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Abstract: The objective of this project is to study simulations of hyperbolic encounters of black
holes (BHs) using a 1.5 Post-Newtonian approximation and assess its validity by comparing the data
calculated on the movement and on gravitational wave (GW) radiation with the results provided
by numerical relativity simulations. The PN approximations are known to not always converge, but
they are suitable in some regions of parameters space. For the region of parameters explored, we
find that the best results are obtained if the expansion of the GW radiation is truncated at the
leading order.

I. INTRODUCTION

Since the LIGO-Virgo collaboration detected the GW
signal of a collision of two BHs for the first time ever
in 2015 [1], the interest of the scientific community in
this research field has boomed. All the binary BHs
observations done by LIGO-Virgo were analysed with
wave-forms generated or informed by numerical relativ-
ity simulations [2]. These simulations are based on nu-
merical calculation methods to solve the dynamical field
equations of General Relativity, when the initial param-
eters are given. They are very useful to create tem-
plate banks of waveforms to have a better understanding
of the observations. Numerical relativity simulations of
BH binaries became a reality in 2005 with the moving
puncture approach formalism proposed by Baumgarte-
Shapiro-Shibata-Nakamura [3], and along the following
years the software named Einstein Toolkit was devel-
oped [4].

These simulations provide very accurate results of the
relativistic dynamic equations and the physics of GWs.
But they have a drawback, which is that they take up
to several days to run in a supercomputer. The latter
fact motivates the community to find approximate cal-
culations to reduce the duration of the simulation to a
few seconds. A common method to do so is to perform
Post-Newtonian approximations of the General Relativ-
ity equations. In recent years, the community has de-
voted significant effort to model GW beyond the quasi-
circular mergers that lead to the first detections. Re-
cently, Juan Garćıa-Bellido et al. have published a paper
with a 1.5 Post-Newtonian approximation for the partic-
ular problem of a hyperbolic encounter (i.e. interaction
without merger) of two spinning BHs [5]. The purpose
of my project was to check the calculations performed
in this paper and to develop an independent code in or-
der to reproduce the results of [5] and compare them with
numerical relativity calculations performed with the soft-
ware Einstein Toolkit. We had access to the code used
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in [5], so we could directly cross-check with it too, finding
perfect agreement.
As it is well-known, the Post-Newtonian expansion

is asymptotic, e.g. depending on the parameters, sub-
leading terms can dominate over the leading ones [6]. We
have observed this behavior for the parameters analyzed,
finding that the leading order was the one that captured
best the results of numerical relativity.

II. SIMULATION DETAILS

A. 1.5 PN Approximation

With this method, one is able to study the general
case in which the BHs can spin, but it has been chosen
to describe the non-spinning case for brevity. Taking into
consideration a binary system of total mass m with two
non-spining BHs of masses m1 and m2 and reduced mass
µ = m1m2

m , the reduced Hamiltonian H = H/µ in the
centre of masses reference frame that has to be solved is:
[5]

H = HN (r⃗, p⃗) +H1PN(r⃗, p⃗) (1)

Where r⃗ = R⃗/Gm is the relative distance vector of the

bodies, p⃗ = P⃗/Gµ is the conjugate momentum and:
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Where it has been defined η = µ/m and n̂ = r⃗/r.
Since the BHs do not spin, their trajectories are going
to be confined in a plane, which simplifies the problem,
allowing one to reduce the dynamics to three coupled
ODEs recorded in the Appendix.
Solving the radial equation ṙ = {r⃗, H} · n̂ neglecting

terms O(1/c4) we get:

ṙ
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With r = r − D
2L2 and where A,B,C,D are constants

in terms of the constants of movement:

L2 = |r⃗ × p⃗|2 (5)

E =
p2

2
− 1

r
+O(1/c2) (6)

Equation (4) has a parametric solution for hyperbolic or-
bits with an auxiliary variable v that has to be evaluated
at each time step of the simulation:{

n(t− t0) = et sinh v − v

r = ar(er cosh v − 1)
(7)

Where:

er = et

(
1 + (3η − 8)

E

c2

)
(8)

ar =
1

c2ξ
2/3

(
1− ξ

2/3 (η − 9)

3

)
(9)

The dynamical variables can be chosen to be n = ξc3 and
et, related to radial motion, in addition to an angular
variable Φ. They satisfy a system of coupled ODEs (see
Appendix). The solution for the trajectory can then be
used to evaluate the GWs by using the expressions for
the strain given in equations (71a) and (71b) in [5]. The
simulations using this algorithm have been programmed
with Wolfram Mathematica.

B. Numerical Relativity

Numerical relativity simulations have implemented the
hydrodynamic and the field equations of General Rela-
tivity in its algorithms that can be solved when a set of
initial conditions is given: masses of the BHs, positions,
momentum, ADM energy and ADM angular momentum.
The evolution is computed using the 3+1 decomposition
of the space-time [7], based on the projection of vectors
and tensors along the normal direction (time vector) or
onto the spatial slices to obtain the evolution of the sys-
tem. To extract the physics of the GW, it is useful to em-
ploy the Newman-Penrose formalism, that uses the 3+1
split of space-time to project the components of the Rie-
mann tensor (Gauss-Codazzi-Ricci equations) to a later
contraction with a certain complex null tetrad, obtain-
ing the Weyl scalar ψ4 [8]. This scalar is interpreted as
the outgoing gravitational radiation, and it is related to
the amplitudes of polarization of the GWs (observable
strain) with the following expression:

ψ4 = ḧ+ − iḧ× (10)

The ψ4 admits an expansion in spherical harmonics:

ψ4(t, r, θ, ϕ) =

∞∑
ℓ=2

ℓ∑
m=−ℓ

ψℓm
4 (t, r)−2Yℓm(θ, ϕ) (11)

Where the coefficients ψℓm
4 = Q̈+

ℓm−iQ̈×
ℓm. In practice,

the ψ4 is calculated by just considering the dominant
mode (ℓ = 2,m = 2):

ψ4(t, r, θ, ϕ) = ψ
(2,2)
4 (t, r)−2Y22(θ, ϕ) (12)

The Einstein Toolkit [4] is a package developed with
Python that has implemented the formalism and the nu-
merical methods described. The ψ4 data (11) is obtained
by the modules WeylScal4 and Multipole.

III. RESULTS AND ANALYSIS

Four different simulations have been performed con-
sidering G = c = 1, with the same resolution and BHs
of equal masses. All the magnitudes are expressed in
geometric units.

A. Initial data

To perform a proper comparison of the numerical rel-
ativity and the 1.5PN approximation, the initial condi-
tions to be input in the Einstein Toolkit have to be
converted into the variables used in the PN simulation.
The initial values of the dynamical variables defined in
equations (7) are:

ξ0 =
n0
c3

= (2E)3/2
(
1− 1

4
(η − 15)E

)
(13)

et0 = [1 + 2EL2 −
(
4(η − 1) + (7η − 17)EL2

)
E]1/2

(14)

Rewriting the constants of movement E and L2 in terms
of the initial conditions that are set in the numerical rel-
ativity simulation input, the initial data for ξ and et can
be obtained.

E =
EADM −m

µ
, L2 =

(
JADM

mµ

)2

(15)

Where m = m1+m2 with m1 = m2 = 0.5 and JADM the
ADM angular momentum, which is chosen to be in the
ẑ direction. Then, as mentioned before, the movement
is going to be confined in a plane (in this case the (x, y)
plane), with a constant direction of the angular momen-
tum. The initial value for the dynamical angular variable
is set to Φ0 = 0. The initial separation between the BHs
has been set to d = 35 for the four simulations, with ini-
tial position vectors x⃗1 = (17.5, 0) and x⃗2 = (−17.5, 0).
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SIMULATION p⃗1 p⃗2 EADM J ẑ
ADM ξ0 et0

BBH hyp 1 (−0.0939, 0.0343) (0.0939,−0.0343) 1.010956 1.2 0.03014 1.956

BBH hyp 2 (−0.0928, 0.0371) (0.0928,−0.0371) 1.010959 1.3 0.03016 2.072

BBH hyp 3 (−0.0917, 0.0400) (0.0917,−0.0400) 1.010962 1.4 0.03017 2.191

BBH hyp 4 (−0.0904, 0.0429) (0.0904,−0.0429) 1.010965 1.5 0.03019 2.312

TABLE I: Initial conditions for the four simulations. The momenta are estimated in order to produce a hyperbolic orbit without
a merger.

B. Trajectories

The evolution of the position of the BHs is determined
by using the numerical relativity simulation with the
TwoPunctures and the McLachlan modules [9] from the
Einstein Toolkit.

FIG. 1: Computed trajectories in the (x, y) plane for the BHs
in each simulation.

It is shown that the orbits produced by the two BHs
are indeed hyperbolic and without a merger for all sim-
ulations, which means that the momenta has been cor-
rectly estimated and the rest of the initial conditions are
suitable for the situation proposed. Therefore, it allows
a description employing the 1.5PN approximation algo-
rithm with the correspondent initial parameters. It can
be computed the time evolution of the separation dis-
tance between the BHs by substituting equations (8) and
(9) into r in (7) neglecting terms O(1/c4):

r =
1

ξ
2/3

(
et cosh v − 1

+ξ
2/3 (7η − 6)et cosh v + 2(η − 9)

6

)
(16)

Where it has been imposed c = 1, and v has to be
evaluated at each time step. With the data of the po-

sitions obtained with the Einstein Toolkit, the sepa-
ration distance can be calculated trivially, and perform-
ing the proper time shift correction between simulations
booth data can be compared:

FIG. 2: Time evolution of the separation distance between
BHs for the four simulations, comparing the results obtained
with numerical relativity and the 1.5PN algorithm.

The last plot shows that the 1.5PN approximation
doesn’t match exactly with numerical relativity, though
the tendency is similar. In the PN approximation the
BHs apparently ”move faster” and there is symmetry
with respect to the point of maximum approach. That is
because of the conservation of energy in this approxima-
tion.

C. Gravitational waves

The most efficient way to compare the physical infor-
mation of the GWs emitted from both methods is study-
ing the time evolution of the Weyl scalar ψ4. The output
of the 1.5PN algorithm provides the amplitudes of polar-
ization (strain) of the GWs, and recalling equation (10),
one only has to perform two consecutive time derivatives
to h+ and h× to get the ψ4, since h = h+− ih× and then
compare them with numerical relativity results. It could
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be done the opposite way, by integrating twice the ψ4

obtained with the Einstein Toolkit, and compare the
results with the strain calculated with the PN method.
But usually, trouble appears when performing this time
integrals due to the arbitrary constants of integration,
producing a drift as a consequence of numerical noise
(junk radiation) [10].

As a matter of convenience, the ψ4 is extracted center-
ing the point of maximum approach at t = 0:

FIG. 3: Time evolution of the real part of ψ4 for the
BBH hyp 4 simulation, comparing the numerical relativity
results (solid blue line) with the complete 1.5PN expansion
(green dotted line) and with its leading term (orange dashed
line).

FIG. 4: Time evolution of the imaginary part of ψ4 for the
BBH hyp 4 simulation, comparing the numerical relativity
results (solid blue line) with the complete 1.5PN expansion
(green dotted line) and with its leading term (orange dashed
line).

The results show that the 1.5PN complete expansion
does not match as good as the leading term with the nu-
merical relativity data. The expansion consists of three
sub-leading terms (equations (71a) and (71b) in [5]): the
first and the third terms are null because m1 = m2 and

the BHs are not spinning. Hence, the second sub-leading
term contribution worsens the results given by the lead-
ing term, which means that the expansion does not con-
verge at that order with those parameters. In fact, for
the other simulations the results are not better, meaning
that this expansion is not suitable in general. As men-
tioned before, the Post-Newtonian expansions are not al-
ways convergent [6]. This suggests that more terms of
the expansion should be considered.
In addition, it turned out that for some simulations

the second sub-leading term even changes the curvature
of the waveform, giving trouble when performing the
derivatives. Nevertheless, the results show how the lead-
ing term is a fine approximation to numerical relativity
in those situations:

FIG. 5: Time evolution of the modulus of ψ4 for the four
simulations. The solid lines are the results obtained using nu-
merical relativity, and the dashed lines are the corresponding
PN approximation considering just the leading term.

The leading term of the 1.5PN expansion matches re-
markably well with the numerical relativity results for all
the simulations performed. It has the following expres-
sions considering the amplitudes of polarization in the
TT (transverse and traceless) gauge:

Re(ψPN0
4 ) ≈ d2

dt2

[(
(q̂ · n̂)2 − (p̂ · n̂)2

)1
r

+(p̂ · ˙⃗r)2 − (q̂ · ˙⃗r)2
]

(17)

Im(ψPN0
4 ) ≈ d2

dt2

(
−(p̂ · n̂)(q̂ · n̂)1

r
+ (p̂ · ˙⃗r)(q̂ · ˙⃗r)

)
(18)

Where r is given by equation (16), n̂ = r⃗/r, ˙⃗r = ∂tr⃗,
p̂ = −êy and q̂ = cosΘêx − sinΘêz, where Θ is the angle
of inclination of the orbit with respect to the observer.
In this case Θ = 0 since with the Einstein Toolkit
the orbit is described in a plane perpendicular to the
direction of observation.
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IV. CONCLUSIONS

• The results obtained in the range of parameters
studied in this project corroborate that algorithms
that use simplifications of the Einstein’s Theory of
Relativity such as the Post-Newtonian approxima-
tion are valid to describe processes like encounters
of black holes. These algorithms are a complemen-
tary approach to numerical relativity due to their
simplicity, the accuracy of the results and the short
time of calculation required. Therefore, these algo-
rithms provide an efficient way to build template
banks of waveforms to help the astrophysics com-
munity to identify gravitational waves in their ob-
servations and the post-processing of the data.

• More specifically, in the case studied in this project,
the results show that the 1.5 Post-Newtonian ap-
proximation is able to describe the dynamical evo-
lution of a system of non-spinning black holes with
a hyperbolic orbit. The obtained results compared
qualitatively to numerical relativity are promising.
The description with the complete expansion of the
physics of the outgoing gravitational radiation is
not accurate enough to be considered as an accept-
able result. But, if the expansion is truncated at
the leading term (for the case of equal mass black
holes), then the obtained results reasonably match
with the numerical relativity calculations in the pa-
rameter range considered. A more careful study is
required in order to identify a range of initial pa-
rameters more suitable to apply the 1.5PN approxi-
mation, to master more generic cases with spinning
BHs and also to provide a quantitative comparison
with numerical relativity.

• This project has allowed me to learn more about
General Relativity and to understand how it can be
implemented using algorithms to solve situations in
the context of real astrophysical phenomena. I am
also glad for having the opportunity to take place
in a research project starting from scratch and to

learn how to use programming tools like Wolfram
Mathematica and Python to solve mathematical
problems and to analyse the outputs. Finally, these
topics are in the cutting edge of research, and other
different methods are being developed to get better
results for more generic scenarios. Therefore, this
memory is just the beginning of a major project,
which is going to be developed in my Master.

V. APPENDIX

Evolution equations from the 1.5PN algorithm:

dξ

dt
=
c3ξ

11/3
8η

5β7
(−49β2 − 32β3 + 35(e2t − 1)β (19)

− 6β4 + 9e2tβ
2)

det
dt

=
c3ξ

8/3
8η(e2t − 1)

15β7et
(−49β2 − 17β3 (20)

+ 35(e2t − 1)β − 3β4 + 9e2tβ
2)

dΦ

dt
=
c3ξ

√
e2t − 1

β2

[
1− ξ

2/3
(
η − 4

β
− η − 1

e2t − 1

)]
(21)

Where β = et cosh v − 1.
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