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Random diffusion and leverage effect in financial markets
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We prove that Brownian market models with random diffusion coefficients provide an exact measure of the
leverage effecfJ-P. Bouchauet al, Phys. Rev. Lett87, 228701(2001)]. This empirical fact asserts that past
returns are anticorrelated with future diffusion coefficient. Several models with random diffusion have been
suggested but without a quantitative study of the leverage effect. Our analysis lets us to fully estimate all
parameters involved and allows a deeper study of correlated random diffusion models that may have practical
implications for many aspects of financial markets.

DOI: 10.1103/PhysRevE.67.037102 PACS nuni)er89.65.Gh, 02.50.Le, 05.40.Jc, 05.45.Tp

The dynamics of particles in random media can be usedtep. In the opposite case, low market activity indicates a
for a large variety of phenomena in statistical physics andgmall variety of market positions and finally, a small disper-
condensed mattégd]. This class of models has been appliedsion in possible future prices. In this sense, we may say that
to polymer transport, electrospin dynamics of polarons, promarket stochastic dynamics fluctuates with an amplitude
tein dynamics, and flux lines in higli, superconductors quantified by a random diffusion coefficieBt This coeffi-
[1,2]. Likewise, in modeling financial markets there also ex-cient is related to market activity in the same manner as in
ist several approaches based on random diffusion although ishysics the diffusion coefficient is related to temperaf@ie
mathematical finance these are known as stochastic volatilityn this way, we are thus assuming that market activity is not
(SV) models[3,4]. The aim of this paper is to stress the constant but stochastic and is governed by the random arrival
importance of the random diffusion approach in market dy-of information to the markets.
namics by explaining the leverage effect, an old phenomenon Most stochastic volatility models studied to date assume
only very recently quantifiedl5]. In the past decade, there thatY(t) is itself a diffusion process that may or may not be
has been an increasing interest in applying the methods @orrelated with price and these generally differ from each
statistical physics to the study of speculative markéls  other in the form of the functiom [3,4]. The hypothesis of
The present work adopts the same philosophy. stochastic volatility was originally suggested to explain the

The multiplicative diffusion process known as the geo-so-called “smile effect” which is related to implicit volatili-
metric Brownian motiotGBM) has been widely accepted as ties in option prices. The smile effect has been thoroughly
a universal model for speculative markets. The model, sugstudied both qualitatively and quantitativelg0,11]. How-
gested by Bachelier in 1900 as an ordinary random walk andver, other features referred more directly to the statistical
redefined in its final version by Osborne in 1959, presup-  properties of SV models are solely studied from a qualitative
poses a constant “volatility’s, that is to say, a constant point of view[12] or by giving numerical coefficients based
diffusion coefficientD=o2. However, and especially after on ARCH-GARCH model§13].
the 1987 crash, there seems to be empirical evidence, em- Our main objective is to prove that leverage can be quan-
bodied in the so-called “stylized facts,” that the assumptiontitatively explained in terms of a wide class of correlated SV
of constant volatility does not properly account for importantmodels. This will allow us to overcome the main objection
features of marketg8]. It is not a deterministic function of against SV models: the impossibility of fitting all parameters
time either(as might be inferred by the evidence of nonsta-appearing in these model8,12]. This, then opens the door
tionarity in financial time serigsbut arandom variable In  to further statistical studies based on SV models for real
its more general form one therefore assumes that the volatimarkets with far-reaching practical consequences for option
ity o is a given function of a random proces%t), i.e.,  pricing and risk management.

a(t) = (Y(1)). The leverage effect has its origin in the observation that

We may make an analogy from physics saying that specwolatility seems to be negatively correlated with stock re-
lative pricesS(t) evolve in a random medium determined by turns. These are defined B(t) = In[S(t)/S0)] whereS(t) is
a random diffusion coefficient. The randomness of the methe speculative price at tinte The first explanation for this
dium constrains the amplitude of price changes. It is comempirical fact was suggested by Blgdid] and Christig 15].
monly asserted that this amplitude is directly related to theThey say that negative returns increase financial leverage,
market activity and the number of contracts negotiatedwhich extends the risk of the company, and therefore its
Hence, periods with high market activity indicate large vari-volatility. Hence the name of “leverage effect.” Neverthe-
ety of trading positions and this, in turn, implies a consider-less, the cause of this effect is still unclear since another
able dispersion of possible changes in prices at every timeontrary explanation can be given, namely, that an increase

of volatility makes the stock riskier which produces a fall of
demand. As a result the price of the stock drf®ls
*Email address: perello@ffn.ub.es In a very recent paper, Bouchaedtlal. [5] performed an
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stocks and indices based on daily data. The volatility-returrother hand, wher>0, dW;(t+ 7) is uncorrelated with the
(negative correlation was clearly shown to have a definiteremaining terms and, sindelW, (t+ 7)2)=dt, we conclude
direction in time—a very confusing fact in the literature— that

since correlations have been shown to exist between future

volatilities and past returns. Bouchaud al. conclusively L(1)=0(7){o(t)dWy () o(t+ 7)?)dt/Z, (6)
prove from data that the negative correlation decays expo-

nentially in time, and is faster for indices than for individual Where #(r) is the Heaviside step function and
stocks[5]. =(o*(t))=dt*. Note that we have proved the existence of

In this paper, we present a theoretical study of these cofcorrelations between future volatilities and past returns but

relations and show that a wide class of random diffusiorf’0t Vice versa. Note also that this is independent of the un-
models can be invoked to explain the leverage effect irfl€rlying volatility proces¥(t) and of the specific form of

agreement with experimental observations. The starting poirlf' terms ofY.

is the GBM model: Suppose now that(t) is a diffusion process given by Eq.
(2). As is well known, any pair of correlated Wiener process,
dR= udt+ o (t)dW,(t), (1)  such asW,(t) and W,(t), satisfies the identitydW,(t)

=pdW,(t) +1—p2dW(t), where W(t) is a Wiener pro-
wherey is the drift ando(t) = o(Y(t)) is a random volatility  cess independent af/,(t) [so thatW(t) is independent of

andY(t) is a diffusion process, o]. Substituting this identity into Eq(6), we get£(7) in
terms of the averageor(t) o(t+ 7)2£,(t)). This average can
dy=f(Y)dt+g(Y)dWs(1). (20 pe calculated by means of Novikov’s theor¢h¥] with the
. . . . result[18]
In these equationd,(t) (i=1,2) are Wiener processes, i.e.,
dvyi(t)=§_i(t)dt where¢;(t) are zero-mean Gaussian white 206(7) SY(t+7)
noises with(&;(t)&(t"))=45(t—t’) and only one nonzero L(T)="— 2<0’(t)a'(t+ o' (t+ 7-)—>, (7)
cross correlation given by (o%(1) €,(1)
(E1(D&())=pd(t—t") (3) Whereo'=da(Y)/dY andSY(t+ 7)/ 6&,(t) is the functional
derivative ofY(t+ 7,[ £,]) with respect taé,(t) [17].
(—1<p=<1). Asis common in finance, Eg€l) and(2) are There is a wide consensus that volatility has the property
interpreted in the sense of lnd for the rest of the paper we of reverting to the mean. In other words, there exists a nor-
will follow the 1td convention[16]. mal level[19] to which the volatility eventually returr4.3].
Bouchaudet al.[5] quantify the leverage effect by means For a general SV model such as E¢b). and (2), the exis-
of a leverage correlation function defined by tence of mean reversion implies restrictions on the form of

the drift coefficientf(Y). A simple way to incorporate this
experimental fact into the model is to assume th@t) is

(dX(t+7)2dX(1)), ) linear. That is,

N| —

L(n)=

where X(t)=R(t)—ut is the zero-mean return and Y=—a(Y—m)+g(Y)&(t), 8
=(dX(t)?)? is a convenient normalization coefficient. They . _ o

have ana'yzed a |arge amount of da"y relative Changes fo\‘.\lherea>0. The formal solution to this equatlon in the sta-
both market indices and stock share prices finding that ~ tionary state reads

—Ae P if >0,
Ln=), if 7<0

t

) YO =m [ et Ugnt et

(A,b>0) [5]. Hence, there is an exponentially decayingffom which we ge{18]
negative correlation between future volatility and past re- SY(t+ 1)

turns changes. No correlation is found between past volatility —_* "~
and future price changes. In this way, they provide a sort of 9¢2(t
causality to the leverage effect which, to our knowledge, has o ) o _
never been previously mentioned in the literat{Bgf]. A substitution of this expression into E€f) yields

Let us sketch how correlated SV models are able to ex- s

actly reproduce this result. We take H@) in terms of the L(r)=pb(7)B(1)E" ", ©
zero-mean return and obtain

t+71
=6( r)e“Tg(Y(t))exr{ Jt g'(Y(8))éx(s)ds|.

where

_ 2 2
L(7)={(o(t)dWy(t)o(t+ 7)dWy(t+ 7))/ Z. 2ot o(t+ 7)o (t+ DG(LE+ 7))

(d?(1))?

B(7)= , (10

Note that whenr<0, It0's rules tell us thadW,(t) is un-
correlated with the remaining random variables. Then, recall-
ing that (dWy(t))=0, we havel(7)=0 if 7<0. On the and
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t+7
G('LHT):QJ(Y('f))BXF{ft 9’ (Y(s))é2(s)ds|. (11

In consequence, any SV model of the form given by Efjs.
and (8) in which the functionB( ) increases no faster than
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Lo(7)=2pk8(7)exd —m+k*(e”*"—3/4)/ale”*".
(14)

We note that all these models have similar properties and
present an exponential decaying leverage as shown in data

e*” asT— oo, satisfies an exponentially decaying leverage agsee Fig. 1L Nonetheless, CIR and expOU models assume a

expressed by Eq9). Moreover, if o(Y) is an increasing
function of Y with fixed sign andy(Y) is positive definitgor
o is decreasing and is negativg, we see from Eq(9) that
the correlation coefficienp must be negative and driving
noisesW, (t) and W,(t) are anticorrelated. Equationi9)—
(11) constitute the main result of the paper.

The exact form ofZ(7), will depend on the expression of
B(7) which in turn will depend on the SV model chosen.
Within diffusion theory, as is the case of E@®), there are
basically three different SV mode[¢l]: (1) The Ornstein-
Uhlenbeck(OU) model wherer=Y andg(Y) =k (a positive
constanx [20,21], (2) the exponential Ornstein-Uhlenbeck
(expOU model whereo=e" andg(Y)=k [12], and(3) the
Cox-Ingersoll-RosgCIR) model, also called Heston model
[11], whereo= Y and g(Y)=k.Y. For all these models
the leverage function has the form given by E). In the
OU model and in the CIR modéthe latter with zero-mean
reversion, i.e.m=k?/4a), the leverage functiorC(r) is,
respectively, given by18]

1) =2kob(7) m?+(k*2a)e™ 7| 12
S T e |
pa
La(r) =47 -0(r)e ", (13

while for the expOU model we ha\d 8|

[2]
08
®
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FIG. 1. The leverage effect in the Dow-Jones daily index. We

plot the leverage functio(7) for the DJ from 1900 until 2000.
We see that there exists a non-negligible correlation wirefl and
negligible whenr<0 and that correlation strongly fluctuates when
—3<7<2. We also plot a fit with the OU SV leverage function
(12) allowing us to estimater and p.

positive oo while for the OU model there is a nonzero, but
small, probability of having negative values @f[21].

Any market model, besides being able to reproduce the
market dynamics, must provide a systematic way of evaluat-
ing its parameters. Almost all current SV models have four
parameters to estimatg; k, m, anda. Until very recently,
all existent works on SV models are only able to evaluate
two of them. Thus, for instance, Fougeeal.[12] estimatek
andm from the empirical second and fourth moment of daily
data but cannot estimate and p. This is a significant ob-
jection to SV models. The situation changes completely
when the leverage is measured. Inddeandm are obtained,
as usual, from the empirical second and fourth moment.
Next, by adjustingg™ “” to the leverage empirical data we are
able to estimater. Moreover, comparing the theoretical and
empirical leverage at=0", £(0"), we finally obtainp.
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FIG. 2. Dow-Jones index and path simulations. We show a DJ
daily returns sample patttop), its simulation by means of the OU
SV procesgmiddle), and the GBM simulatioribottom). All param-
eters of the simulations are estimated from the whole DJ historical
time serieg1900—-2000. Dynamics is traced over 300 days and, for
the DJ path, this nearly corresponds to 1999.
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To our knowledge, the only alternative to this method forvolatility together with periods of very low volatility, result-
estimating parameters is given by the recent work of Draing in a more similar trajectory to the DJ index than that of
gulescu and Yakovenki®2], who study the probability dis- the GBM. This is quite rema_rkable, because we have simu-
tribution of the CIR model and obtain the parameters bylated last year trajectory using the past 100 years of data

minimizing the mean square deviation between the logaavailable of the DJ index thus showing the stability of pa-
rithms of the theoretical and empirical return distributionsfameters. However, we also admit that the OU model has a

[22]. voIatiIiFy _cqrrelation \_Ni'gh a §ingle expone_n_tial time dec_:ay
Following our procedure, for the Dow-Joné®J) daily and this is in contradiction with some empirical observations
index and using the OU model, we have estimaktesd(2 showing a power law decay or, at least, a multiple time scale
+1)x10 3day 1, m=(16+5)%yr Y2 1/a=14+6 days, [8,21]. Our present investigations go to this direct{d8].
and p=—0.5+-0.1. Errors are evaluated by considering These results suggest further study of statistical properties

sample data of 100 vears in ten samples of 10 vears Froof random diffusion models with leverage. Several models
P v years Amp y - "TOve been discussed in the literature without being able to
the parameter estimation in every interval, we can obtain

L Jiscern which is the more realistic one. Now, thanks to the
mean and a standard deviation for each parameter of thg,erage correlation, one can estimate all of the parameters.
model. , ) , ) This facilitates a comparison of different models and empiri-
As an illustration we have simulated, using E¢B.and 5 statistical properties of markets. Finally, a better knowl-
(8), the OU resulting process with our earlier parameter'syjge of SV models has nontrivial consequences on option
estimates. We follow the random dynamics of the dailypicing (since the classical Black-Scholes method can be in-
changes of the zero-mean retuk(t), and compare it with corporated into the framework of SV modds0,11) and,

fche empirical DJ time ser_ies during approximately one tradore generally, into risk management strategies.
ing year. We have also simulated the GBM assuming a con-

stant volatility o whose value is directly estimated from DJ  This work has been supported in part by Direcci®en-

for one century data. These results are shown in Fig. 2. Okeral de Investigacio under Contract No. BFM2000-0795,
serve that GBM cannot describe either the largest or thand by Generalitat de Catalunya under Contract No. 2000
smallest fluctuations of daily returns. We nonetheless see iBGR-00023. We thank M. Bogunya and G. H. Weiss for

the figure that the SV model chosen describes periods of highseful suggestions and a careful reading of the paper.
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