proportionality of hazards. In our model, all
p-values indicate that the null hypothesis is not rejected. Thus, we conclude that our model
meets the proportional hazards assumption.

Sample size
Computing the sample size in a survival analysis can be complicated because the number of
factors to account for as the lost of follow-up or drop outs that will be in the sample.

Furthermore, commonly there are two different periods in a study:

• the enrollment period. Subjects are entering in the study sequentially.
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• the follow-up period. No more subjects enter in the study and recruited subjects are
follow up to the end of the study.

Most of the approaches to compute sample size in survival analysis need to specify the times
of the enrollment and follow-up period.

It is also assumed that every subject is randomly assigned to one of the treatment groups.

Here, we will use the function nSurvival(lambda1,lambda2,Ts,Tr,beta) from gsDesign package.
The arguments are:

• lambda1 and lambda2. Event hazard rate for placebo (or baseline) and treatment group
respectively.

• Ts. Maximum study duration.

• Tr. Enrollment period duration.

• beta. The opposite of the power

Let us suppose that we want to detect as significant a hazard ratio of 2 with a power of 80%.
The length of the study is 3 years with an enrollment period of 1 year.
library(gsDesign)
ss <- nSurvival(lambda1 = 2, lambda2 = 1, Ts = 3, Tr = 1, beta=0.2)
ss$n

[1] 67.55026

The sample size necessary is 68 subjects.
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