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Abstract: We analyze the 28Si nucleus using an analytical SU(3)-based model as well as state of
the art numerical shell model calculations. In principle, spherical, oblate and prolate structures can
coexist at low energies. However, we found that the spherical shape in 28Si does not survive because
the 1d5/2-2s1/2 nearly degenerated doublet gains huge amounts of quadrupole correlations, which
favors deformed bands. Although the standard USDB interaction reproduces the oblate ground
state and the vibrational band, it fails at establishing a prolate band. A modification of the USDB
interaction must be introduced to reproduce the experimental spectrum. Our calculations suggest
that the oblate ground state is mostly 0p-0h, whereas the prolate band consists mainly of 4p-4h
excitations into the 1d3/2 orbital.

I. INTRODUCTION

Atomic nuclei are self-bound systems comprised of
strongly interacting nucleons. Although the premise
might be simple-looking, it gives rise to spectacular com-
plex phenomena, which can be inferred from experimen-
tal data. Amidst others, the coexistence of spherical
states, normal deformed (ND) and superdeformed (SD)
rotational bands at low energy states has been a puzzling
topic of interest. These names refer to the intrinsic shape
in the laboratory frame of the states of the band. These
rotational bands are due to collective behavior rather
than single-particle excitations, which points out to the
importance of collectivity in nuclei.

Hitherto, medium-mass nuclei such as 40Ca [1], 40Ar [2]
[3], 42Ca [4] and 36Ar [5] have been found to exhibit com-
petition among spherical and unlike kinds of deformed
states. In this work, we focus on 28Si, which is an even-
even nucleus formed by 14 protons and 14 neutrons. Sev-
eral studies [6–8] show that the 3 lowest-lying 0+ states
are bandheads of an oblate rotational band, a vibrational
band and a prolate rotational band, respectively. Prolate
shapes are axially symmetric spheroids elongated along
one axis while oblate ones are flattened. Therefore, 28Si
presents shape coexistence between prolate and oblate
states, whereas the spherical one does not survive. The
observed spectrum is represented on Fig. 1 (left panel).

In this work, our aim is to understand experimental
data both from a simple analytical SU(3) scheme (sec-
tion II) and state of the art shell model computational
calculations (section III).

II. ANALYTICAL SU(3) MODEL

A. Deformation in nuclei

Rotational bands are characteristic of non-spherical
nuclei, which acquire a permanent deformed shape due
to their rotation in the intrinsic frame of reference [9].
This resembles an ideal rotor with a constant moment

FIG. 1: Band structure of the lowest-lying positive parity
states of 28Si: left, experiment [6]; center, calculation using
the USDB mod interaction and right, using USDB. The ar-
rows indicate in-band B(E2) transition strenghts (e2 fm4),
with larger values associated to more deformed shapes. The
labels “vib”, “ND” and “GS” stand for vibrational band, nor-
mal deformed band and ground state, respectively.

of inertia I. The kinetic energy (Ekin) depends on the

value of L⃗2, where L⃗ is the orbital angular momentum
of the rotor. Thus, taking the usual quantum approach,

one ends up with Ekin = L(L+1)
2I , where L is the orbital

quantum number (we consider ℏ = 1). Extending this

analysis to the coupled scheme J⃗ = L⃗+ S⃗, where J⃗ is the

total angular momentum and S⃗ is the spin, excited states
in the laboratory frame follow a sequence proportional to
J(J + 1), where J is the total angular momentum quan-
tum number.
The electric quadrupole moment denotes the deforma-

tion of the nucleus. For spherical shapes, the quadrupole
moment vanishes. In the laboratory frame, it is defined
by [10]

Qspec ≡
√

16π

5

√
J(2J − 1)

(J + 1)(2J + 1)(2J + 3)
(J ||Q20||J),(1)

where Q20 =
∑A

j=1 ejr
2
jY20(θj , ϕj): ej are the effective
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nuclear charges, A is the mass number, Y20 is the spher-
ical harmonic and (rj , θj , ϕj) are the spherical coordi-
nates of the jth nucleon. The notation (J ||Q20||J) indi-
cates a reduced matrix element [10]. Additionally, the
states that belong to a rotational band are connected by
strong electromagnetic transitions, quantified by the re-
duced B(E2) transition strength between an initial (Ji)
and a final (Jf ) state:

B(E2; Ji → Jf ) ≡
1

2Ji + 1
|(Ji||Q20||Jf )|2. (2)

It is possible to measure both B(E2) transitions as well
as the Qspec’s, which allows us to compute the values of
the intrinsic quadrupole moments [1]:

Q0,t = ±

√
16πB(E2, J → J − 2)

5|⟨J020|J − 2, 0⟩|2
, (3)

Q0,s =
−(2J + 3)

J
Qspec, (4)

where ⟨J020|J − 2, 0⟩ is a Clebsch-Gordan coefficient.
Positive intrinsic quadrupole moments are associated to
prolate shapes while negative ones are oblate. States
of a rotational band with well-established intrinsic
quadrupole moment fulfill Q0,s ≈ Q0,t.
Finally, it is useful to define a deformation parameter

β that allows one to compare different nuclei:

β =

√
π

5

Q

R2Ze
; R = 1.2A1/3fm, (5)

where Z is the atomic number and e is the elementary
charge. Throughout the study we consider that a state
is normal deformed if 0.3 <∼ β <∼ 0.4 and superdeformed
if β >∼ 0.6.

B. Spherical mean field

Through the years, plenty of methods have been pro-
posed to explain the structure and dynamics of nuclei.
Notably, one of the most common knowledge might be
the spherical mean field. In this approach, the two-body
nucleon interaction is approximated by a mean field har-
monic oscillator potential [11]. This choice stems from
the multiple symmetries that it possesses. Nevertheless,

orbital l⃗ · l⃗ and spin-orbit (SO) l⃗ · s⃗ terms must be in-
cluded to accommodate experimental evidence, such as
magic numbers. Thus, the potential energy representing
the nuclear mean field ends up being

U(r) =
1

2
ωr2 +Al⃗ · l⃗ +Bl⃗ · s⃗, (6)

where ω is the angular frequency, l⃗ is the orbital angular
momentum, s⃗ is the spin and A and B are constants.
The resulting single-particle levels are represented in Fig.
2. Hence, for this “independent particle model” the 28Si

FIG. 2: Spherical mean field single-particle orbitals for both
protons and neutrons. From left to right: major harmonic
oscillator shells and spin-orbit splitting. Taken from [12].

ground state (GS) is obtained by independently filling
the 14 protons and 14 neutrons up to the 1d5/2 orbit
(included). This would lead to a spherical state, which
does not agree with the experimental spectrum of 28Si
(see Fig. 1). Moreover, most nuclei are deformed and a
new formalism must be used to explain this phenomenon.
Elliott’s SU(3) model draws on the symmetries of the
harmonic oscillator to explain this behavior.

C. SU(3) model

Deformation in nuclei can be incorporated by intro-
ducing quadrupolar interactions −2q20 · 2q20 to the nu-
clear Hamiltonian, where q20 ≡ r2

√
4π/5 Y 20. El-

liott’s SU(3) scheme [13] considers a strong presence of
quadrupole interactions restricted to a major harmonic
oscillator shell with quantum number N . Then, con-
figuration mixing, in this restricted space, is taken into
account to maximize the intrinsic quadrupolar moment
Q0 = 2q20 = (2nz − nx − ny)b

2, where ni are the carte-
sian components, nx + ny + nz = N , and the harmonic

oscillator parameter b2 ≈ 41.4/(45A−1/3 − 25A−2/3) fm2

is fitted to measured nuclear charge radii [10]; for 28Si
b2 ≈ 3.42 fm2. The states of a rotational band share this
intrinsic deformed shape. For instance, in the sd shell
(N=2), we end up with the quadrupole SU(3) diagram
of Fig. 3, a) panel. The orbits that appear have fourfold
degeneracy, due to spin and isospin projections.
Let us apply the SU(3) scheme to 28Si. In the indepen-

dent particle model, a spherical state with 12 nucleons
occupies the lowest-lying 1d5/2 orbit. For a single orbit,
with total angular momentum number j and projection
m, Q0 is given by [14]

Q0 =
∑
m

(N + 3/2)
j(j + 1)− 3m2

2j(j + 1)
b2. (7)

Indeed, if we add up all the contributions of a closed
shell, then Q0 = 0. On the other hand, Elliott’s scheme
allows the 12 particles to distribute among the sd shell
orbits, such that |Q0| is maximal. The quadrupole cor-
relation energy scales as the square of the intrinsic elec-
tric quadrupole moment Q0. Thus, configurations that
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FIG. 3: Quadrupole diagrams of the different SU(3) variants
considered in this work. The (-) quadrupole moment Q0 is
represented for each available 2|m| value, where m is the pro-
jection of the total angular number j. Prolate states are ob-
tained by filling from below and oblate ones from above.

maximize Q0 may have the chance to overcome the corre-
sponding single-particle energy differences. The prolate
state is built by filling diagram 3 a) from below resulting
in Q0 = (4 ·4+1 ·8+3)b2 = 27b2, where a 3b2 term must
be added by comparison with ideal rotors [15]. Likewise,
the oblate state also has Q0 = (−2 · 12 − 3)b2 = −27b2.
We recover dimensions multiplying Q0 by the nuclear ef-
fective charges: eπ = 1.5e for protons and eν = 0.5e for
neutrons. Then, |Q0| = (12 · 1.5e + 12 · 0.5e + 3e) · 3.42
fm2=92.3 e fm2. Therefore, the SU(3) model predicts
28Si with degenerate oblate/prolate states with the above
values. Nevertheless, as shown in Fig. 1, the experi-
mental oblate ground state and the ND prolate band are
almost 7 MeV apart.

D. SU(3) variants

Thus far, Elliott’s pure SU(3) approach does consider
all the major harmonic oscillator orbits degenerate, albeit
SO splitting can be quite significant. Therefore, SU(3)
overestimates quadrupole correlations. However, other
SU(3) schemes [14] exist that deal with this issue, reduc-
ing the symmetry in exchange of a more realistic view.

One of the SU(3) variants is the quasi-SU(3) scheme,
tailored for ∆j = 2 orbitals. This scheme exploits that
∆j = 1 single-particle matrix elements of q20 are weaker
than ∆j = 2 ones [16]. For instance, in the sd shell this
scheme involves the 1d5/2-2s1/2 doublet, as represented
in Fig. 3 b).

If an orbit is quite far apart from the others, the single-
orbit may be the best fit. In this case, the quadruple
moment is shown in Fig. 3 c), following Eq. (7).

A (d5/2-s1/2)+d3/2 prescription is best suited for 28Si

since d5/2-s1/2 are only 0.7 MeV apart in comparison to
∼5 MeV between the doublet and d3/2 (single-particle
energies extracted from the USDB interaction [17]). The
np-nh notation stands for promoting n particles, protons
or neutrons, from the d5/2-s1/2 orbitals to the d3/2 one.
The corresponding quadrupole moments are collected in
table I. For example, to obtain the oblate 0p-0h con-
figuration we fill diagram 3 b) with 12 particles from
above Q0 = (8 · (−2) + 4 · 0.5− 3)/2 · (0.5 + 1.5)e · (3.42)
fm2= -58.1 e fm2 or for the prolate 4p-4h configuration
Q0 = (4 · 3.5 + 4 · 0.5 + 4 · 1.4 + 3)/2 · (0.5 + 1.5)e · (3.42)
fm2= 84.1 e fm2. The large Q0 for the oblate 0p-0h con-
figuration is remarkable, because just by adding the s1/2
orbit there is a huge gain of correlation with respect to
the filled d5/2 spherical picture. Since the s1/2 orbit is
very close to the d5/2 and the gain in collectivity is large,
the system gravitates towards an oblate deformed shape
instead of the spherical one. Moreover, the experimental
data is quite close to our prediction: Q0,t = −57.3 e fm2

(β =0.25) [7], although this does not imply that the real
GS is that simple.
Table I indicates that with respect to ND bands (0.3 <∼

β <∼ 0.4), the best candidates are the oblate 2p-2h and
4p-4h configurations. In the former, 13 e fm2 are gained
with respect to the 0p-0h configuration. In the latter, the
difference is also 13 e fm2 with respect to 2p-2h. How-
ever, as the correlation energy scales quadratically with
the quadrupole moment and the np-nh single-particle en-
ergy is linear with the amount of excited particles, the
4p-4h might be a better candidate, provided that the
quadrupole force is strong enough. The remaining 6p-
6h and 8p-8h configurations are disfavored due to higher
single-particle energy and smaller |Q0|.

III. NUCLEAR SHELL MODEL

The starting point of the nuclear shell model is the
spherical mean field, which sets the single-particle ba-
sis. However, the full space is intractable due to the very

TABLE I: Quadrupole moments (e fm2) for the experimental
GS and ND bands, the possible spherical state and the np-nh
configurations in the analytical (d5/2-s1/2)+d3/2 scheme and
the shell model numerical calculations. We also present SU(3)
predicted values as well as numerical GS and the possible ND
results obtained with the USDB interaction.

Q0,spherical Qexp,GS Qexp,ND

0 -57.3±0.7 70±7

Analytical 0p-0h 2p-2h 4p-4h 6p-6h 8p-8h Pure SU(3)

Q0,prolate 37.6 60.9 84.1 71.1 58.1 92.3

Q0,oblate -58.1 -71.1 -84.1 -60.9 -37.6 -92.3

Numerical 0p-0h 2p-2h 4p-4h 6p-6h 8p-8h GS ND?

Q0t,USDB ±41.6 ±49.4 ±68.2 ±53.9 ±45.2 ±70.7 ±46.6

Q0s,USDB -45.7 16.0 66.4 ±46.4 9.8 -73.0 31.2

Treball de Fi de Grau 3 Barcelona, June 2022



Nuclear shell model and analytical SU(3) description of 28Si Dorian Frycz

large number of Slater determinants, because shell model
wave functions are linear combinations of Slater determi-
nants. The solution is to restrict the many-body problem
to a valence space, close to the Fermi level of the inde-
pendent particle model. As a result, we end up with an
inert core, with levels that are forced to remain always
full, and an empty external space. The valence space is
in between and contains the remaining nucleons. Now,
an effective interaction (Heff ) tailored for the valence
space is needed. This is the residual interaction between
nucleons.

For 28Si, a natural valence space is the sd-shell. Hence,
we have an 16O inert core and 12 particles to distribute
among the d5/2, s1/2 and d3/2 orbits. The interaction of
choice is the universal sd-shell interaction (USDB) [17],
which is adapted to medium-mass nuclei in this region.
In general, USDB describes very successfully the level
structure of nuclei in the sd-shell. Finally, we use the AN-
TOINE shell model code [11, 18] to solve the Schrödinger
equation to obtain the eigenvalues and eigenstates in the
valence space:

Heff |J⟩ = EJ |J⟩. (8)

ANTOINE builds up all the necessary Slater determi-
nants in the valence space and diagonalizes the Hamilto-
nian via a tridiagonal Lanczos method [12].

A. Fixed np-nh calculations

Calculations of np-nh configurations are restricted to a
truncated space where n particles are promoted to a space
with higher single-particle energies. ANTOINE provides
the electric B(E2) transition strengths between different
J levels, as well as the values of Qspec. The Q0 values
(table I) are extracted from these two methods and they
should agree if the deformation of the band is well estab-
lished.

Table I gives values of Q0t and Q0s close to each other
except for 2p-2h and 8p-8h, which means that there is
no intrinsic deformed state associated to these configu-
rations. The 0p-0h configuration is oblate, same as the
experimental GS and the analytical prediction. Now, for
the 4p-4h USDB predicts a prolate band, albeit the an-
alytical model considers prolate and oblate deformations
degenerate. This breaking in degeneracy might be due
to nuclear interaction effects that are beyond the single-
particle energies and the quadrupole interactions consid-
ered in the analytical scheme.

B. Full sd space calculations

The np-nh configurations mix in the unrestricted sd
space to minimize the state energy. This effect is incred-
ibly important in nuclei. For instance, the 0p-0h state
lies 7.5 MeV above the ground state when configuration
mixing is allowed.

With the USDB interaction we find a well-established
oblate rotational band, on top of the ground state: the
energies follow a J(J + 1) sequence, the B(E2)’s fulfill
Eq. (3) and the Qspec’s follow Eq. (4). The quadrupole
moments are |Q0t(2

+
GS → 0+GS)| = 70.7 e fm2 and

Q0s(2
+
GS) = −73.0 e fm2. However, they overestimate

the experimental value Q0,exp = −57.3± 0.3 e fm2 [7].
Another interesting property is the average occupation

number of each orbit. For the 0+GS we find that, on aver-
age, there are 9.32 particles in d5/2, 1.25 in s1/2 and 1.43
in d3/2. In contrast, for a spherical state we would expect
all 12 particles to be in d5/2 and for the 0p-0h the d3/2
should be empty. Indeed, the situation is quite complex
and our analytical schemes are just an approximation.
Experimental data shows that there is a ND prolate

band. Nonetheless, the band is not predicted by the
USDB interaction. There might be some states that re-
semble a band but the in-band transition strengths are
way too weak, as shown in Fig. 1. This means that the
4p-4h configuration in table I is diluted in the sd-shell
space. In Fig. 4 (top panel) we can observe that the
7.3 MeV, 0+3 state only has 10% of the 4p-4h configura-
tion. This component is not enough to produce a solid
rotational band that could be identified with the experi-
mental one.

C. Modification of the nuclear interaction

The USDB interaction fails at establishing a ND pro-
late band. To improve this deficiency we modify the gap
energy between the d5/2-s1/2 and d3/2 single-particle en-
ergies. We expect that this change will allow the cor-
relation energy to overcome the single-particle one suffi-
ciently to establish a rotational band. This change will
not affect the quadrupole moment of the np-nh configu-

FIG. 4: Probability of the 4p-4h configuration (%) in the full
sd-shell states, with each eigenstate convoluted with Gaus-
sians of 200 keV width: top panel, USDB interaction; bottom
panel, USDB mod.
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FIG. 5: In-band B(E2) values. Experimental values com-
pared to the USDB, USDB mod and analytical calculations.

rations from table I. Instead, it allows the structure to
survive the configuration mixing in the full sd space.

Our interaction, which we call USDB mod, is adjusted
to Egap = 4.5 MeV (for USDB Egap = 5.9 MeV) between
the d5/2-s1/2 and d3/2 orbits. This choice is not unique
but it balances out the B(E2) experimental transitions,
the state energies and it keeps the vibrational 0+vib state

below the 0+ND one. Remarkably, by lowering the gap

1.4 MeV, the presence of 4p-4h in the 0+3 state shown in
Fig. 4 increases from 10% to 20%. This is sufficient to
establish a well-behaved rotational band.

The corresponding spectra are represented in Fig. 1.
In Fig. 5 we collect all the B(E2) values obtained
thus far. The ND band shown at the right of the fig-
ure is described correctly by the USDB mod interaction
while USDB fails at creating this band and the analyt-
ical value B(E2, 4+ND → 2+ND) = 201 e2 fm4 overesti-
mates the experimental value. The vibrational band is
described well both in USDB and USDB mod. Finally,
the B(E2, 2+GS → 0+GS) is compatible with the analyt-
ical model while the numerical calculations are overes-
timated. Even though USDB mod has a slightly worse
prediction for the GS, this is more than compensated by
achieving a solid ND band. Overall, figures 1 and 5 high-
light the challenge of describing the coexistence of states

with different intrinsic deformation in 28Si.

IV. CONCLUSIONS AND OUTLOOK

In this work, we have focused on the nuclear struc-
ture of 28Si. First, we have seen how an analytical
SU(3)-based scheme can naturally explain which rota-
tional bands appear on the spectrum. We have shown
that the (d5/2-s1/2)+d3/2 space predicts an oblate ground
state mainly composed of 0p-0h configurations and a nor-
mal deformed band based on 4p-4h excitations. Numer-
ical fixed np-nh calculations point out to the same con-
clusions as the analytical model. However, in the full
sd space calculations the USDB interaction for 28Si de-
scribes well the ground state and the vibrational band,
but the normal deformed band is missing due to configu-
ration mixing. Our solution is to adjust a new interaction
so that the gap between the d5/2-s1/2 and d3/2 orbitals is
reduced by 1.4 MeV to better accommodate experimen-
tal values. With this change, the ND band survives and
describes very well the experimental data. Nonetheless,
the GS B(E2) transition strengths are slightly overesti-
mated.
For future work, we would like to explore a possible

superdeformed band in 28Si, which has been suggested
theoretically [8] and recently explored experimentally [6].
We have seen that excitations within the sd shell lead to
intrinsic shapes limited to β < 0.4, so the pf shell is
needed. Analytically, a promising prescription is to al-
low excitations from the 1d5/2-2s1/2 to the 1f7/2-2p3/2
nearly degenerated doublet, which features a prolate 4p-
4h configuration with β = 0.76, obtained following Fig. 3
d). As a final step, we plan to carry out shell model cal-
culations with an interaction suitable to the sd-pf space.
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