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Integrated random processes exhibiting long tails, finite moments, and power-law spectra
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A dynamical model based on a continuous addition of colored shot noises is presented. The resulting process
is colored and non-Gaussian. A general expression for the characteristic function of the process is obtained,
which, after a scaling assumption, takes on a form that is the basis of the results derived in the rest of the paper.
One of these is an expansion for the cumulants, which are all finite, subject to mild conditions on the functions
defining the process. This is in contrast with thesy eistribution—which can be obtained from our model in
certain limits—which has no finite moments. The evaluation of the spectral density and the form of the
probability density function in the tails of the distribution shows that the model exhibits a power-law spectrum
and long tails in a natural way. A careful analysis of the characteristic function shows that it may be separated
into a part representing a g process together with another part representing the deviation of our model from
the Levy process. This allows our process to be viewed as a generalization of Wieptacess that has finite
moments.

DOI: 10.1103/PhysRevE.64.011110 PACS nunier05.40—a, 89.90+n, 87.23.Ge

[. INTRODUCTION scribed above—which frequently imply that the cumulants of
the distribution are not defined. In this way théeviyedistri-

The nature of the probability distribution of stock market bution enters many areas of the subjg8t For example,
prices has been discussed quantitatively for over a centuryévy statistics completely characterize the properties of the
[1]. An early conjecture that the distribution was Gaussiarspectral lines of single molecules embedded in a gla§s
was found not to be a good fit, largely because of the lond-rom this it is possible to deduce various low temperature
tails found in financial dat§2]. A later suggestion that the properties of the glass. g statistics appear in several areas
Lévy distribution was a better fit seemed more promising,in the field of quantum optics. In subrecoil laser cooling
since this distribution does at least have long f@ls On the  neutral atoms and ions are cooled to ultralow temperatures,
other hand, this distribution has no finite moments, which isso that their momentum distributions are as narrow as pos-
a severe limitation. The solution of truncating the distribu-sible. These may be analyzed using models based oy Le
tion in order to obtain finite moments is rathed hocand  statistics [10,11. Other applications in this field are to
artificial [4]. Moreover, the Ley distribution has “too fat anomalous diffusion seen in optical lattidd<], the anoma-
tails"—as opposed to the “too thin tails” of the lous dynamics of a single ion in an optical latticEs], and
Gaussian—to give a good fit to ddtal. the use of Ley statistics to optimize subrecoil Raman cool-

This paper explores in more detail a model previouslying [14]. Many experimental investigations focus on anoma-
introduced[6] in order to resolve these difficulties and gives lous diffusion, as in an early study of diffusion in a system of
a more complete explanation of the appearance of nommicelles[15]. However, anomalous diffusion is also seen in
Gaussian and self-similar fat tails in the probability distribu-numerous studies of dynamical systefi§—18. These ex-
tion [5], while still keeping the important feature that all amples illustrate the ubiquity of broad distributions in phys-
moments are finite. The model has thevi@istribution as a ics. We hope that the ideas presented in this paper, as regards
limiting form and has the form of a type of “Edgeworth both the nature of the distribution we derive and the physical
expansion” for the Ley distribution. We will give the ex- mechanism generating it, will have applications to some of
plicit form of this relationship later in the papéthe Edge- the phenomena involving broad distributions that we have
worth series is an expansion procedure that gives correctionaentioned above or to the many others that we did not dis-
to the Gaussian distribution in those cases where the centraliss.
limit theorem applieg7]). The paper is organized as follows. In Sec. Il we present

While the motivation for the model was the explanationthe main results of the paper for clarity, since many details
of stock market data, in this paper we want to stress the morare quite technical. In Sec. Ill we describe our integrated
general aspects of the model, which we expect will haveprocess in detail. In Sec. IV we impose the self-scaling prop-
applications in other areas including physics. In the last fewerty on the probability distribution and obtain several rel-
years broad distributions have been found in many areas @vant functions. Section V is devoted to moments and cumu-
physics. By broad, we mean that they have fat tails—as ddants and the evaluation of the power spectrum. In Sec. VI

we study the asymptotic behavior of the distribution while in
Sec. VIl we present, starting from our distribution, an
*Corresponding author. Email address: jaume@ffn.ub.es Edgeworth-type series for the g distribution. Conclusions
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are drawn in Sec. VIIl and some more technical details are iase, L&y processes are continuous superpositions of fami-
the Appendices. lies of white Poissonian shot noises.

Contrary to Ley processes, our integrated process can

II. MAIN RESULTS have finite moments of any order; thus cumulants are given

In this section we wish to state the main results of theby
paper without giving the derivations or being careful to state i~—"h(M(0) = p"(X)
the range of validity for which they hold. We hope that this ((X”(t)))zT(bt)“’“f ——dx
will give a good indication of the scope and nature of our o X
results; the interested reader can then fill out this basicEn:LZ3 _..). Note that the second cumulafite., the

framework by proceeding to later sections. variance, is proportional to bt)2@ and X(t) presents
Anomalous diffusion behavi¢see Sec. V for a detailed dis-
Tussion on limiting values and bounds for the exponent
and other parameters related to the asymptotic behavior of
o the pulse shape functio#(x)].

2 Au)dp(t—T(u);u) |du. We define the stationary correlation function B(7)

k=1 =lim,_,.(X(t+ 7)X(t)). For our process this reads

parametrized by. It takes the form

X(t)= J:

There are several assumptiofig. The pulse shape function "
¢(t,u) is causal, i.e.,(t,u)=0 for t<O0. (ii) The jump C(T)zbJ
amplitudes and jump time#,(u) and Ty(u), are indepen- 0
dent and identically distributed random variables with prob- . .
ability density functions given bli(x,u) andy(t,u), respec- 'II:'he power speciral density Qf the proce(f(sh)_, given by the
tively, i.e., h(x,u)dx=Profx<A(u)<x+dx}, and ourier transform of the stationary correlation, is
P(t,u)dt=Proqt<T,(u)<t+dt}. (iii) The jump times are

assumed to follow a Poisson process with parametern). Clw)=
(iv) Functions¢(t,u) andh(x,u) satisfy the scaling forms

dz (=
ZMJO $(bz ') p(bz (1 +7)dt’.

K

L
w1+2/a

and X(t) possesses a power-law spectrum with exponent
, =1+2/a.

We can also perform the asymptotic analysis of the prob-
whereo(u) is the standard deviation of the jump amplitudes.ability distribution of X(t) without having to specify any
The model is thus specified by the four functions of a singleparticular form forh(x) and ¢(x), thus keeping the maxi-
variable ¢, h, o, and\. (v) The characteristic functio(CF) mum level of generality. Specifically, we show in S,ec. VI
E)(w,t)=<ex;iiwx(t)]>, which is the Fourier transform of the that _the_center of the distribution is approached by aylLe
densityp(x,t), obeys the self-scaling property distribution

X
o(u)

o(t,u)=p(\(u)t) and h(x,u)=ih(

a(u)

L(t)wf?, s 0

Plw,t)=f(wt¥), p(w,t)~e"
where (&) is any non-negative definite function such thatWhere 0<6<2. We refer the reader to Sec. VI for more
f(0)=1 [19]. One of the main goals of this paper is to find details and for the behavior of the tails of the distribution,

the probability distribution of the proce¥qt). By assuming Which is mainly determined by the behavior of the jump
the scaling forms given above the one-time distribution ofProbability density functionPDF) h(x).

X(t) is explicitly given by the CF The_ relation to the [ey distribution is explored in more
detail in Sec. VII, where we present an alternatfged ex-
g * dz act) expression for the CF which decomposes the distribution
p(w,t)zexp{ —btw“f T of the integrated proces§(t) into that of Levy plus an ad-
0z ditional term:
1 btw“s _ _ 1 (» _
X 1—f h(2¢( - ))dSH’ INp(w,t)=In pLé,y(w,t)——f [h(bt/x]Y*w)
0 z aJo
whereb>0. When ¢(x) = 6(x) is the Heaviside step func- - Vet * P’ (X)
tion then the input shot noises are white a¢(d) is the Lavy —h([bt/x]" w¢(x))]dx+ o X600

process
X [1=h((bt/x]Y*w¢(x))]dx.

5(w,t):e—Mtwa’
_ Note that wheng(x) is the rectangular step function this
whereM =b[5dz1—h(z)]/z***. This provides us with an equation reduces to the \n distribution. Therefore, when

alternative interpretation of the kg process since, in our ¢(x) is a steplike function close to the Heaviside function,
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this alternative expression can be used as the starting point of
an Edgeworth-type expansion procedure giving corrections INPy(w,t;u)=—\(u)
to the Levy distribution.

t~
t—f h(wa(u)(b(t',u))dt’}
0
(6)
ll. THE INTEGRATED PROCESS and (supposing that,>t,)

Let X(t) be a random process formed by a continuous _
superposition of independent shot-noise processes Inpy(wy,ts;wp,t2;u)=—A(U)

t
to— fo h(wio(u) (t',u)

X(t)=fme(u,t)du, 1 +wyo(u)(t' +t—ty,u))dt’

- ty—t
. | —fz LF‘(wsz(U)¢(t'1U))dt'},
where, for any fixed timé, Y(u,t) are independent random 0
variables for different values of the parameatdsee Eq(10) @
below] and for any fixed value ofi, Y(u,t) is a colored

shot-noise process represented by a countable superpositimereﬁ(w) is the Fourier transform of the jump PO®X).
of pulses of identical shape, Let us now evaluate the probability distribution of the
" integrated processX(t). In terms of the cumulants
Y(t,u))) of the shot noisé&/'(t,u) we see that the one-time
YuH=3 AW ¢ Tyw;u), @ {Ytwp (tw

characteristic function oK(t) can be written as
k
The pulse shapé(t,u) has to fulfill the “causality condi-
tion,” i.e., ¢(t,u)=0 for t<0 [20]. ~ (iw)X o
We assume that the occurrence of jumps is a Poissom px(w,t)=k21 | ] Y ULt Y )
process, in this case the shot no¥g,u) is Markovian, and
the PDF for the time interval between jumpg(t,u)dt Xdug---dug. 9
=Proqt<T,(u) —T,_,(u)<t+dt}, is exponential:

ficY(u,t)du

its amplitude. BothT,(u) and A (u) are independent and k!
identically distributed random variables with probability
density functions given bt(a,u) and (t,u), respectively. That is,

where T, (u) marks the onset of thkth pulse, andA,(u) is ~ o (iw)k
() p () px(w,t):exp{ ) < <

But by our assumptions on the proce&al,t) we have

P(t,u)=\(ue M (t=0), (3
((Y(ug,t) - Y(ug, b))
where\ (u) is the mean jump frequencyge., 1/\(u) is the _//vk Y. _
mean time between two consecutive junig8§]. We recall (YA (Ug = Up) -+ (U1~ ).
that jump amplitudesA,(u) are identically distributedfor (10

all k=1,2,3...) andindependent random variablésr all

k andu). In what follows we will assume that they have zero
mean and a PDM(x,u)dx=Progx<A,(u)<x+dx} de- = () (=

pending on a single “dimensional” parameter which, with- INpy(w,t)= >, f ((Y*(u,t)))du,
out loss of generality, we assume to be the standard deviation k=1 k)

of jumpso(u)= \/<Ak2(u)>. That is,

Therefore,

that is,

1 X %
h(x,u)=mh(m)- (4) |n5x(w,t)=J7wInTJY(w,t;u)du. (11

Before proceeding further with the probability distribution
of the integrated proces§(t) given by Eq.(1), we note that
following Rice’s method 20] one can easily obtain all the
probability distributions of the shot noisé(t,u) via their

CF'S InBX(wlltl; CEE ;wn vtn)
> (5) Going back to our integrated process we have from Egs.
(6),(7) and(11),(12) that the one-time characteristic function
In Appendix A we show that of X(t) reads

Note that this line of reasoning can be easily extended to the
nth-time distribution, with the result

n

_ =f INPy(wi,ty; ... oy ty;u)du. (12
Py(wg,ty; ... ;wn,tn;u)=<ex;{i > oYt ,u) -
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o where the prime orr denotes the derivative. We now im-
mdU)\(U) pose the self-scaling property on the CF, that is, we assume

thatp(w,t) is a function of the single variablet,

Inﬁ(w,t)=—f

t~
X t—foh(wa(u)d)(t',u))dt' . (13

Plw,t)=f(wt?), (18)

while the two-time CF istp>t,) where the arbitrary functiofi(¢) has to be a characteristic

function, i.e.,f(&) is a non-negative definite function such

that f(0)=1 [19]. Note that Eq(18) implies that the shape

of p(x,t) is invariant under transformations in whiat~

remains constant. We will see later on that an important con-

X[Jtldt’[ﬁ(wlcr(u)gb(t’,u) sequence of this is that all moments have the property
0

lnB(wlntl;wz,tz):f dui(u)

<xn(t)>octn/a'
On the other hand, we note that in EG7) the quantities

T wyo(U)(t' +ty—tg,u))—1] o’ and\ are functions o andw. Then scaling18) implies
-ty ~

+ | Mt o st -11), A
0 A=B(2)0", ——=A(z)0", (19

where we have dropped the subsciptObviously these are wr_lere A(z) and B(z) are ar_bitrary functions to be deter-
formal expressions, as long as we do not provide the functlined. From these two relations we get=C(z)/w, where
tional dependence of(u) anda(u) on the parametar. We ~ C(2)=B(2)/A(2). In the original variables we have
will do so in the next section using scaling arguments.

We finally note that when there is only one source of . Clwa(u))
noise (instead of a continuous superposition of thettmen 7= ® ' (20
A(u)=A4(u) and Eq.(13) reads

. But o' =¢'(u) is independent of. Therefore, the unknown
B(w,t)zexp{ —)\[t— f T\(wad)(t’))dt’” . (15 function C has to be of the forn€(wo) =kwo Whel’fk is a
0 constant. Hencer' (u) =ko(u), whenceo(u)=o,e*". Fi-
nally, absorbing the constaktinside the variablelr we ob-
where o=0(0) and ¢(t)=¢(t,0). We thus recover the tain the functional dependence of the jump variaacen
characteristic function for non-white Poissonian shot noisgparameteu,
[21]. Equation(15) is the starting point of Ref.22] for the
analysis of fractal shot noise whef(t)ot™ Y2, o(U)=oge", (22)

IV. SCALING whereo is a constant. Moreover, we see from Ep) that
. AN=B(wo(u))w®. But again\=X\(u) is independent ofv.
In order to proceed further we need to specify the func—In consequencedB(wa)=b (wa)~* whereb is an arbitrary

tional forms ofA(u) and o(u). Of course that form will onstant. Substituting this into the first relation of Ef9)

Shp}sergijn(t)rv]vctehc?hzgggl?/\(/:h]:tastzgerzsotfotﬁz g:]oeblcﬁTthr:ggtd' Qz_ields the “dispersion relation” between the mean frequency
P 98N and the jump variance:

eral ways of proceeding; we suppose that our integrated pro-
cessX(t) possesses self-scaling properties. Following this

path we must first assume that the pulse function is of the A=blo*. (22)
form
The functional dependence ®dfonu is obtained by combin-
$(u,t) =N (U)t), (16)  ing Egs.(21) and(22),
which turns¢(u,t) into a function of the single dimension- NMu)=Npe Y, (23

less variable\ (u)t. Substituting this into Eq(13), defining
new integration variables=t'/t and z= wo(u), and sup- where\,=b/a§, or equivalently
posing thato(—%)=0 ando(«)=c, we obtain

b=\goy. (24)
~ » At 1.
Inp(w,t)=— dz—,[l—J’ h(z¢()\st))ds],

0 wo 0 Collecting results we see from E@L7) and Eqgs.(21)—(24)

(17) that the one-time characteristic function reads
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B % dz gular pulses occurring at random Poisson times. The range of
p(w,t)=ex —btw“f o the exponentr in Lévy flights is 0<a<2. In such a case
0z X(t) has no finite moment but the first of8]. In actual

situations, one is unlikely to meet with perfect rectangular

] _ (25) pulses(showing sudden change# such a case all moments

1~
X 1—J0 h(z¢(btw*s/z*))ds

can be finite and are easily evaluated from the derivatives of
the characteristic functiof26). Thus, for instance, the sec-

It is sometimes convenient to rewrite this equation and Us@nq moment is given bynote that due to Eq4) ﬁ”(0)=

the alternative form op(w,t) given by —1]

~ = dz
p(w,t)=ex —btj0 ira

or equivalently

], <x2(t))=btr dz fl¢2(bts/z“)ds. (32
0

1~
1—f0 h(zw ¢(bts/z*))ds )
(26)

As an illustrative example suppose that our pulse function
has the form

1—-e Kt jf t>0,
0 otherwise,

- ©dz [t
p(w,t)=exp{ bfo ZHafodt’[h(zwqb(bt'/z“))—1]}. ¢(t)=[
(27)

Starting from Eq.(14) and following an analogous rea-
soning based on the scaling assumption, we obtain the fo
lowing expression for the two-time characteristic function of

(33

wherek>0 is a constanfnote that ifk is large then¢(t)
pproaches the rectangular pul@9)]. In Appendix B we
Show that[see also Eq(42) below]

the integrated procegwiith t,>1,): (X(1))=Dt2* (2>a>2/3), (34)
~ . o (F9z ] (s g where  D=ab?k 1*2e(1— 220" T(2—2/a)/(2— ).
In p(“’l’tl""Z’IZ)_bfo 21+a[ fo dt'th(ze,$(bz “t") Since 1< (2/a)<3, Eq.(34) clearly shows a superdiffusive
behavior.
+zwyp(bz (U +1,—1y))) —1] In fact, we can easily obtain a closed expression not for
bot; moments but for cumulants defined as derivatives of
+ fo dt'[h(zw,¢p(bz”t"))—1]}. InB(w,t). From Eq.(26) we have

~ e 1
@8 xnyy =i *”bth(")(O)f z”’l’“dzf #"(bts/z%)ds.
Equationg25)—(28) are some of the key results of the paper, 0 0
since, as we will see next, they constitute a generalization qf

g in the double int | on the right hand side of thi -
the Levy distribution with finite moments. in e golib'e Imegra on The ngnt fland sice o7 s equa

tion we define a new integration variableby s=(z%/bt)x

and exchange the order of integration, we get
V. MOMENTS, CUMULANTS, AND POWER SPECTRUM

We first note from Eq(25) that if the pulse shape func- fxzn—l—adzfl(/,n(bts/za)ds
tion is the Heaviside step function 0 0
1 ift>0, i J(bt/x)”‘* ne1
B(1)= | (29 btJ'o Fro0dx 2z
0 otherwise,
then the integrated procewt) is identica”y a Egy pro- but the last integl’al is terla”y evaluatEd, and for théh
cess, regardless the jump PDEX), cumulant we have
Plw,t)=ex —Mtw?], 30 i~"h(™(0) = ¢"(x)
p(w,t) d ] (30) <<xn(t)>>:—n (bt)“’“fo —Xn/a dx. (35
where
- dz Taking into account that(™(0)=0 for n odd [we have as-
M :bf - [1-h(2)]. (31)  sumed a symmetric jump distributidr(x)], we write
07z +a
((X2H(1)))=0 (36)

Therefore, following our model, lwy processes can be
viewed as a continuous superposition of families of rectanand
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(—1)"heV(0)

= ?"(X)
N ——dXx

2n/a
( bt) 0 X2n/a

((x2(0))=
(37

(n=1,2,3...). In Appendix C we check the convergence
of these expressions and hence show the existence of mo-
ments and cumulants. Specifically, we prove that if the pulse

function has the asymptotic behaviors

d(x)~x#  (x—0), (38)
(B>0) and
H(X) =X (X—=*), (39
then all cumulants will exist if
1 1
y+—1/2> a>E. (40

Note that for a steplike function, such as that of E8g),
wherey=0 all cumulants will exist if

2>a>11B.

Finally, for any integrable functiorb(t) over[0.°) there is

no upper bound forr and the only condition or for having
all moments finite is thatv>1/B.

PHYSICAL REVIEW E 64 011110

C(7)=lim(X(t+ )X(1)).
t

From Eq.(43) we have

d+z fx¢(bz’“t’)¢(bz’“(t’+7-)). (44
“Jo

C(T)=bf0w

Zl

Note that the(stationary varianceC(0)=o, which agrees
with the superdiffusive behavior of(t) given by Eq.(34).

The power spectral density of our process is thus given by
the Fourier transform of the stationary correlation function

Clw)= f:e*imcu)dr.

Substituting Eq.(44) into this equation, performing simple
changes of variables, and taking into account the causality of
the pulse functionp(t), we finally obtain

Clw)= olt2a’ (49
where
2la o
_ 2la| 2
K > foé |p(&)|°dé (46)

We close this discussion on moments and cumulants with
an example. Suppose that the pulse function is given by thﬁnd?b(g) is the Fourier transform of(t). We thus see that

steplike function(33). In this casey=0, 8=1 and all mo-

X(t) has a power-law spectrum with exponernt 1+ 2«. In

ments(and cumulantswill exist if 1 <a<2. Cumulants are Appendix C we show that this exponent is bounded by

given by Eqgs(36) and(37). In Appendix B we show that
foc(l_ekX)n

——dx=Ak YT (1+n—n/a), (41)
0 X

where the number&,, are given by Eq(B3) of Appendix B.
Finally,

(—1)"hM(0)
2n
XT'(1+2n—2n/a)(bt)?™e, (42)

A2 k—1+ 2n/a
n

(X)) =

1<p<2(1+p), (47)

where g is defined in Eq.(38). Moreover, wheng(x) is
analytic atx=0 theng=1,2,3 ... is apositive integer and
X(t) is flicker noise 1f” with 1<v<<2(1+n) (n
=1,2,3...). Wefinally observe that a power-law spectrum
such as Eq(45) exists if and only if the pulse shape function
¢(t) possesses a Fourier transform. Note that this is not the
case for the step functiof29) or any steplike function such
as(33).

VI. ASYMPTOTIC BEHAVIOR

We finish this section by evaluating the power spectrum

of the integrated proces§(t). Let us first evaluate the cor-

relation function

2

(X(t+7)X(t))=— pP(wq,t;wy,t+7)

(7(,()10)2 wl:wzzo

From Eq.(28) we get

dz
Zl+a

J'td;(bz’“t’)(j;(bz’“(t’Jr 7).
0
(43

(X(t+ T)X(t))beOoc

Let C(7) be the correlation function in the stationary limit

t—o,ie.,

We will now examine the asymptotic behavior of the one-
time probability density function of the integrated process
X(1), p(x,t)dx=Prox<X(t)<x-+dx}. For this analysis
we distinguish two regions: the “center’x(~0) and the
“tails” ( x— =) of the distribution. We cannot have a
closed expression for the PO x,t) until the pulse function
¢(x) and the jump PDH(x) are both specified. Therefore,
we will perform the asymptotic on the G w,t). As a well
known feature of the harmonic analysis the center of the
distribution is determined by the large behavior of the CF,
while the tails are determined f(w,t) when w—0 [24].

We deal first with the center of the distribution whese
—oo, |f we assume that the pulse functigh(x), asx— oo,
satisfies Eq(39),
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(X—),

H(X)~x”
then
h(zg(btw®s/z*))~h((btw®)zE~*7s7)

(w—).

Substituting this into Eq(25) and performing the change of
variables é= (btw®)?z1~%? we obtain the following Ley
distribution:

Plo,y=exp{~L(bt) =M=} (9—o0),

(48)

where

(49

1 dé {

[ ]_~
— — Y
L 1—a7J0 g1+ a=anl(i-a7) 1 f h(£s”)ds

0

Note that due to the bounds discussed aljeee Eq.(C2)]
we have  ay> a/2; hence the ey exponent in Eq(48)
satisfies

0<

? o (50)
’y 1

-«

and Eq.(48) is well defined. We also note that for a steplike

pulse functiong(t) where y=0 we obtain the same kg

distribution, Eq.(30), that satisfies the model for sudden
pulses(29). Therefore, for any pulse shape function satisfy-

ing condition(39) the center of the PDF is given by a\e
distribution.

Let us now obtain an asymptotic expression of the PDR

p(x,t) whenx— * o, which will be valid if ¢(t) obeys Egs.
(38) and(39), and the exponent is bounded by

B l<a<1l(y+1/2).

In this case, we see from E@L0) that all cumulants exist. So
taking thew—0 limit of Eq. (26) we find

oo

1~
1—j h(zw¢(bts/z¥))dz|.
0
(51)

B(w,t)~1—btf

0 Zl+a

The Fourier inversion of Eq51) yields

dz (1
ZlMfoh(x,z,s)dz (X—*x), (52

p(x,t)~btJj

where we have dropped function terms that have no con-
tribution asx— . Moreover, assuming symmetric jump dis-
tributionsh(x) we have

h(x,z,s)z% fomﬁ(2w¢(bts/z“))003wx dw

|

X
z¢p(bts/z)

ol
= h
z¢p(bts/zY)
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Substituting this into Eq(52) we see that

p [,
POX.L) 0o 22" Jo ¢p(bts/z®) | zg(

(X— *£o0).

X )
th/Za)
(53)

Therefore the tails of the distribution are determined by the
jump PDFh(x) and the pulse shape functi@f(t).
Finally, for the rectangular puls9) we have

bt (=
|X|Mfo y“h(y)dy,

p(X,t)~ (54)

which agrees with the expected tail behavior of thenle
distribution[8].
VII. RELATION TO THE LE VY DISTRIBUTION

In Sec. V we obtained general expressi¢86) and(37)
for all the cumulants, from which it follows that

InBlo,0)= 3, (X))
_ v (CD"PRCY0) L r1¢77(X)
=2 nemr 0" fo e X
(55)

In addition, in Sec. VI, we showed tha(x,t) was a Ley
distribution at the center of the distributior-0) and took
he form(53) in the tails — o) of the distribution. In this
section we will show how the distribution can be separated
into a Levy distribution plus an additional term. This term
takes the form of a single integral which can be evaluated
once the functiongs andh have been specified.

We begin the analysis by changing variables freto x
=bts/z* (z fixed) in Eq. (26). This gives

INp(w,t)=— fowd?zfobtlzadx{l—Fl(quS(x))}

o (buxytedz
__ fo dXJo —{1-Rzod(x)},
(56)

changing the order of integration. At this point we factor out
the contribution from the Ly process by writing Eq(56) as

o 1/adz -
—f dxf‘b”x) ~11-F(zw))
0 0 z

- f “dx f I 20)-Fizo (0,
0 0

or, after defining

g(w,)=1-h(w,t), (57)

011110-7



JAUME MASOLIVER, MIQUEL MONTERO, AND ALAN McKANE

as

_ J“dxﬁbt/x)”@(w,t) g
0 0 z

oled
f f 0 G 2w) - Bzwd ().

The first term is just Ip(w,t) for Lévy processe§see Egs.
(30) and (31)]. The second term can be simplified by first

writing it as

f f(bt/x)”“ g(Zw)
(bt/x)Yey Z
and then integrating by parts to give

» (bt/x) e E}(Zw)
Z - X 5 1/ Z
o 20 (bt/x) Yy

1/ Z
‘ j(bt/x) g( w) iz
(

btix)tey Z

(58)

We assume tha(w) is analytic atw=0 and integrable;

then

w? (w—0) and g(w)—1 (w—®),

9(w)~

and since & a<?2 the first term in Eq(58) is zero. Finally,

INP(w,t)=Inp; L [ G (b
np(w,t)=INpgy(w,t)+— O[@J([ t/x]" )

—9([bt/x]¥*w $(x))]dx
AL
X500 wd(x))dx, (59
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VIIl. CONCLUSIONS

In this paper we have presented and analyzed a dynamical
model based on a process that is a superposition of colored
Poisson noises. The model was shown to have several attrac-
tive features. The probability density function has long tails,
which emerged in a natural way and, unlike thesy elistri-
bution, all the moments of the distribution are finite. We
believe that these properties make the distribution an ideal
candidate for describing stock market pri¢é%

Another property that may have relevance to physics and
other natural sciences is the appearance of a power-law spec-
trum for the process. Once again we would like to stress that
this result flowed naturally from the nature of the model and
the scaling assumptions, which redut@and ¢ from func-
tions of two variables to functions of a single variable.

In a more mathematical context, we believe that the de-
composition of the CF of our model into that of thévye
plus additional terms is interesting, both as an example of an
Edgeworth-type expansion and for the nature of the correc-
tions to the Ley distributions when the parameters of our
model are chosen so that our distribution is near to the/Le
one.

There are still some open questions. One of them is the
extension of the model to the increments of the process
Z(7,t—tg)=X(t—to+7)—X(t—ty) (t>tg), since in this
case we believe that the procedsr,t —t;) becomes station-
ary when it starts in the infinite pasty— —«). Another
interesting and open question is the actual application of the
model to financial time series where some nonwhite correla-
tion is observed25]. Both points are presently being inves-
tigated.
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Heaviside step function the integrals on the right hand side

of Eq. (59) vanish and Eq(59) reduces to the Ly distri-

bution. Therefore, we can look at the second term on the

right hand side of Eq(59) as a correction to the My dis-

tribution whene(x) is not exactly a Heaviside function but a

APPENDIX A: CHARACTERISTIC FUNCTION
FOR COLORED SHOT NOISE

By generalizing Rice’s metho20], we will now obtain

steplike function very close to the Heaviside function. Thls'fhe probability distribution of the shot nois€u,t) defined

may be evaluated, in principle, for any givenandh. For
instance, we could take to be of the form(33) with k large
and the Lorentzian
~( ) w?/2
w)= ,
9 1+ w?/2

by Eq. (2):

Y(u,t)= 2 Adu)dt—T(u);u), (A1)
k=1

where we assume that the random variablgs1) andT,(u)

corresponding td(x) =e~Y2¥/\/2. The form of the correc- are identically distributed and statistically independent. The
tion terms depends on the choice of the functions to an exjump amplitudes are described by the PDx,u)dx
tent, and so we will not discuss the explicit form it takes = Progx<A,(u)<x+dx} and the jump time3(u) follow

here.

a Poisson distribution of the parameigu). Define

011110-8
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pP(Xy,t1; X, to;u)dx dx;

=Prodx; <Y(u,ty) <x;+dx;;x<Y(U,ty) <X+ dX,}

to be the joint PDF of the process with=t,. This PDF can
be written as

p(Xy,t1;X,t55U)

[ oo

=> > P(X1,t1:X2,t25u[Ng,N) P(Ny,ty 5Ny to50),
ny=0 ny,=0

(A2)

where p(xy,t;;X2,t5;uln;,n,) is the conditional PDF as-
suming that exactly; pulses have occurred at tinte and
n, pulses at timé,. P(nq,t;;n,,t,;u) is the joint probabil-
ity for the occurrence of such pulses. Sirtge=t; thenn,
=n; and

P(ny,tyin,,to;u)
if ny=<n,

P(ny—ng;t,—t;u)P(ng,ty;u)
= otherwise, (A3)

10

where

= Mef)\(uﬁ'

P(m,7;u) o

(A4)

is the Poisson distribution. Substituting E@3) into Eq.
(A2) and definingt;=t, t,=t+At, ny=n, andn,—n;=m,
we obtain

© o)

P(Xy,UXo tHALU) = D D) p(Xg,tiXs,t+At;uln,n

n=0 m=0

+m)P(m,At;u)P(n,t;u),

and the characteristic function reads

© )

Plwg,twy t+ALU) =D X Plwg,twy,t+Atuln,n

n=0 m=0

+m)P(m,At;u)P(n,t;u). (A5)

Note thatf)(wl,t;wz,t+At;u|n,n+m) is the joint charac-
teristic function of the truncated process

Yn<u,t>=k§1 AU) (=T (u);u).

Hence

PHYSICAL REVIEW E64 011110

Plwg,t;wy,t+At;uln,n+m)
=<exp[iwzzl Aj(u) (t+At=T;(u);u)
=

+iwlgl A(U) b(t—Ti(u);u)

n+m

+iw2|:%l A/(U)p(t+At—T(u);u)

)

Taking into account tha#(u) and T, (u) are independent
and identically distributed random variables, we have

P(wy,t;wy,t+At;uln,n+m)
=[(exp{i w,A;(u) p(t+At—T;(u);u)
o A(u) g(t—Ty(u);whH]"
X [(expliwA(u) p(t+ At=T(u);wh ™,
and, since the random timdg(u) are Poissonian,
(expli w,A(U) p(t+At—Ty(u);u)
+iw1Ag(u) p(t—Ty(u);u)})

© tdt’ .
= f h(a,u)dafoTexp{la[M(ﬁ(HAt—t’;u)

1t
+wip(t—t";u)]}= ?foh(wqu(tJrAt—t’;u)
+wip(t—t";u);u)dt’,

where h(w;u) is the Fourier transform of the jump PDF
h(x;u). Analogously,
(expi wpA(u) p(t+At—Ty(u);u)})
1 [t+At

=t t h(w,p(t+At—t";u);u)dt’.

Therefore,

P(wy,t;wy,t+At;uln,n+m)

n m

1
1G(@2 tHALL)|

1
:{?F(wz,t‘i‘At,wl,t,u)
(AB)
where
F(w,,t+At;wq,t;u)
t~
Ef h(wyp(t+At—t";u)+ wp(t—t';u);u)dt’
0

(A7)

and
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t+AL_
G(wz,H—At;t;u)EJ h(wyp(t+At—t";u);u)dt’.
t
(A8)

Substituting Eq(A6) into Eq. (A5) yields
Plwy,t;w,,t+At;U)

{3

n

1
[—F(ml,t;wz,HAt;u)
n=0 t

{2,

Introducing Eq.(A4) into this and performing the resulting
sums we get

P(n,t;u)]

m

[%G(mz,ﬂrm;t;u) P(m,At;u)J.

p(wq,t; wy,t+At;U)
=exp{—ANu[t—F(w,,t+At;wq,t;u)]
“AMW[At—G(wy,t+At;wq,t;u)]}.

Finally,

p(wlvt;w2!t+At1u)

=exp{ )\(u)j;dt’[ﬁ(w1¢>(t’,u)+w2¢(t’ +At,u))

At
=17+ N (u) . dt’[h(w2¢>(t’,u))—1]], (A9)

which agrees with Eq.7). If in Eq. (A9) we setw;=w and
w,=0, we obtain the one-time characteristic functi@i

~ t ~
p(w,t;u)=exp[)\(u)J dt’[h(wcz)(t’,u))—l]}.
0
(A10)
APPENDIX B: CUMULANTS FOR A STEPLIKE
FUNCTION

We will derive closed expressions for the cumula(®?)

_1)n'ﬁ(2n)(0) o 42N X)
(=T e [
(B1)
when ¢(x) is the steplike functiori33)
- 1-e X ift>0,
#V=10 otherwise. (B2

The substitution of Eq(B2) into Eq.(B1) leads us to evalu-
ate the following integral:

2n

PHYSICAL REVIEW E 64 011110
OO(1_ e kX)Zn
e [

* dx
0 XZn/a dx= 0 X2n/a

1 1 S
:kZHJ' dUl' . J’ dUZnJ X2n(171/a)
0 0 0
n

<o {3 o)

Define the new integration variable

1
kxf e kxugy
0

then

) —1-2n(1-1/a)

1 1 2n
|2n:k—1+2n/af0 dul. .. JO dUZn(_El u;
i=

y Jme_§§2n(l—l/a)d§_
0
But
f e £ U ge=T(1+2n—2n/a).
0

Defining the numbers

1 1 2n —1-2n(1-1/a)
AZ”EJ dul..-J du2n(2 ui) (B3)
0 0 i=1
we finally have
—1)~"h@ (o
<<X2n(t)>>:MA2nk—l+2n/a
2n
XT'(1+2n-2n/a)(bt)®"e,  (B4)

which is Eq.(42). Note that whem=1 Eq. (B4) reduces to
Eq. (34).

APPENDIX C: CONVERGENCE OF INTEGRALS

Let us first check the existence of cumula(8%). Assum-
ing the asymptotic behavior given by E@8), then the con-
vergence of the integral on the right hand side of &3) as
x—0 implies that the scaling exponemthas a lower bound:

2n

On the other hand, assuming E&9) then the convergence
of Eq. (37) whenx— oo implies that the scaling exponeat
also has an upper bound:

1 1
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Moreover, wheny=0 then if nite. For the existence @b(¢) it suffices thatg(x) be abso-
1 1 lutely integrable, and from the asymptotic behavior given by
+_1/2>a>_ (C3 Eq. (~39) we have to impose that<—1. This in turn implies
Y B thatp(&)~& 17 asé—0 and, sincey< —1, the integrall

all cumulants will exist. Note that EC2) holds whenever at its lower limit is always finite for ang>0. On the~0ther
y=—1/2n. Therefore,y=0 is a sufficient condition for its hand, if ¢(x) satisfies Eq.(38) as x—0, then ¢(¢)
validity. Finally, if y< —1/2 there is no upper bound on the ~¢& '~ # asé—w. Hence,J will be finite if «>1/(8+1/2)
accepted values af. [see also Eq(C1)]. Therefore, the process(t) has a finite
We now prove the existence of the power spectral densitpower spectrum ii(x) is absolutely integrable on the real

C(w) given by Eq.(45). Obviously this density will exist if "€ andX(t) has afinite second cumulant HE.1), i.e.

the integral 1

=B

. (C4)
J=f0 2 p(£)|*dg <0

In such a case, we see from E@5) that X(t) exhibits a

In order to prove the existence dfve first need to show that power-law spectrum with exponent=1+2/a. Moreover

the Fourier transform of the pulse functios(¢), exists. [recall thata>0, and Eq.(C4)],
Note that any step or steplike function does not have a Fou-

rier transform and consequently the power spectrum is infi- 1<v<2(1+p). (CH
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