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Integrated random processes exhibiting long tails, finite moments, and power-law spectra
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A dynamical model based on a continuous addition of colored shot noises is presented. The resulting process
is colored and non-Gaussian. A general expression for the characteristic function of the process is obtained,
which, after a scaling assumption, takes on a form that is the basis of the results derived in the rest of the paper.
One of these is an expansion for the cumulants, which are all finite, subject to mild conditions on the functions
defining the process. This is in contrast with the Le´vy distribution—which can be obtained from our model in
certain limits—which has no finite moments. The evaluation of the spectral density and the form of the
probability density function in the tails of the distribution shows that the model exhibits a power-law spectrum
and long tails in a natural way. A careful analysis of the characteristic function shows that it may be separated
into a part representing a Le´vy process together with another part representing the deviation of our model from
the Lévy process. This allows our process to be viewed as a generalization of the Le´vy process that has finite
moments.
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I. INTRODUCTION

The nature of the probability distribution of stock mark
prices has been discussed quantitatively for over a cen
@1#. An early conjecture that the distribution was Gauss
was found not to be a good fit, largely because of the lo
tails found in financial data@2#. A later suggestion that the
Lévy distribution was a better fit seemed more promisin
since this distribution does at least have long tails@3#. On the
other hand, this distribution has no finite moments, which
a severe limitation. The solution of truncating the distrib
tion in order to obtain finite moments is ratherad hocand
artificial @4#. Moreover, the Le´vy distribution has ‘‘too fat
tails’’—as opposed to the ‘‘too thin tails’’ of the
Gaussian—to give a good fit to data@5#.

This paper explores in more detail a model previou
introduced@6# in order to resolve these difficulties and giv
a more complete explanation of the appearance of n
Gaussian and self-similar fat tails in the probability distrib
tion @5#, while still keeping the important feature that a
moments are finite. The model has the Le´vy distribution as a
limiting form and has the form of a type of ‘‘Edgewort
expansion’’ for the Le´vy distribution. We will give the ex-
plicit form of this relationship later in the paper~the Edge-
worth series is an expansion procedure that gives correct
to the Gaussian distribution in those cases where the ce
limit theorem applies@7#!.

While the motivation for the model was the explanati
of stock market data, in this paper we want to stress the m
general aspects of the model, which we expect will ha
applications in other areas including physics. In the last f
years broad distributions have been found in many area
physics. By broad, we mean that they have fat tails—as
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scribed above—which frequently imply that the cumulants
the distribution are not defined. In this way the Le´vy distri-
bution enters many areas of the subject@8#. For example,
Lévy statistics completely characterize the properties of
spectral lines of single molecules embedded in a glass@9#.
From this it is possible to deduce various low temperat
properties of the glass. Le´vy statistics appear in several are
in the field of quantum optics. In subrecoil laser coolin
neutral atoms and ions are cooled to ultralow temperatu
so that their momentum distributions are as narrow as p
sible. These may be analyzed using models based on L´vy
statistics @10,11#. Other applications in this field are t
anomalous diffusion seen in optical lattices@12#, the anoma-
lous dynamics of a single ion in an optical lattice@13#, and
the use of Le´vy statistics to optimize subrecoil Raman coo
ing @14#. Many experimental investigations focus on anom
lous diffusion, as in an early study of diffusion in a system
micelles@15#. However, anomalous diffusion is also seen
numerous studies of dynamical systems@16–18#. These ex-
amples illustrate the ubiquity of broad distributions in phy
ics. We hope that the ideas presented in this paper, as reg
both the nature of the distribution we derive and the phys
mechanism generating it, will have applications to some
the phenomena involving broad distributions that we ha
mentioned above or to the many others that we did not
cuss.

The paper is organized as follows. In Sec. II we pres
the main results of the paper for clarity, since many deta
are quite technical. In Sec. III we describe our integra
process in detail. In Sec. IV we impose the self-scaling pr
erty on the probability distribution and obtain several r
evant functions. Section V is devoted to moments and cum
lants and the evaluation of the power spectrum. In Sec.
we study the asymptotic behavior of the distribution while
Sec. VII we present, starting from our distribution, a
Edgeworth-type series for the Le´vy distribution. Conclusions
©2001 The American Physical Society10-1
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are drawn in Sec. VIII and some more technical details ar
the Appendices.

II. MAIN RESULTS

In this section we wish to state the main results of
paper without giving the derivations or being careful to st
the range of validity for which they hold. We hope that th
will give a good indication of the scope and nature of o
results; the interested reader can then fill out this ba
framework by proceeding to later sections.

As explained in the next section, our integrated proc
X(t) is a continuous superposition of colored shot noi
parametrized byu. It takes the form

X~ t !5E
2`

` F (
k51

`

Ak~u!f„t2Tk~u!;u…Gdu.

There are several assumptions.~i! The pulse shape functio
f(t,u) is causal, i.e.,f(t,u)50 for t,0. ~ii ! The jump
amplitudes and jump times,Ak(u) and Tk(u), are indepen-
dent and identically distributed random variables with pro
ability density functions given byh(x,u) andc(t,u), respec-
tively, i.e., h(x,u)dx5Prob$x,Ak(u),x1dx%, and
c(t,u)dt5Prob$t,Tk(u),t1dt%. ~iii ! The jump times are
assumed to follow a Poisson process with parameterl(u).
~iv! Functionsf(t,u) andh(x,u) satisfy the scaling forms

f~ t,u!5f„l~u!t… and h~x,u!5
1

s~u!
hS x

s~u! D ,

wheres(u) is the standard deviation of the jump amplitude
The model is thus specified by the four functions of a sin
variablef, h, s, andl. ~v! The characteristic function~CF!

p̃(v,t)5^exp@ivX(t)#&, which is the Fourier transform of th
densityp(x,t), obeys the self-scaling property

p̃~v,t !5 f ~vt1/a!,

where f (j) is any non-negative definite function such th
f (0)51 @19#. One of the main goals of this paper is to fin
the probability distribution of the processX(t). By assuming
the scaling forms given above the one-time distribution
X(t) is explicitly given by the CF

p̃~v,t !5expH 2btvaE
0

` dz

z11a

3F12E
0

1

h̃XzfS btvas

za D CdsG J ,

whereb.0. Whenf(x)5u(x) is the Heaviside step func
tion then the input shot noises are white andX(t) is the Lévy
process

p̃~v,t !5e2Mtva
,

whereM5b*0
`dz@12h̃(z)#/z11a. This provides us with an

alternative interpretation of the Le´vy process since, in ou
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case, Le´vy processes are continuous superpositions of fa
lies of white Poissonian shot noises.

Contrary to Lévy processes, our integrated process c
have finite moments of any order; thus cumulants are gi
by

^^Xn~ t !&&5
i 2nh̃(n)~0!

n
~bt!n/aE

0

`fn~x!

xn/a
dx

(n51,2,3, . . . ). Note that the second cumulant~i.e., the
variance!, is proportional to (bt)2/a and X(t) presents
anomalous diffusion behavior@see Sec. V for a detailed dis
cussion on limiting values and bounds for the exponena
and other parameters related to the asymptotic behavio
the pulse shape functionf(x)].

We define the stationary correlation function byC(t)
5 limt→`^X(t1t)X(t)&. For our process this reads

C~t!5bE
0

` dz

z11aE0

`

f~bz2at8!f„bz2a~ t81t!…dt8.

The power spectral density of the processX(t), given by the
Fourier transform of the stationary correlation, is

C̃~v!5
K

v112/a
,

and X(t) possesses a power-law spectrum with exponenn
5112/a.

We can also perform the asymptotic analysis of the pr
ability distribution of X(t) without having to specify any
particular form forh(x) and f(x), thus keeping the maxi-
mum level of generality. Specifically, we show in Sec. V
that the center of the distribution is approached by a Le´vy
distribution

p̃~v,t !'e2L(t)vd
, v→`,

where 0,d,2. We refer the reader to Sec. VI for mor
details and for the behavior of the tails of the distributio
which is mainly determined by the behavior of the jum
probability density function~PDF! h(x).

The relation to the Le´vy distribution is explored in more
detail in Sec. VII, where we present an alternative~and ex-
act! expression for the CF which decomposes the distribut
of the integrated processX(t) into that of Lévy plus an ad-
ditional term:

ln p̃~v,t !5 ln p̃Lévy~v,t !2
1

aE0

`

@ h̃„@bt/x#1/av…

2h̃„@bt/x#1/avf~x!…#dx1E
0

`

x
f8~x!

f~x!

3@12h̃„@bt/x#1/avf~x!…#dx.

Note that whenf(x) is the rectangular step function th
equation reduces to the Le´vy distribution. Therefore, when
f(x) is a steplike function close to the Heaviside functio
0-2
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this alternative expression can be used as the starting poi
an Edgeworth-type expansion procedure giving correcti
to the Lévy distribution.

III. THE INTEGRATED PROCESS

Let X(t) be a random process formed by a continuo
superposition of independent shot-noise processes

X~ t !5E
2`

`

Y~u,t !du, ~1!

where, for any fixed timet, Y(u,t) are independent random
variables for different values of the parameteru @see Eq.~10!
below# and for any fixed value ofu, Y(u,t) is a colored
shot-noise process represented by a countable superpo
of pulses of identical shape,

Y~u,t !5 (
k51

`

Ak~u!f„t2Tk~u!;u…, ~2!

whereTk(u) marks the onset of thekth pulse, andAk(u) is
its amplitude. BothTk(u) and Ak(u) are independent an
identically distributed random variables with probabili
density functions given byh(a,u) andc(t,u), respectively.
The pulse shapef(t,u) has to fulfill the ‘‘causality condi-
tion,’’ i.e., f(t,u)50 for t,0 @20#.

We assume that the occurrence of jumps is a Pois
process, in this case the shot noiseY(t,u) is Markovian, and
the PDF for the time interval between jumps,c(t,u)dt
5Prob$t,Tk(u)2Tk21(u),t1dt%, is exponential:

c~ t,u!5l~u!e2l(u)t ~ t>0!, ~3!

wherel(u) is the mean jump frequency,i.e., 1/l(u) is the
mean time between two consecutive jumps@23#. We recall
that jump amplitudesAk(u) are identically distributed~for
all k51,2,3, . . . ) andindependent random variables~for all
k andu). In what follows we will assume that they have ze
mean and a PDFh(x,u)dx5Prob$x,Ak(u),x1dx% de-
pending on a single ‘‘dimensional’’ parameter which, wit
out loss of generality, we assume to be the standard devia
of jumpss(u)5A^Ak

2(u)&. That is,

h~x,u!5
1

s~u!
hS x

s~u! D . ~4!

Before proceeding further with the probability distributio
of the integrated processX(t) given by Eq.~1!, we note that
following Rice’s method@20# one can easily obtain all th
probability distributions of the shot noiseY(t,u) via their
CF’s

p̃Y~v1 ,t1 ; . . . ;vn ,tn ;u!5K expF i (
k51

n

vkY~ tk ,u!G L .

~5!

In Appendix A we show that
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lnp̃Y~v,t;u!52l~u!F t2E
0

t

h̃„vs~u!f~ t8,u!…dt8G ,
~6!

and ~supposing thatt2.t1)

ln p̃Y~v1 ,t1 ;v2 ,t2 ;u!52l~u!F t22E
0

t1
h̃„v1s~u!f~ t8,u!

1v2s~u!f~ t81t22t1 ,u!…dt8

2E
0

t22t1
h̃„v2s~u!f~ t8,u!…dt8G ,

~7!

whereh̃(v) is the Fourier transform of the jump PDFh(x).
Let us now evaluate the probability distribution of th

integrated processX(t). In terms of the cumulants
^^Y(t,u)&& of the shot noiseY(t,u) we see that the one-tim
characteristic function ofX(t) can be written as

p̃X~v,t !5expH (
k51

`
~ iv!k

k! K K F E
2`

`

Y~u,t !duG kL L J . ~8!

That is,

ln p̃X~v,t !5 (
k51

`
~ iv!k

k! E
2`

`

•••E
2`

`

^^Y~u1 ,t !•••Y~uk ,t !&&

3du1•••duk . ~9!

But by our assumptions on the processY(u,t) we have

^^Y~u1 ,t !•••Y~uk ,t !&&

5^^Yk~u1 ,t !&&d~u12u2!•••d~uk212uk!.

~10!

Therefore,

ln p̃X~v,t !5 (
k51

`
~ iv!k

k! E
2`

`

^^Yk~u,t !&&du,

that is,

lnp̃X~v,t !5E
2`

`

ln p̃Y~v,t;u!du. ~11!

Note that this line of reasoning can be easily extended to
nth-time distribution, with the result

ln p̃X~v1 ,t1 ; . . . ;vn ,tn!

5E
2`

`

ln p̃Y~v1 ,t1 ; . . . ;vn ,tn ;u!du. ~12!

Going back to our integrated process we have from E
~6!,~7! and~11!,~12! that the one-time characteristic functio
of X(t) reads
0-3
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ln p̃~v,t !52E
2`

`

dul~u!

3F t2E
0

t

h̃„vs~u!f~ t8,u!…dt8G , ~13!

while the two-time CF is (t2.t1)

ln p̃~v1 ,t1 ;v2 ,t2!5E
2`

`

dul~u!

3H E
0

t1
dt8@ h̃„v1s~u!f~ t8,u!

1v2s~u!f~ t81t22t1 ,u!…21#

1E
0

t22t1
dt8@ h̃„v2s~u!f~ t8,u!…21#J ,

~14!

where we have dropped the subscriptX. Obviously these are
formal expressions, as long as we do not provide the fu
tional dependence ofl(u) ands(u) on the parameteru. We
will do so in the next section using scaling arguments.

We finally note that when there is only one source
noise ~instead of a continuous superposition of them! then
l(u)5ld(u) and Eq.~13! reads

p̃~v,t !5expH 2lF t2E
0

t

h̃„vsf~ t8!…dt8G J , ~15!

where s[s(0) and f(t)[f(t,0). We thus recover the
characteristic function for non-white Poissonian shot no
@21#. Equation~15! is the starting point of Ref.@22# for the
analysis of fractal shot noise whenf(t)}t21/b.

IV. SCALING

In order to proceed further we need to specify the fu
tional forms of l(u) and s(u). Of course that form will
depend on the specific features of the problem at hand
this point we choose what seems to us one of the most
eral ways of proceeding; we suppose that our integrated
cessX(t) possesses self-scaling properties. Following t
path we must first assume that the pulse function is of
form

f~u,t !5f„l~u!t…, ~16!

which turnsf(u,t) into a function of the single dimension
less variablel(u)t. Substituting this into Eq.~13!, defining
new integration variabless5t8/t and z5vs(u), and sup-
posing thats(2`)50 ands(`)5`, we obtain

ln p̃~v,t !52E
0

`

dz
lt

vs8
H 12E

0

1

h̃„zf~lst!…dsJ ,

~17!
01111
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where the prime ons denotes the derivative. We now im
pose the self-scaling property on the CF, that is, we ass
that p̃(v,t) is a function of the single variablevt1/a,

p̃~v,t !5 f ~vt1/a!, ~18!

where the arbitrary functionf (j) has to be a characteristi
function, i.e., f (j) is a non-negative definite function suc
that f (0)51 @19#. Note that Eq.~18! implies that the shape
of p(x,t) is invariant under transformations in whichxt21/a

remains constant. We will see later on that an important c
sequence of this is that all moments have the prope
^Xn(t)&}tn/a.

On the other hand, we note that in Eq.~17! the quantities
s8 andl are functions ofz andv. Then scaling~18! implies

l5B~z!va,
l

vs8
5A~z!va, ~19!

where A(z) and B(z) are arbitrary functions to be dete
mined. From these two relations we gets85C(z)/v, where
C(z)5B(z)/A(z). In the original variableu we have

s85
C„vs~u!…

v
. ~20!

But s85s8(u) is independent ofv. Therefore, the unknown
functionC has to be of the formC(vs)5kvs wherek is a
constant. Hences8(u)5ks(u), whences(u)5s0eku. Fi-
nally, absorbing the constantk inside the variableu we ob-
tain the functional dependence of the jump variances on
parameteru,

s~u!5s0eu, ~21!

wheres0 is a constant. Moreover, we see from Eq.~19! that
l5B„vs(u)…va. But againl5l(u) is independent ofv.
In consequence,B(vs)5b (vs)2a whereb is an arbitrary
constant. Substituting this into the first relation of Eq.~19!
yields the ‘‘dispersion relation’’ between the mean frequen
l and the jump variances:

l5b/sa. ~22!

The functional dependence ofl on u is obtained by combin-
ing Eqs.~21! and ~22!,

l~u!5l0e2au, ~23!

wherel05b/s0
a , or equivalently

b5l0s0
a . ~24!

Collecting results we see from Eq.~17! and Eqs.~21!–~24!
that the one-time characteristic function reads
0-4
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p̃~v,t !5expH 2btvaE
0

` dz

z11a

3F12E
0

1

h̃„zf~btvas/za!…dsG J . ~25!

It is sometimes convenient to rewrite this equation and
the alternative form ofp̃(v,t) given by

p̃~v,t !5expH 2btE
0

` dz

z11a F12E
0

1

h̃„zvf~bts/za!…dsG J ,

~26!

or equivalently

p̃~v,t !5expH bE
0

` dz

z11aE0

t

dt8@ h̃„zvf~bt8/za!…21#J .

~27!

Starting from Eq.~14! and following an analogous rea
soning based on the scaling assumption, we obtain the
lowing expression for the two-time characteristic function
the integrated process~with t2.t1):

ln p̃~v1 ,t1 ;v2 ,t2!5bE
0

` dz

z11a H E
0

t1
dt8@ h̃~zv1f~bz2at8!

1zv2f„bz2a~ t81t22t1!…!21#

1E
0

t22t1
dt8@ h̃„zv2f~bz2at8!…21#J .

~28!

Equations~25!–~28! are some of the key results of the pap
since, as we will see next, they constitute a generalizatio
the Lévy distribution with finite moments.

V. MOMENTS, CUMULANTS, AND POWER SPECTRUM

We first note from Eq.~25! that if the pulse shape func
tion is the Heaviside step function

f~ t !5H 1 if t.0,

0 otherwise,
~29!

then the integrated processX(t) is identically a Lévy pro-
cess, regardless the jump PDFh(x),

p̃~v,t !5exp@2Mtva#, ~30!

where

M5bE
0

` dz

z11a
@12h̃~z!#. ~31!

Therefore, following our model, Le´vy processes can b
viewed as a continuous superposition of families of rect
01111
e

l-
f

,
of

-

gular pulses occurring at random Poisson times. The rang
the exponenta in Lévy flights is 0,a,2. In such a case
X(t) has no finite moment but the first one@8#. In actual
situations, one is unlikely to meet with perfect rectangu
pulses~showing sudden changes!; in such a case all moment
can be finite and are easily evaluated from the derivative
the characteristic function~26!. Thus, for instance, the sec
ond moment is given by@note that due to Eq.~4! h̃9(0)5
21]

^X2~ t !&5btE
0

` dz

za21E0

1

f2~bts/za!ds. ~32!

As an illustrative example suppose that our pulse funct
has the form

f~ t !5H 12e2kt if t.0,

0 otherwise,
~33!

wherek.0 is a constant@note that ifk is large thenf(t)
approaches the rectangular pulse~29!#. In Appendix B we
show that@see also Eq.~42! below#

^X2~ t !&5Dt2/a ~2.a.2/3!, ~34!

where D5ab2k2112/a(1222/a22)G(222/a)/(22a).
Since 1,(2/a),3, Eq. ~34! clearly shows a superdiffusive
behavior.

In fact, we can easily obtain a closed expression not
moments but for cumulants defined as derivatives
ln p̃(v,t). From Eq.~26! we have

^^Xn~ t !&&5 i 2nbth̃(n)~0!E
0

`

zn212adzE
0

1

fn~bts/za!ds.

If in the double integral on the right hand side of this equ
tion we define a new integration variablex by s5(za/bt)x
and exchange the order of integration, we get

E
0

`

zn212adzE
0

1

fn~bts/za!ds

5
1

btE0

`

fn~x!dxE
0

(bt/x)1/a

zn21dz,

but the last integral is trivially evaluated, and for thenth
cumulant we have

^^Xn~ t !&&5
i 2nh̃(n)~0!

n
~bt!n/aE

0

`fn~x!

xn/a
dx. ~35!

Taking into account thath̃(n)(0)50 for n odd @we have as-
sumed a symmetric jump distributionh(x)], we write

^^X2n21~ t !&&50 ~36!

and
0-5
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^^X2n~ t !&&5
~21!nh̃(2n)~0!

2n
~bt!2n/aE

0

`f2n~x!

x2n/a
dx

~37!

(n51,2,3, . . . ). In Appendix C we check the convergenc
of these expressions and hence show the existence of
ments and cumulants. Specifically, we prove that if the pu
function has the asymptotic behaviors

f~x!;xb ~x→0!, ~38!

(b.0) and

f~x!;xg ~x→`!, ~39!

then all cumulants will exist if

1

g11/2
.a.

1

b
. ~40!

Note that for a steplike function, such as that of Eq.~33!,
whereg50 all cumulants will exist if

2.a.1/b.

Finally, for any integrable functionf(t) over @0,̀ ) there is
no upper bound fora and the only condition ona for having
all moments finite is thata.1/b.

We close this discussion on moments and cumulants w
an example. Suppose that the pulse function is given by
steplike function~33!. In this caseg50, b51 and all mo-
ments~and cumulants! will exist if 1 ,a,2. Cumulants are
given by Eqs.~36! and ~37!. In Appendix B we show that

E
0

`~12e2kx!n

xn
dx5Ank211n/aG~11n2n/a!, ~41!

where the numbersAn are given by Eq.~B3! of Appendix B.
Finally,

^^X2n~ t !&&5
~21!nh̃(2n)~0!

2n
A2nk2112n/a

3G~112n22n/a!~bt!2n/a. ~42!

We finish this section by evaluating the power spectr
of the integrated processX(t). Let us first evaluate the cor
relation function

^X~ t1t!X~ t !&52
]2

]v1v2
p̃~v1 ,t;v2 ,t1t!U

v15v250

.

From Eq.~28! we get

^X~ t1t!X~ t !&5bE
0

` dz

z11aE0

t

f~bz2at8!f„bz2a~ t81t!….

~43!

Let C(t) be the correlation function in the stationary lim
t→`, i.e.,
01111
o-
e

th
e

C~t!5 lim
t→`

^X~ t1t!X~ t !&.

From Eq.~43! we have

C~t!5bE
0

` dz

z11aE0

`

f~bz2at8!f„bz2a~ t81t!…. ~44!

Note that the~stationary! varianceC(0)5`, which agrees
with the superdiffusive behavior ofX(t) given by Eq.~34!.

The power spectral density of our process is thus given
the Fourier transform of the stationary correlation functio

C̃~v!5E
2`

`

e2 ivtC~t!dt.

Substituting Eq.~44! into this equation, performing simple
changes of variables, and taking into account the causalit
the pulse functionf(t), we finally obtain

C̃~v!5
K

v112/a
, ~45!

where

K5
b2/a

a E
0

`

j2/auf̃~j!u2dj ~46!

andf̃(j) is the Fourier transform off(t). We thus see tha
X(t) has a power-law spectrum with exponentn5112a. In
Appendix C we show that this exponent is bounded by

1,n,2~11b!, ~47!

where b is defined in Eq.~38!. Moreover, whenf(x) is
analytic atx50 thenb51,2,3, . . . is apositive integer and
X(t) is flicker noise 1/f n with 1,n,2(11n) (n
51,2,3, . . . ). Wefinally observe that a power-law spectru
such as Eq.~45! exists if and only if the pulse shape functio
f(t) possesses a Fourier transform. Note that this is not
case for the step function~29! or any steplike function such
as ~33!.

VI. ASYMPTOTIC BEHAVIOR

We will now examine the asymptotic behavior of the on
time probability density function of the integrated proce
X(t), p(x,t)dx5Prob$x,X(t),x1dx%. For this analysis
we distinguish two regions: the ‘‘center’’ (x→0) and the
‘‘tails’’ ( x→6`) of the distribution. We cannot have
closed expression for the PDFp(x,t) until the pulse function
f(x) and the jump PDFh(x) are both specified. Therefore
we will perform the asymptotic on the CFp̃(v,t). As a well
known feature of the harmonic analysis the center of
distribution is determined by the largev behavior of the CF,
while the tails are determined byp̃(v,t) whenv→0 @24#.

We deal first with the center of the distribution wherev
→`. If we assume that the pulse functionf(x), asx→`,
satisfies Eq.~39!,
0-6
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f~x!;xg ~x→`!,

then

h̃„zf~btvas/za!…;h̃„~btva!gz12agsg
… ~v→`!.

Substituting this into Eq.~25! and performing the change o
variablesj5(btva)gz12ag we obtain the following Le´vy
distribution:

p̃~v,t !.exp$2L~bt!1/(12ag)va/(12ag)% ~v→`!,
~48!

where

L5
1

12agE0

` dj

j (11a2ag)/(12ag) F12E
0

1

h̃~jsg!dsG .
~49!

Note that due to the bounds discussed above@see Eq.~C2!#
we have 12ag.a/2; hence the Le´vy exponent in Eq.~48!
satisfies

0,
a

12ag
,2, ~50!

and Eq.~48! is well defined. We also note that for a steplik
pulse functionf(t) whereg50 we obtain the same Le´vy
distribution, Eq. ~30!, that satisfies the model for sudde
pulses~29!. Therefore, for any pulse shape function satis
ing condition~39! the center of the PDF is given by a Le´vy
distribution.

Let us now obtain an asymptotic expression of the P
p(x,t) whenx→6`, which will be valid if f(t) obeys Eqs.
~38! and ~39!, and the exponenta is bounded by

b21,a,1/~g11/2!.

In this case, we see from Eq.~40! that all cumulants exist. So
taking thev→0 limit of Eq. ~26! we find

p̃~v,t !;12btE
0

` dz

z11a F12E
0

1

h̃„zvf~bts/za!…dzG .
~51!

The Fourier inversion of Eq.~51! yields

p~x,t !;btE
0

` dz

z11aE0

1

h~x,z,s!dz ~x→6`!, ~52!

where we have droppedd function terms that have no con
tribution asx→`. Moreover, assuming symmetric jump di
tributionsh(x) we have

h~x,z,s![
1

pE0

`

h̃„zvf~bts/za!…cosvx dv

5
1

zf~bts/za!
hS x

zf~bts/za!
D .
01111
-

F

Substituting this into Eq.~52! we see that

p~x,t !;btE
0

` dz

z21aE0

1 ds

f~bts/za!
hS x

zf~bts/za!
D

~x→6`!. ~53!

Therefore the tails of the distribution are determined by
jump PDFh(x) and the pulse shape functionf(t).

Finally, for the rectangular pulse~29! we have

p~x,t !;
bt

uxu11aE0

`

yah~y!dy, ~54!

which agrees with the expected tail behavior of the Le´vy
distribution @8#.

VII. RELATION TO THE LE ´ VY DISTRIBUTION

In Sec. V we obtained general expressions~36! and ~37!
for all the cumulants, from which it follows that

ln p̃~v,t !5 (
n51

`
i nvn

n!
^^Xn~ t !&&

5 (
n51

`
~21!nv2nh̃(2n)~0!

2n~2n!!
~bt!2n/aE

0

1f2n~x!

x2n/a
dx.

~55!

In addition, in Sec. VI, we showed thatp(x,t) was a Lévy
distribution at the center of the distribution (x→0) and took
the form~53! in the tails (x→6`) of the distribution. In this
section we will show how the distribution can be separa
into a Lévy distribution plus an additional term. This term
takes the form of a single integral which can be evalua
once the functionsf andh have been specified.

We begin the analysis by changing variables froms to x
5bts/za (z fixed! in Eq. ~26!. This gives

ln p̃~v,t !52E
0

`dz

z E0

bt/za

dx$12h̃„zvf~x!…%

52E
0

`

dxE
0

(bt/x)1/adz

z
$12h̃„zvf~x!…%,

~56!

changing the order of integration. At this point we factor o
the contribution from the Le´vy process by writing Eq.~56! as

2E
0

`

dxE
0

(bt/x)1/adz

z
$12h̃~zv!%

2E
0

`

dxE
0

(bt/x)1/adz

z
$h̃~zv!2h̃„zvf~x!…%,

or, after defining

g̃~v,t ![12h̃~v,t !, ~57!
0-7
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as

2E
0

`

dxE
0

(bt/x)1/ag̃~v,t !

z
dz

1E
0

`

dxE
0

(bt/x)1/adz

z
$g̃„zv…2g̃„zvf~x!…%.

The first term is just lnp̃(v,t) for Lévy processes@see Eqs.
~30! and ~31!#. The second term can be simplified by fir
writing it as

E
0

`

dxE
(bt/x)1/af

(bt/x)1/a g̃~zv!

z
dz

and then integrating by parts to give

UxE
(bt/x)1/af

(bt/x)1/a g̃~zv!

z
dzU

x50

x5`

2E
0

`

dxx
]

]xE(bt/x)1/af

(bt/x)1/a g̃~zv!

z
dz.

~58!

We assume thath̃(v) is analytic atv50 and integrable;
then

g̃~v!;v2 ~v→0! and g̃~v!→1 ~v→`!,

and since 0,a,2 the first term in Eq.~58! is zero. Finally,

ln p̃~v,t !5 lnp̃Lévy~v,t !1
1

aE0

`

@ g̃„@bt/x#1/av…

2g̃„@bt/x#1/avf~x!…#dx

1E
0

`

x
f8~x!

f~x!
g̃„@bt/x#1/avf~x!…dx, ~59!

wheref8(x) is the derivative of the pulse shape function a

ln p̃Lévy~v,t !52Mtva,

whereM is given by Eq.~31!. Note that whenf(x) is the
Heaviside step function the integrals on the right hand s
of Eq. ~59! vanish and Eq.~59! reduces to the Le´vy distri-
bution. Therefore, we can look at the second term on
right hand side of Eq.~59! as a correction to the Le´vy dis-
tribution whenf(x) is not exactly a Heaviside function but
steplike function very close to the Heaviside function. Th
may be evaluated, in principle, for any givenf and h̃. For
instance, we could takef to be of the form~33! with k large
and the Lorentzian

g̃~v!5
v2/2

11v2/2
,

corresponding toh(x)5e2A2uxu/A2. The form of the correc-
tion terms depends on the choice of the functions to an
tent, and so we will not discuss the explicit form it tak
here.
01111
e

e

x-

VIII. CONCLUSIONS

In this paper we have presented and analyzed a dynam
model based on a process that is a superposition of col
Poisson noises. The model was shown to have several at
tive features. The probability density function has long ta
which emerged in a natural way and, unlike the Le´vy distri-
bution, all the moments of the distribution are finite. W
believe that these properties make the distribution an id
candidate for describing stock market prices@6#.

Another property that may have relevance to physics
other natural sciences is the appearance of a power-law s
trum for the process. Once again we would like to stress
this result flowed naturally from the nature of the model a
the scaling assumptions, which reduceh and f from func-
tions of two variables to functions of a single variable.

In a more mathematical context, we believe that the
composition of the CF of our model into that of the Le´vy
plus additional terms is interesting, both as an example o
Edgeworth-type expansion and for the nature of the corr
tions to the Le´vy distributions when the parameters of o
model are chosen so that our distribution is near to the L´vy
one.

There are still some open questions. One of them is
extension of the model to the increments of the proc
Z(t,t2t0)5X(t2t01t)2X(t2t0) (t.t0), since in this
case we believe that the processZ(t,t2t0) becomes station-
ary when it starts in the infinite past (t0→2`). Another
interesting and open question is the actual application of
model to financial time series where some nonwhite corre
tion is observed@25#. Both points are presently being inve
tigated.
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APPENDIX A: CHARACTERISTIC FUNCTION
FOR COLORED SHOT NOISE

By generalizing Rice’s method@20#, we will now obtain
the probability distribution of the shot noiseY(u,t) defined
by Eq. ~2!:

Y~u,t !5 (
k51

`

Ak~u!f„t2Tk~u!;u…, ~A1!

where we assume that the random variablesAk(u) andTk(u)
are identically distributed and statistically independent. T
jump amplitudes are described by the PDFh(x,u)dx
5Prob$x,Ak(u),x1dx% and the jump timesTk(u) follow
a Poisson distribution of the parameterl(u). Define
0-8
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p~x1 ,t1 ;x2 ,t2 ;u!dx1dx2

5Prob$x1,Y~u,t1!,x11dx1 ;x2,Y~u,t2!,x21dx2%

to be the joint PDF of the process witht2>t1. This PDF can
be written as

p~x1 ,t1 ;x2 ,t2 ;u!

5 (
n150

`

(
n250

`

p~x1 ,t1 ;x2 ,t2 ;uun1 ,n2!P~n1 ,t1 ;n2 ,t2 ;u!,

~A2!

where p(x1 ,t1 ;x2 ,t2 ;uun1 ,n2) is the conditional PDF as
suming that exactlyn1 pulses have occurred at timet1 and
n2 pulses at timet2 . P(n1 ,t1 ;n2 ,t2 ;u) is the joint probabil-
ity for the occurrence of such pulses. Sincet2>t1 then n2
>n1 and

P~n1 ,t1 ;n2 ,t2 ;u!

5H P~n22n1 ;t22t1 ;u!P~n1 ,t1 ;u! if n1<n2

0 otherwise, ~A3!

where

P~m,t;u!5
@l~u!t#m

m!
e2l(u)t ~A4!

is the Poisson distribution. Substituting Eq.~A3! into Eq.
~A2! and definingt15t, t25t1Dt, n15n, andn22n15m,
we obtain

p~x1 ,t;x2 ,t1Dt;u!5 (
n50

`

(
m50

`

p~x1 ,t;x2 ,t1Dt;uun,n

1m!P~m,Dt;u!P~n,t;u!,

and the characteristic function reads

p̃~v1 ,t;v2 ,t1Dt;u!5 (
n50

`

(
m50

`

p̃~v1 ,t;v2 ,t1Dt;uun,n

1m!P~m,Dt;u!P~n,t;u!. ~A5!

Note thatp̃(v1 ,t;v2 ,t1Dt;uun,n1m) is the joint charac-
teristic function of the truncated process

Yn~u,t !5 (
k51

n

Ak~u!f„t2Tk~u!;u….

Hence
01111
p̃~v1 ,t;v2 ,t1Dt;uun,n1m!

5K expF iv2(
j 51

n

Aj~u!f„t1Dt2Tj~u!;u…

1 iv1(
k51

n

Ak~u!f„t2Tk~u!;u…

1 iv2 (
l 5n11

n1m

Al~u!f„t1Dt2Tl~u!;u…G L .

Taking into account thatAk(u) and Tk(u) are independen
and identically distributed random variables, we have

p̃~v1 ,t;v2 ,t1Dt;uun,n1m!

5@^exp$ iv2Aj~u!f„t1Dt2Tj~u!;u…

1 iv1Ak~u!f„t2Tk~u!;u…%&#n

3@^exp$ iv2Al~u!f„t1Dt2Tl~u!;u…%&#m,

and, since the random timesTk(u) are Poissonian,

^exp$ iv2Ak~u!f„t1Dt2Tk~u!;u…

1 iv1Ak~u!f„t2Tk~u!;u…%&

5E
2`

`

h~a,u!daE
0

tdt8

t
exp$ ia@v2f~ t1Dt2t8;u!

1v1f~ t2t8;u!#%5
1

t E0

t

h̃„v2f~ t1Dt2t8;u!

1v1f~ t2t8;u!;u…dt8,

where h̃(v;u) is the Fourier transform of the jump PD
h(x;u). Analogously,

^exp$ iv2Ak~u!f~ t1Dt2Tk~u!;u!%&

5
1

DtEt

t1Dt

h̃„v2f~ t1Dt2t8;u!;u…dt8.

Therefore,

p̃~v1 ,t;v2 ,t1Dt;uun,n1m!

5F1

t
F~v2 ,t1Dt;v1 ,t;u!GnF 1

Dt
G~v2 ,t1Dt;t;u!Gm

,

~A6!

where

F~v2 ,t1Dt;v1 ,t;u!

[E
0

t

h̃„v2f~ t1Dt2t8;u!1v1f~ t2t8;u!;u…dt8

~A7!

and
0-9
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G~v2 ,t1Dt;t;u![E
t

t1Dt

h̃„v2f~ t1Dt2t8;u!;u…dt8.

~A8!

Substituting Eq.~A6! into Eq. ~A5! yields

p̃~v1 ,t;v2 ,t1Dt;u!

5H (
n50

` F1

t
F~v1 ,t;v2 ,t1Dt;u!Gn

P~n,t;u!J
3H (

m50

` F 1

Dt
G~v2 ,t1Dt;t;u!Gm

P~m,Dt;u!J .

Introducing Eq.~A4! into this and performing the resultin
sums we get

p̃~v1 ,t;v2 ,t1Dt;u!

5exp$2l~u!@ t2F~v2 ,t1Dt;v1 ,t;u!#

2l~u!@Dt2G~v2 ,t1Dt;v1 ,t;u!#%.

Finally,

p̃~v1 ,t;v2 ,t1Dt;u!

5expH l~u!E
0

t

dt8@ h̃„v1f~ t8,u!1v2f~ t81Dt,u!…

21#1l~u!E
0

Dt

dt8@ h̃„v2f~ t8,u!…21#J , ~A9!

which agrees with Eq.~7!. If in Eq. ~A9! we setv15v and
v250, we obtain the one-time characteristic function~6!:

p̃~v,t;u!5expH l~u!E
0

t

dt8@ h̃„vf~ t8,u!…21#J .

~A10!

APPENDIX B: CUMULANTS FOR A STEPLIKE
FUNCTION

We will derive closed expressions for the cumulants~37!

^^X2n~ t !&&5
~21!nh̃(2n)~0!

2n
~bt!2n/aE

0

`f2n~x!

x2n/a
dx,

~B1!

whenf(x) is the steplike function~33!

f~ t !5H 12e2kt if t.0,

0 otherwise.
~B2!

The substitution of Eq.~B2! into Eq. ~B1! leads us to evalu-
ate the following integral:
01111
I 2n5E
0

`~12e2kx!2n

x2n/a
dx5E

0

` dx

x2n/a FkxE
0

1

e2kxuduG2n

5k2nE
0

1

du1•••E
0

1

du2nE
0

`

x2n(121/a)

3expH 2kxS (
i 51

2n

ui D J dx.

Define the new integration variable

j5kxS (
i 51

2n

ui D ;

then

I 2n5k2112n/aE
0

1

du1•••E
0

1

du2nS (
i 51

2n

ui D 2122n(121/a)

3E
0

`

e2jj2n(121/a)dj.

But

E
0

`

e2jj2n(121/a)dj5G~112n22n/a!.

Defining the numbers

A2n[E
0

1

du1•••E
0

1

du2nS (
i 51

2n

ui D 2122n(121/a)

, ~B3!

we finally have

^^X2n~ t !&&5
~21!2nh̃(2n)~0!

2n
A2nk2112n/a

3G~112n22n/a!~bt!2n/a, ~B4!

which is Eq.~42!. Note that whenn51 Eq. ~B4! reduces to
Eq. ~34!.

APPENDIX C: CONVERGENCE OF INTEGRALS

Let us first check the existence of cumulants~37!. Assum-
ing the asymptotic behavior given by Eq.~38!, then the con-
vergence of the integral on the right hand side of Eq.~37! as
x→0 implies that the scaling exponenta has a lower bound:

a.
2n

112nb
. ~C1!

On the other hand, assuming Eq.~39! then the convergence
of Eq. ~37! whenx→` implies that the scaling exponenta
also has an upper bound:

1

a
.g1

1

2n
. ~C2!
0-10
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Moreover, wheng>0 then if

1

g11/2
.a.

1

b
~C3!

all cumulants will exist. Note that Eq.~C2! holds whenever
g>21/2n. Therefore,g>0 is a sufficient condition for its
validity. Finally, if g,21/2 there is no upper bound on th
accepted values ofa.

We now prove the existence of the power spectral den
C̃(v) given by Eq.~45!. Obviously this density will exist if
the integral

J5E
0

`

j2/auf̃~j!u2dj,`.

In order to prove the existence ofJ we first need to show tha
the Fourier transform of the pulse function,f̃(j), exists.
Note that any step or steplike function does not have a F
rier transform and consequently the power spectrum is i
tri-
he

i

C

v

01111
ty

u-
-

nite. For the existence off̃(j) it suffices thatf(x) be abso-
lutely integrable, and from the asymptotic behavior given
Eq. ~39! we have to impose thatg,21. This in turn implies
that f̃(j);j212g asj→0 and, sinceg,21, the integralJ
at its lower limit is always finite for anya.0. On the other
hand, if f(x) satisfies Eq. ~38! as x→0, then f̃(j)
;j212b asj→`. Hence,J will be finite if a.1/(b11/2)
@see also Eq.~C1!#. Therefore, the processX(t) has a finite
power spectrum iff(x) is absolutely integrable on the rea
line, andX(t) has a finite second cumulant Eq.~C1!, i.e.,

a.
1

b11/2
. ~C4!

In such a case, we see from Eq.~45! that X(t) exhibits a
power-law spectrum with exponentn5112/a. Moreover
@recall thata.0, and Eq.~C4!#,

1,n,2~11b!. ~C5!
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