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Random diffusion and leverage effect in financial markets
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We prove that Brownian market models with random diffusion coefficients provide an exact measure of the
leverage effect@J-P. Bouchaudet al., Phys. Rev. Lett.87, 228701~2001!#. This empirical fact asserts that past
returns are anticorrelated with future diffusion coefficient. Several models with random diffusion have been
suggested but without a quantitative study of the leverage effect. Our analysis lets us to fully estimate all
parameters involved and allows a deeper study of correlated random diffusion models that may have practical
implications for many aspects of financial markets.
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The dynamics of particles in random media can be u
for a large variety of phenomena in statistical physics a
condensed matter@1#. This class of models has been appli
to polymer transport, electrospin dynamics of polarons, p
tein dynamics, and flux lines in highTc superconductors
@1,2#. Likewise, in modeling financial markets there also e
ist several approaches based on random diffusion althoug
mathematical finance these are known as stochastic vola
~SV! models @3,4#. The aim of this paper is to stress th
importance of the random diffusion approach in market
namics by explaining the leverage effect, an old phenome
only very recently quantified@5#. In the past decade, ther
has been an increasing interest in applying the method
statistical physics to the study of speculative markets@6#.
The present work adopts the same philosophy.

The multiplicative diffusion process known as the ge
metric Brownian motion~GBM! has been widely accepted a
a universal model for speculative markets. The model, s
gested by Bachelier in 1900 as an ordinary random walk
redefined in its final version by Osborne in 1959@7#, presup-
poses a constant ‘‘volatility’’s, that is to say, a constan
diffusion coefficientD5s2. However, and especially afte
the 1987 crash, there seems to be empirical evidence,
bodied in the so-called ‘‘stylized facts,’’ that the assumpti
of constant volatility does not properly account for importa
features of markets@8#. It is not a deterministic function o
time either~as might be inferred by the evidence of nons
tionarity in financial time series! but a random variable. In
its more general form one therefore assumes that the vo
ity s is a given function of a random processY(t), i.e.,
s(t)5f„Y(t)….

We may make an analogy from physics saying that spe
lative pricesS(t) evolve in a random medium determined b
a random diffusion coefficient. The randomness of the m
dium constrains the amplitude of price changes. It is co
monly asserted that this amplitude is directly related to
market activity and the number of contracts negotiat
Hence, periods with high market activity indicate large va
ety of trading positions and this, in turn, implies a consid
able dispersion of possible changes in prices at every t
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step. In the opposite case, low market activity indicate
small variety of market positions and finally, a small disp
sion in possible future prices. In this sense, we may say
market stochastic dynamics fluctuates with an amplitu
quantified by a random diffusion coefficientD. This coeffi-
cient is related to market activity in the same manner as
physics the diffusion coefficient is related to temperature@9#.
In this way, we are thus assuming that market activity is
constant but stochastic and is governed by the random ar
of information to the markets.

Most stochastic volatility models studied to date assu
thatY(t) is itself a diffusion process that may or may not
correlated with price and these generally differ from ea
other in the form of the functionf @3,4#. The hypothesis of
stochastic volatility was originally suggested to explain t
so-called ‘‘smile effect’’ which is related to implicit volatili-
ties in option prices. The smile effect has been thoroug
studied both qualitatively and quantitatively@10,11#. How-
ever, other features referred more directly to the statist
properties of SV models are solely studied from a qualitat
point of view @12# or by giving numerical coefficients base
on ARCH-GARCH models@13#.

Our main objective is to prove that leverage can be qu
titatively explained in terms of a wide class of correlated S
models. This will allow us to overcome the main objectio
against SV models: the impossibility of fitting all paramete
appearing in these models@4,12#. This, then opens the doo
to further statistical studies based on SV models for r
markets with far-reaching practical consequences for op
pricing and risk management.

The leverage effect has its origin in the observation t
volatility seems to be negatively correlated with stock
turns. These are defined byR(t)5 ln@S(t)/S(0)# whereS(t) is
the speculative price at timet. The first explanation for this
empirical fact was suggested by Black@14# and Christie@15#.
They say that negative returns increase financial levera
which extends the risk of the company, and therefore
volatility. Hence the name of ‘‘leverage effect.’’ Neverthe
less, the cause of this effect is still unclear since anot
contrary explanation can be given, namely, that an incre
of volatility makes the stock riskier which produces a fall
demand. As a result the price of the stock drops@3#.

In a very recent paper, Bouchaudet al. @5# performed an
empirical study of the leverage effect for both individu
©2003 The American Physical Society02-1
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stocks and indices based on daily data. The volatility-ret
~negative! correlation was clearly shown to have a defin
direction in time—a very confusing fact in the literature—
since correlations have been shown to exist between fu
volatilities and past returns. Bouchaudet al. conclusively
prove from data that the negative correlation decays ex
nentially in time, and is faster for indices than for individu
stocks@5#.

In this paper, we present a theoretical study of these
relations and show that a wide class of random diffus
models can be invoked to explain the leverage effect
agreement with experimental observations. The starting p
is the GBM model:

dR5mdt1s~ t !dW1~ t !, ~1!

wherem is the drift ands(t)5s„Y(t)… is a random volatility
andY(t) is a diffusion process,

dY5 f ~Y!dt1g~Y!dW2~ t !. ~2!

In these equations,Wi(t) ( i 51,2) are Wiener processes, i.e
dWi(t)5j i(t)dt wherej i(t) are zero-mean Gaussian whi
noises with^j i(t)j i(t8)&5d(t2t8) and only one nonzero
cross correlation given by

^j1~ t !j2~ t8!&5rd~ t2t8! ~3!

(21<r<1). As is common in finance, Eqs.~1! and~2! are
interpreted in the sense of Itoˆ and for the rest of the paper w
will follow the Itô convention@16#.

Bouchaudet al. @5# quantify the leverage effect by mean
of a leverage correlation function defined by

L~t![
1

Z
^dX~ t1t!2dX~ t !&, ~4!

where X(t)[R(t)2mt is the zero-mean return andZ
5^dX(t)2&2 is a convenient normalization coefficient. The
have analyzed a large amount of daily relative changes
both market indices and stock share prices finding that

L~t!5H 2Ae2bt if t.0,

0 if t,0
~5!

(A,b.0) @5#. Hence, there is an exponentially decayi
negative correlation between future volatility and past
turns changes. No correlation is found between past volat
and future price changes. In this way, they provide a sor
causality to the leverage effect which, to our knowledge,
never been previously mentioned in the literature@3,4#.

Let us sketch how correlated SV models are able to
actly reproduce this result. We take Eq.~1! in terms of the
zero-mean return and obtain

L~t!5^s~ t !dW1~ t !s~ t1t!2dW1~ t1t!2&/Z.

Note that whent,0, Itô’s rules tell us thatdW1(t) is un-
correlated with the remaining random variables. Then, rec
ing that ^dW1(t)&50, we haveL(t)50 if t,0. On the
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other hand, whent.0, dW1(t1t) is uncorrelated with the
remaining terms and, since^dW1(t1t)2&5dt, we conclude
that

L~t!5u~t!^s~ t !dW1~ t !s~ t1t!2&dt/Z, ~6!

where u(t) is the Heaviside step function andZ
5^s2(t)&2dt2. Note that we have proved the existence
correlations between future volatilities and past returns
not vice versa. Note also that this is independent of the
derlying volatility processY(t) and of the specific form ofs
in terms ofY.

Suppose now thatY(t) is a diffusion process given by Eq
~2!. As is well known, any pair of correlated Wiener proces
such asW1(t) and W2(t), satisfies the identitydW1(t)
5rdW2(t)1A12r2dW(t), where W(t) is a Wiener pro-
cess independent ofW2(t) @so thatW(t) is independent of
s]. Substituting this identity into Eq.~6!, we getL(t) in
terms of the averagês(t)s(t1t)2j2(t)&. This average can
be calculated by means of Novikov’s theorem@17# with the
result @18#

L~t!5
2ru~t!

^s2~ t !&2 K s~ t !s~ t1t!s8~ t1t!
dY~ t1t!

dj2~ t ! L , ~7!

wheres85]s(Y)/]Y anddY(t1t)/dj2(t) is the functional
derivative ofY(t1t,@j2#) with respect toj2(t) @17#.

There is a wide consensus that volatility has the prope
of reverting to the mean. In other words, there exists a n
mal level@19# to which the volatility eventually returns@13#.
For a general SV model such as Eqs.~1! and ~2!, the exis-
tence of mean reversion implies restrictions on the form
the drift coefficientf (Y). A simple way to incorporate this
experimental fact into the model is to assume thatf (Y) is
linear. That is,

Ẏ52a~Y2m!1g~Y!j2~ t !, ~8!

wherea.0. The formal solution to this equation in the st
tionary state reads

Y~ t !5m1E
2`

t

e2a(t2t8)g„Y~ t8!…j2~ t8!dt8,

from which we get@18#

dY~ t1t!

dj2~ t !
5u~t!e2atg„Y~ t !…expF E

t

t1t

g8„Y~s!…j2~s!dsG .
A substitution of this expression into Eq.~7! yields

L~t!5ru~t!B~t!e2at, ~9!

where

B~t!5
2^s~ t !s~ t1t!s8~ t1t!G~ t,t1t!&

^s2~ t !&2
, ~10!

and
2-2
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G~ t,t1t!5g„Y~ t !…expF E
t

t1t

g8„Y~s!…j2~s!dsG . ~11!

In consequence, any SV model of the form given by Eqs.~1!
and ~8! in which the functionB(t) increases no faster tha
eat ast→`, satisfies an exponentially decaying leverage
expressed by Eq.~9!. Moreover, if s(Y) is an increasing
function ofY with fixed sign andg(Y) is positive definite~or
s is decreasing andg is negative!, we see from Eq.~9! that
the correlation coefficientr must be negative and drivin
noisesW1(t) and W2(t) are anticorrelated. Equations~9!–
~11! constitute the main result of the paper.

The exact form ofL(t), will depend on the expression o
B(t) which in turn will depend on the SV model chose
Within diffusion theory, as is the case of Eq.~8!, there are
basically three different SV models@4#: ~1! The Ornstein-
Uhlenbeck~OU! model wheres5Y andg(Y)5k ~a positive
constant! @20,21#, ~2! the exponential Ornstein-Uhlenbec
~expOU! model wheres5eY andg(Y)5k @12#, and~3! the
Cox-Ingersoll-Ross~CIR! model, also called Heston mode
@11#, wheres5AY and g(Y)5kAY. For all these models
the leverage function has the form given by Eq.~9!. In the
OU model and in the CIR model~the latter with zero-mean
reversion, i.e.,m5k2/4a), the leverage functionL(t) is,
respectively, given by@18#

L1~t!52kru~t!Fm21~k2/2a!e2at

~m21k2/2a!2 Ge2at, ~12!

L3~t!54
ra

k
u~t!e2at, ~13!

while for the expOU model we have@18#

FIG. 1. The leverage effect in the Dow-Jones daily index.
plot the leverage functionL(t) for the DJ from 1900 until 2000.
We see that there exists a non-negligible correlation whent.0 and
negligible whent,0 and that correlation strongly fluctuates wh
23,t,2. We also plot a fit with the OU SV leverage functio
~12! allowing us to estimatea andr.
03710
s

L2~t!52rku~t!exp@2m1k2~e2at23/4!/a#e2at.
~14!

We note that all these models have similar properties
present an exponential decaying leverage as shown in
~see Fig. 1!. Nonetheless, CIR and expOU models assum
positive s while for the OU model there is a nonzero, b
small, probability of having negative values ofs @21#.

Any market model, besides being able to reproduce
market dynamics, must provide a systematic way of evalu
ing its parameters. Almost all current SV models have fo
parameters to estimate:r, k, m, anda. Until very recently,
all existent works on SV models are only able to evalu
two of them. Thus, for instance, Fouqueet al. @12# estimatek
andm from the empirical second and fourth moment of da
data but cannot estimatea and r. This is a significant ob-
jection to SV models. The situation changes complet
when the leverage is measured. Indeed,k andm are obtained,
as usual, from the empirical second and fourth mome
Next, by adjustinge2at to the leverage empirical data we a
able to estimatea. Moreover, comparing the theoretical an
empirical leverage att501, L(01), we finally obtainr.

FIG. 2. Dow-Jones index and path simulations. We show a
daily returns sample path~top!, its simulation by means of the OU
SV process~middle!, and the GBM simulation~bottom!. All param-
eters of the simulations are estimated from the whole DJ histor
time series~1900–2000!. Dynamics is traced over 300 days and, f
the DJ path, this nearly corresponds to 1999.
2-3
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To our knowledge, the only alternative to this method
estimating parameters is given by the recent work of D
gulescu and Yakovenko@22#, who study the probability dis-
tribution of the CIR model and obtain the parameters
minimizing the mean square deviation between the lo
rithms of the theoretical and empirical return distributio
@22#.

Following our procedure, for the Dow-Jones~DJ! daily
index and using the OU model, we have estimatedk5(2
61)31023day21, m5(1665)%yr21/2, 1/a51466 days,
and r520.560.1. Errors are evaluated by consideri
sample data of 100 years in ten samples of 10 years. F
the parameter estimation in every interval, we can obta
mean and a standard deviation for each parameter of
model.

As an illustration we have simulated, using Eqs.~1! and
~8!, the OU resulting process with our earlier paramete
estimates. We follow the random dynamics of the da
changes of the zero-mean return,X(t), and compare it with
the empirical DJ time series during approximately one tr
ing year. We have also simulated the GBM assuming a c
stant volatilitys whose value is directly estimated from D
for one century data. These results are shown in Fig. 2.
serve that GBM cannot describe either the largest or
smallest fluctuations of daily returns. We nonetheless se
the figure that the SV model chosen describes periods of
v.

cz

,
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volatility together with periods of very low volatility, result
ing in a more similar trajectory to the DJ index than that
the GBM. This is quite remarkable, because we have sim
lated last year trajectory using the past 100 years of d
available of the DJ index thus showing the stability of p
rameters. However, we also admit that the OU model ha
volatility correlation with a single exponential time deca
and this is in contradiction with some empirical observatio
showing a power law decay or, at least, a multiple time sc
@8,21#. Our present investigations go to this direction@18#.

These results suggest further study of statistical proper
of random diffusion models with leverage. Several mod
have been discussed in the literature without being able
discern which is the more realistic one. Now, thanks to
leverage correlation, one can estimate all of the parame
This facilitates a comparison of different models and emp
cal statistical properties of markets. Finally, a better kno
edge of SV models has nontrivial consequences on op
pricing ~since the classical Black-Scholes method can be
corporated into the framework of SV models@10,11#! and,
more generally, into risk management strategies.

This work has been supported in part by Direccio´n Gen-
eral de Investigacio´n under Contract No. BFM2000-0795
and by Generalitat de Catalunya under Contract No. 2
SGR-00023. We thank M. Bogunya and G. H. Weiss
useful suggestions and a careful reading of the paper.
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