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In a recent paper [Phys. Rev. Lett. 75, 189 (1995)] we have presented the exact analytical
expression for the mean exit time, T'(z,v), of a free inertial process driven by Gaussian white noise
out of a region (0, L) in space. In this paper we give a detailed account of the method employed
and present results on asymptotic properties and averages of T'(x, v).
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I. INTRODUCTION

The noise-induced escape problem from a stable state
is ubiquitous in many branches of mathematics, physics,
chemistry, and engineering [1-5]. The problem has been
the subject of intense research since the end of the last
century when Arrhenius law was first published and most
especially after the landmark work of Kramers in 1940 [6].

From a dynamical point of view the escape problem is
closely related with the evaluation of the mean exit time
(MET) out of an interval of a diffusing particle moving
in a potential V(z), under the influence of a heat bath.
In many cases the dynamics of the system is governed
by the following stochastic differential equation for the
position X (t) of the particle,

X +BX + f(X) = &(t),

where 3 is the damping constant, f(z) = —V'(z) is a
deterministic force, and the thermal fluctuations are rep-
resented by £(t), a zero-centered Gaussian white noise
with correlation function

(€()E(t)) = Do(t —t').

The evaluation of MET’s for second-order processes
such as (1.1) is an extremely difficult task and there ex-
ists an enormous literature on different approximation
schemes to this problem, ranging from strong and weakly
damped systems to small noise intensities [7,8]. Among
these approximations the most frequently used stochas-
tic model is that of a high-damping system where inertial
effects can be neglected. This simplification allows us to
deal only with the position variable X (t), without hav-
ing to worry about the associated velocity variable X (¢).
This approximation therefore reduces system (1.1) to an
one-dimensional random process for which the MET is
exactly known [8,9].

In a recent paper [10] we have presented for the first
time the exact expression of the MET out of an interval
(0, L) for a particular, but relevant, inertial process. The
model describes the motion of an undamped free particle
under the influence of a random acceleration:

X =¢(t),

(1.1)

(1.2)

(1.3)
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where X(t) represents the displacement of the particle
and {(t) is Gaussian white noise with correlation function
given by Eq. (1.2). Let us denote by v the velocity of
our undamped free inertial process. The mean exit time
of process (1.3) is a function of the displacement and the
velocity, T = T(z,v), and obeys the partial differential
equation [10]

1._0°T oT
—D—— —— =-1 1.4
2 502 T oz ’ (1.4)
with boundary conditions
T(Low)=0 ifv>0; T(0,w)=0 ifv<0. (L5)

Boundary value problems such as this are known in the
mathematics literature as a “problem of Fichera” and
also as “Kolmogorov’s exit problem.” It was shown in
the late 1950’s that they are well posed boundary value
problems [11]. In physics, the boundary conditions given
by Eq. (1.5), in the phase space for the joint probability
density of the displacement and the velocity, were first
introduced by Wang and Uhlenbeck [12]. Although the
half range problem (L = co) when f(X) is constant has
been solved recently [13] and several approximations have
also been obtained [14], any attempt to solve the exit
time problem out of a finite interval (0,L), even in the
simple case (1.4) and (1.5), has failed to result in closed
and exact expressions for T'(x,v) [15,16]. The reason for
this difficulty lies in the special form of the boundary
conditions (1.5) with data on a nonsmooth boundary at
v = 0. Indeed, problem (1.4),(1.5) is defined in the strip
0 < z < L of phase space. However, we only know the
value of T'(z,v) on the half lines (z = 0,v < 0) and
(z = L,v > 0). This results in a discontinuous boundary
contour at v = 0 as is shown in Fig. 1.

Our aim in this paper is to present a full account of the
method and the results briefly outlined in our previous
work [10] along with some new results on averages and
the asymptotics of the mean exit time. Our method for
solving the boundary value problem (1.4) and (1.5) basi-
cally consists in decomposing T'(z,v) in the two regions
of phase space where v > 0 and v < 0. Having done
this, a formal solution to the problem can be written as
a functional of the derivative of the mean exit time at
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FIG. 1. Boundary conditions (1.5) for T'(z,v) in the posi-
tion-velocity (z,v) phase space.

zero velocity. The matching at v = 0 of the decompo-
sition then results in a singular integral equation whose
solution allows us to obtain the explicit expression for
T(z,v = 0), which in turn leads to the complete mean
exit time T'(z,v). We develop this technique in the fol-
lowing sections.

II. ANALYSIS

We will first obtain a formal solution to the boundary-
value problem (1.4) and (1.5) in the Laplace domain. To
this end we observe from Egs. (1.4) and (1.5) that the
mean exit time T'(z, v) satisfies the fundamental symme-
try relation

T(z,v) =T(L —z,—v). (2.1)

This equation implies the following continuity conditions
atv=0

T(z,0) = T(L — ,0),

T (z,v)
v

_O0T(L —z,v)
=—— g . (2.2)

v=0 v=0

We note that Eq. (2.1) allows us to write the solution
T (z,v) for all v once we know the solution of (1.4) and
(1.5) for, say, v < 0. We thus assume that v < 0 and
write

Ty (z,v) = T(z,v) if »v<o0. (2.3)
Hence, in dimensionless units defined by

u=uz/L, y= ~(2/LD)1/31),

T} (u,y) = (D/2L?)Y3T (z,v), (2.4)
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the mean exit time T} (u,y) obeys the equation

8%T! oT,

— = —1 .

oy? Y 84 ’ (2:5)

with boundary conditions
T{(0,y) =0 (y>0), Ti(u,00)=0 (0<u<1).
(2.6)

In spite of the fact that the range of u is bounded by an
upper bound, it is still permissible to define the Laplace
transform of T (u,y) with respect to u [17]:

Tl(s,y)E/ e Ty (u, y)du.
0

This transformation leads to the following inhomoge-
neous Airy equation for T3 (s, y)

(2.7)

where (' = s!/3y. The general solution of Eq. (2.7) under
the condition T} (s, 00) = 0 reads

Ty (s,y) = s~ 5/3a(s)Ai(¢) + s 5/3

X [Bi(() /(oo Ai(t)dt + Ai(¢) /OC Bi(t)dt] ,
(2.8)

where Ai(¢) and Bi({) are Airy functions [18], and «f(s)
is an unknown quantity independent of (. Let d;(s) be
the Laplace transform of the derivative of T7(u,y) with
respect toy at y =0

_ 9Ti(uw,y)

Blu) = (2.9)

y=0

If we take into account the following properties of the
Airy functions [18],

gy Bi'(0) 3713
MO==s T Tramy

et 1
Ai(t)dt = =

[ witde = 5,
2

then the substitution of Eq. (2.8) into Eq. (2.9) allows us
to write a(s) in terms of ¢3(s):

a(s) = — 3i/3 Y3 (s).
(s) 78 [(1/3)s*¢(s)

We substitute this expression into Eq. (2.8) with the re-
sult

Ti(s,y) = —3Y/30(1/3)s /3¢ (s)Ai(C) + ms~5/3 [Bi(g‘) /Cw Ai(t)dt + Ai(¢) /C Bi(t)dt + 37 Y/2Ai(¢)|.
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We recall that ¢ = ys'/3 and write this equation in the form

where

~ R Y
R(s,y) = ms~5/3 {Bi (ysl/s)/ | Ailn)dt + A (y31/3>/0
ySl 3

If we now take into account that Airy functions are re-
lated to modified Bessel functions [18],

1/2
. 1 [yst/3 2
Al(ysl/B) = ; ( 3 K1/3 (§y3/281/2> 5 (213)

the Laplace inversion formula [19]

LY s7Y?K, (as?/?)} = a*”(2u)"*16_“2/4u, (2.14)

and use the convolution theorem, we finally obtain

1 U e—y’/92
_31/3r(2/3)/0 s Pl

+R(u,y),

jq(1‘7y) = z)dz

(2.15)

where R(u,y) is the Laplace inversion of Eq. (2.12).
Equation (2.15) gives the mean exit time as a functional
of the derivative of the mean exit time at zero velocity
[cf. Eq. (2.9)]. Note that Eq. (2.15) is only a formal ex-
pression as long as the function ¢(u) remains unknown.
We have thus finished the first step of our method. In
the next section we will find ¢(u).

IIT. MEAN EXIT TIME AT ZERO VELOCITY

Let us now first obtain the explicit expression for o(u).
To this end we start from Eq. (2.15) and set y = 0

U — z)

/ _ 1 “ o(
T, 0) = _31/3I‘(2/3)/0 22/3

If we take into account Eq. (2.12), use the property [18]

dz + R(u,0).

.o Bi(0)  372%/8
MO =708 = regmy
)
) = 316 L ed ' /3dt
= 21‘2(5/6)u E;L (t —u)1/6 dt

Ti(s,y) = _31/3F(1/3)‘2)(3)5_1/31“(1’/51/3) + R(S’y)v

t . -1/6
L @ ys [0 =07 = 7] ar
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(2.11)
S1/3
Bi(¢)dt + 37 /2Ai (ysl/g)} . (2.12)
[
and invert the Laplace transform we obtain
_ m 2/3
(w00 = giara a3
Hence,
1 Y 9(2)
' - d
T3(,0) 31/31(2/3) /0 (u—2)23%
T 2/ 3.1
t3i7er2(2/3) " (3-1)

We see from the first of the matching conditions given
by Eq. (2.2) that

T(u,0) = T/(1 — u,0).

Therefore, from Eq. (3.1) we get
! Y #(») P e(l-2)
31/31'(2/3) [/0 (u— 2)2/3 dz — /u (z — u)2/3 dz}

- W:Eﬁ') [uz/?’ —(1- u)z/s] . (3.2)

But, from the second matching condition (2.2) and from
Eq. (2.9), one can easily see that

P(u) = —¢(1 — u).
Using this and the reflection formula of the gamma func-
tion I'(v)I'(1 —v) = 7/ sin(7wv) [18], we see from Eq. (3.2)
that the unknown function ¢(u) satisfies the integral
equation

P s, e

L)
JA TErEC

In Appendix A we show that the solution of Eq. (3.3)
is given by

(3.4)

'After some amount of algebra involving the Gauss hypergeometric function, F(a,b;c; z), this solution can be written
in the following more explicit and convenient form (see Appendix A)

d(u) = Mu=Y6(1 — u)~1/6 [F (1,

where

25 2 5
~~'_;1_ - F s TS A )
o) - F ()]

(3.5)
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_ 3Y51(3/2)
T 2T(5/6)T'(4/3)

Having obtained the explicit expression of ¢(u) we are now in the position to evaluate T'(z,v = 0). In effect, the
substitution of Eq. (3.5) into Eq. (3.1) yields, after lengthy calculations detailed in Appendix B, the exact expression
of T'(z,0). In the original units [cf. Eq. (2.4)] this expression reads

202\ /3 sz 1/6 z\1/86 17z 17 T
=N (2= z -z o LE A 3.6
1o =n (30)(5)" (-9 [P (551 (s )] (3.9

where N = (4/3)1/¢/T'(7/3). In order to check the correctness of our calculations we compare the numerical values
of T'(x,0) with simulation results. Figure 2 shows the complete agreement between the expression of T'(z,0) given
by Eq. (3.6) and simulation data. Monte Carlo values were obtained by simulating a free inertial system driven by
Markovian dichotomous noise [20] of value a and average switching time A~!. This noise is known to converge in
distribution to a Gaussian white noise of intensity D when a — oo and A — oo, provided D = a%/X [21]. Several
simulations were run for growing values of a and A and checked to converge.

IV. COMPLETE MEAN EXIT TIME

We will now obtain the exact expression of the complete mean exit time T'(z,v) for all values of position z and
velocity v. The starting point of this derivation is Eq. (2.15):

Ty (u,y) =

_3Yer(1/s) / e b(u— 2)dz + Rlu,y), -y

2w 22/3

where the function R(u,y) is given by the inverse Laplace transform of Eq. (2.12). In Appendix C we show that the
expression for R(u,y) is

31/3 u e—ya/gz L (ﬂ,y)uz u e—y3/18z 3 3
- _ ,\1/3 Yy Yy
R(u,y) 3T (1/3) /0 273 (u—2)""dz + 6 /0 iz [I,l/ﬁ (182) + Ii/6 (18z)] dz. (4.2)

Since T (u,y) is the dimensionless MET for negative velocities [cf. Egs. (2.3) and (2.4)] then from the symmetry
relation (2.1) we see that the total dimensionless MET reads

T (u,y) = T1(1 — w, [y))O(—y) + T (v, |y])O(v),

where T (u,y) is given by Egs. (4.1) and (4.2) and ©(y) is the Heaviside step function. Therefore, in the original
units [cf. Eq. (2.4)], the complete mean exit time can be written in the form

T(z,v) = (2_1];_2) e [A (% (2/LD)1/3|U|) O(—v) + 4 (1 - % (2/LD)1/3|11[) @(v)] , (4.3)

where A(u,y) = T{(u,y), that is, o

31/6D(1/3) [“ e v'/9=
— 27(T /3) / 73 ¢(u — z)dz + R(u,y),

Au,y) =

(4.4)

T(x,0)

where ¢(u) is given by Eq. (3.5) and R(u,y) is given by
Eq. (4.2). We plot the complete solution (4.3) and (4.4)
in Fig. 3. In Fig. 4 we plot T'(z,v) as a function of v for
two particular values of . Note that at z = 0, T(0,v)
is zero for negative velocities and reaches the maximum
value at some positive velocity. 0'00 o 02 04 06 o8 ‘1 o

Next we focus in the behavior of T'(x, v) when |v| — oco. ' ’ T ‘ ’
We first observe that if [v| — oo then |y| — oo and FIG. 2. T'(x,0) as a function of z, for noise intensity D = 1
the first integral on the right-hand side of Eq. (4.4) is and L = 1 (solid line). Simulation data correspond to a = 10
exponentially small. In this case the only contribution and A = 100 (circles), @ = 100 and A = 10* (squares), and
comes from the Bessel functions. Taking into account a = 200 and A = 4 x 10" (triangles). Error bars are of the
that as |y| — oo [18], order of symbol sizes (o ~ 1072).
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FIG. 3. Plot of the exact expression for T'(z,v) as a func-
tion of z and v, for D =1 and L = 1.

3 y3/182

Y e 2z 1

I )~ 1+ —=+0 [ —
e (152) ~ o [+ ()]
we get from Egs. (4.2) and (4.4) that

A(u, y) "’[1+ “ +0(1>]
u,y) ~ — — —
Yy y® y°

Hence the MET decreases as 1/|v|, that is,

(y = ). (4.5)

L—=x
|v]

Note that the quantities x/|v| and (L —z)/|v| correspond
to the ballistic times to cross the lower and upper bound-
aries under constant speed. We thus see that for suffi-
ciently large velocities the mean exit time is not influ-
enced by the input noise. This is not a surprising result
if one recalls that a finite acceleration has negligible ef-
fects when the initial velocity is large enough. Thus,
for instance, in the case of a free particle driven by a
constant acceleration a, an elementary calculation shows
that the time to reach a given position, z = L, starting
from xzo = 0 and vo > 0, is approximately given by L /v
as long as vo > (aL)'/2.

Another interesting limiting behavior is provided by
the case of weak noise where D — 0. The governing equa-
tions of a random process are very difficult to handle in
the D — 0 limit, and sophisticated techniques involving
path integrals have been used recently to deal with this
limit [22,23]. However, from our expressions the weak
noise behavior of T(z,v) is easily obtained. In effect,
if we first assume that v # 0 then from the dynamical
equation (1.3) we see that, as D — 0, the mean exit time
converges to the ballistic times to cross the boundaries
under constant velocity. Indeed, we note from Eq. (4.3)
that the limit D — 0 is equivalent to the limit |v| = co.

O(v) (Jv] = o0). (4.6)

T(z,v) ~ (%f)l/s [A (%0) O(-v) + A (1 - %0) @(v)}

2247

e

1.0

T(x,v)

0.5

0.0 :"V

|
|
|
|
|
|
.'
3 2 4 o0
v

FIG. 4. T(L/2,v) as a function of v, for D =1 and L = 1
(solid line), along with simulation data for = 10 and A = 100
(circles), and @ = 100 and A = 10* (triangles). The dashed
line represents T'(0,v) for D = L = 1.

Therefore, from Eq. (4.5) we get

T(z,v) ~ % (1 + Dé-'iﬁ) 0(~v)

L—=zx L—=z 2
+ ol (1+D“2|vl3 ) O(v) + O (D?)

(D = 0), (4.7)

and the lowest order of this expansion yields the ballis-
tic time to cross the boundaries. At v = 0 the MET
presents a completely different behavior because in this
case T'(z,0) diverges as D — 0. In effect, we see from
Eq. (3.6) that the mean exit time at zero velocity grows
as

1

(D - 0)
(x # 0,L). It is interesting to compare this with
the faster growth of the MET for a first-order process,
X(t) = £(t), where T'(z) ~ 1/D as D — 0. This greater
divergence is due to the fact that accelerated particles
move faster than when no acceleration is present (see be-
low).

Let us finally obtain the asymptotic behavior of T'(z, v)
as L — oco. Note that when L is very large and |v| is finite
we have from Eq. (4.4) that

Jim Alur, (2/LD)Y3v|] = Jim A(ur,0),  (4.8)
where up, = /L or ur, =1 — z/L. Hence,
(L — o0), (4.9)
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but, taking into account the continuity of the mean exit
time at v = 0, we see that

x x
*"70 =A ( — 7 )7
A(p)=a(-%0
and Eq. (4.9) clearly shows that the behavior of T'(z,v)

when L is large equals that of the mean exit time at zero
velocity, i.e.,

(4.10)

T(z,v) ~T(z,0) (L = o0), (4.11)

provided that = and |v| are both finite. Therefore, from
Eq. (3.6) we get

202\ Y% s \1/6 17
~ P —_ 1. —=:—:1
T(z,v) N( ) (L) [1+F(, 3§ )}
that is,

zl/e /2 (4.12)

22/335/6
T(z,v) ~ T (L — o0),

(1/3)D1/3
a valid expression for all finite values of the velocity. If
we recall that the mean first passage time (MFPT) to
a given value, say * = 0, can be obtained as the limit
L — oo from the mean exit time out of the interval
(0,L) [9], we see from Eq. (4.12) that the MFPT of our
free inertial particle is co. We observe that an analo-
gous situation arises for free one-dimensional processes
driven by Gaussian white noise, X (t) = £(t), where the
MFPT to a given label is co and the MET out of an
interval (0,L) is T(z) = (L — z)/D. However, in this
latter case the MET grows linearly as L increases, i.e.,
T(z) ~ L while for our inertial process the MET grows
as T(x,v) ~ L'2. This slower growth can be explained
if one takes into account that a free undamped particle
moves faster when it is accelerated than when no accel-
eration is present [in the first case (X?2(t)) ~ t3, while in
the second case (X2(t)) ~ t [24]]. As a consequence, the
MET is smaller for inertial processes.

V. AVERAGES OF THE MEAN EXIT TIME

We will now evaluate some averages of the mean exit
time. We first assume that the initial velocity v of the
particle is a random variable with a given probability
density function p(v). Then the averaged mean exit time
T, (z) over all initial velocities is

T,(z) = /°° p(v)T (z,v)dv. (5.1)

—0o0

In what follows we will assume that p(v) is an even func-
tion of v, that is, p(—v) = p(v). Now from Eq. (4.3) and
Eq. (5.1) we have

To(e) = (%)/ [ o0

+A (1 - % (2/LD)1/3|U|)] dv.

A(F.2/LD) )

(5.2)

In order to proceed further we need to specify p(v). The
commonest probability distribution by far is given by the
Gaussian density (which, in dimensionless units, we as-
sume to be of zero mean and unit variance)

p(v) =

(2/LD)Y/3 exp [_vz(Z/LD)Z/3] . (5.3)

V2w 2

Unfortunately the substitution of this density into
Eq. (5.2) does not allow us to obtain an explicit expres-
sion for the averaged mean exit time. However, we have
carried out this evaluation numerically and the result is
plotted in Fig. 5.

Let us analyze the asymptotics of T, (z) as L — oo.
Suppose we have any even density p(v), then we see from
Eq. (5.2) that when L is large

v~ () () +a (- 7o)
X/OOOp(v)dv

(z # 0,L) but from Eq. (4.10) and taking into account
the normalization of p(v) we have

2\ 1/3 "
To(z) ~ 2 (%) A (Z,o) (L - o),
that is [cf. Eq. (4.12)]
To(z) ~T(z,0) ~ LY? (L - o). (5.4)

Therefore, the averaged MET over all initial velocities
has the same asymptotic behavior, when L — oo, as
that of the complete MET.

We now evaluate the averaged mean exit time T, (v)
over all initial positions z. This time is defined by

L
Tz(v):/o p(2)T(z,v)dz, (5.5)

1.5
1.0
3
'—>
0.5
0.0
00 02 04 06 08 1.0

X

FIG. 5. T,(z) as a function of z (D = L = 1). The dis-
tribution of initial velocities is given by the Gaussian den-
sity (5.3).
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where p(z) is the probability density function of the initial displacement . The substitution of Eq. (4.3) into Eq. (5.5)

yields
2\ 1/3
.= (%5 ) cu. (5.6)
where
Cr(v) = L f(u, L){Alu, (2/LD)*?|0[]®(—v) + A1 - u, (2/LD)"?[v]]©(v)}du, (5.7)

and f(u, L) = Lp(Lu) is the transformed probability density function of the initial position over the interval 0 < u < 1.
If we assume that the initial position of the particle is uniformly distributed on the interval (0, L), then

L
T,(v) = %/0 T(z,v)dz, (5.8)
and Eq. (5.7) reduces to
Cu(v) :L Afu, (2/LD)*|v]du. (5.9)

If we substitute Eq. (4.4) into this equation and exchange the order of integrations we have

—43/9z 1—z 7/6
CLlv) = 31/6;&1/3) /1 e~V /9 {/ (o) dus + 7r_3‘(1 _ z)4/3] dz
0 0

22/3 4r2(1/3)
1 3 3
+(7T1/2/6) 1/2 2:’1/2(1 _ Z)eAyS/ISz I 16 Yy + II/G Yy dz, (5.10)
L A /6 \ 182 18z

[
where y = (2L/D)/3|v|. In Fig. 6 we plot T, (v) for the  but [25]
uniform distribution.

There is a simple expression for 7,(v) when v = 0 1u1/6(1 —w)oF (1 1 z'u du — I'(1/6)r'(7/6)
and p(z) is the uniform density. This expression can be /0 ’ 376’ ©o10r(4/3)
obtained from Egs. (5.6) and (5.10) but it is simpler to
proceed as follows. In effect, when v = 0 the substitution

of Eq. (3.6) into Eq. (5.8) yields
40/ D

- 202\ "/* 1
T.(0) =2N <~——) / ul/%(1 — u)V/®
D 0 An interesting feature of this expression is that the de-
P ( 17 > d pendence of T, (0) on the size L of the interval is L2/3.
x su | du,

L, 3% We recall that the dynamical exponent v of a random
process X (t), which we assume zero centered, is given by

(X2(1)) ~ t2.

Therefore,

_ 7/3 2\ 1/3
T.(0) = 3T{/6) (£) . (5.11)

1.5

We have shown elsewhere [24] that for free inertial pro-

10 cesses driven by white noise, the dynamical exponent of

the displacement X (¢) is v = 3/2. As a consequence,

= Eq. (5.11) clearly demonstrates the reciprocity between

= exponents. This reciprocity had been conjectured in a
05} previous work by a scaling argument [20].

Let us finally see that the asymptotic dependence on L
of the averaged MET, T',(v), for all values of the velocity
and for any given density p(z), it is also given by a power
0.0 . - law with the same exponent 2/3. Indeed, when L — oo

3

4 2 1 0 1 2 and |v| < co we see from Eq. (5.7) that [see Eq. (4.10)]
v

— 1
FIG. 6. T,(v) as a function of v when the initial position lim Cr(v) = / A(u, 0)[f(u)O(—v)
is uniformly distributed in the interval (0,1) with D = 1 [cf. L—oo 0

Egs. (5.6) and (5.9)]. +f(1 — u)O(v)]du,
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where f(z) is the limit when L — oo of the density
f(z,L) defined above. Note that this limit exists be-
cause of the normalization of p(x) over the interval (0, L).
Therefore, the above integral does not depend on L and
from Eq. (5.6) we obtain

T,(v) ~ L*? (L — o0). (5.12)

2L2
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VI. CONCLUSIONS

We now briefly summarize the main results achieved.
The mean exit time out of an interval for the motion of a
free undamped particle under the influence of a random
acceleration (modeled as Gaussian white noise) has been
exactly obtained up to quadrature by

T(z,v) = ( = )1/3 [A (% (2/LD)1/3]v|) O(-v) + A4 (1 - % (2/LD)1/3|v|) @(u)] ,

where A(u,y) is given by Eq. (4.4). The explicit expression of the mean exit time at zero velocity is simpler and it is

given by

2L2\'/? ;g\ 1/6 z\1/6 17z 17 a:)]
=N (2= z -z P ) E NSy R |
T(‘”’O)"N( D ) (L) (1 L) [F (1’ 36r) T P73 T

We have shown that the asymptotic dependence of the mean exit time on the length L of the interval is given by

T(z,v) ~ LY/?

(L — o00)

for all values of the velocity provided that |v| < co. This asymptotic relation clearly proves that the mean first-passage
time to a given label of the system (1.3) is infinity. Moreover, the asymptotic behavior of T'(z,v) as D — 0 (weak

noise intensity) is

—

T T L
T(z,v) ~ m (1 + D—2[v|3> O(—v) + —Iv]

if v+#0, and T(z,0) ~ D™1/3,

We have also obtained several averages of the mean
exit time corresponding to a random initial velocity and
to a random initial position. Thus, when the velocity is
a random variable with a given density p(v), the asymp-
totic dependence of the averaged MET, T,(z), is also
given by

To(z) ~ LY? (L = o).
Nevertheless, when the initial position is randomized over
the interval (0,L), with a given density p(z), we have
shown that the resulting mean exit time satisfies the fol-
lowing asymptotic relation for large L

T.(v) ~L?*?* (L — o).
This relation becomes exact at v = 0 for the uniform
density.

We finally observe that the method employed for solv-
ing the boundary value problem (1.4) and (1.5) may open
a new way of dealing with a variety of similar problems
with relevant physical implications. In this direction we
mention that the study of the mean exit time when a lin-
ear damping term is added to Eq. (1.3) is under present
investigation and some results are expected soon.

(1 +pL- x) e(v) + 0 (D?)

*2,1)'3 (D —0)
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APPENDIX A: SOLUTION TO AN INTEGRAL
EQUATION

Equation (3.3) is a particular case of more general in-
tegral equations of the form

/Olrf%;:f(u)

where 0 < a < 1. Equation (Al) is a weakly singular
Fredholm equation of first kind with the positive kernel

(0<u<1), (A1)

1

RITEEE

k(u — z) (0 <a<1).

Positive kernels define positive operators K which, under
general circumstances, can be factorized in the product
of two Volterra adjoint operators, K = HH*. Thus, if
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¢ satisfies the integral equation K¢ = f, where K is
a positive operator and we can find a Volterra operator
H such that K = HH* then the original equation can
be expressed as the coupled pair HY = f and H*¢ =
. An explicit solution ¢ follows if these two equations
can be solved in closed form. The above kernel can be
represented in the form [26]

T 1
- B(a,(1-0a)/2)

lu — 2|
min(u,z) (uz)(lfa)/zdt

X ’

/0 tlfa(u_t)(lJra)/Z(z_t)(1+a)/2

where B(u,v) = I'(u)I'(v) /T (1w +v) is the Beta function.
The substitution of this representation into Eq. (A1) and
the exchange of the order of integration yields the factor-
ization

e dt 1 (-e)/2
/0 ti-a(y — t)(1+e)/2 1 (z — t)(1+a)/2 P(z)dz = g(u),

where g(u) = B(a, (1 — «)/2)ul®* /2 f(u). We thus see
that Eq. (A1) is equivalent to the following coupled pair
of Volterra equations of Abel type:

2251
z(l a)/2
/ (z — t)A+)/2 ey P(2)dz = (1), (A2)
" Y(t)
/0 H1=a(y — 1) (ray/z o = (). (A3)

These equations can be solved using a standard proce-
dure [26] with the result

cos(ma/2) _1_wys2 @ 1 b(2)
plu) = - TD o/ du/ S (O
d (A4)
¥(€) = B(a, (1 - a)/z)gs(%g@ glkadgg
€ (-2
X/o (& = wy—ayzf (Wdw (A5)

Substituting this equation into Eq. (A4) and taking into
account some properties of the gamma and beta functions
we see that the solution to Eq. (A1) reads

__T(a)cos(ra/2) y—(1—a)/2 d [! tiedt d [* f(r)
o) = (it a)2)” i ] (t-u)u—a)/zit/() A/ (g )a-ep T (46)
One can easily see that when o« = 2/3 and
2/3
Fr) = 32/°1(1/3) [7_2/3 - 7_)2/3] 7
2
Eq. (A6) reduces to Eq. (3.4).
We will now see how Eq. (3.5) is obtained. We write Eq. (3.4) in the form
31/6 _1/6
o(z) = 312(5/6) " [$2(2) — p1(2)], (A7)
where
t1/3dt boZ1/2
¢1(.’E - d / 1/6 dt/ (t—Z)l/Gdz (AS)
and
d (' /34t to(1—2)¥3
#2(z) = %/m (t— =)L/ E/O 21/6(¢t — z)l/ﬁdz' (A9)

Let us first evaluate ¢;(z). Taking into account [25]

t
/ z“’l(t — z)”'ldz = t’”"’_lB(u, v),
0

we have

o) =38 (5.2) s {a-are [(a-9 - - meoe)

Using the following properties of the Gauss hypergeometric function [18],
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F(a,b;c;z) = % /01 A =)L~ tz)"%dt (e > b > 0), (A10)
and
E‘l;[xCF(a,b;c+ 1;2)] = ca® 'F(a,b;c; ), (A11)
we get
¢1(a;):_§B (3 2)(1~x)“1/6F (-%,1;2;1-0. (A12)

The evaluation of ¢2(z) is much more involved. Taking into account Eqgs. (A10) and (All) we write Eq. (A9) in
the form

I?(5/6)

= = Tm)

J(2), (A13)

where

d ! 2 5 2

We use the Gauss hypergeometric series [18]
oo n b n n
F(a,b;m):xw r_ (A14)

and Egs. (A10) and (A11) to write

L (=2/3)n(5/6)n 16 5
g——%——(l—m) /F<—n,1,6,1—m>,

where (z), = I'(z + n)/I'(z) is the Pochhammer symbol. From the linear transformation formula [18]

F(a,b;c;1 —z) = F(C)F(C_a_b)F(cL,b;a-%b—cﬁ—1;;1:)—é—;1:“7“4’F—(Cﬂ—ai—‘b—_*c)F(c—a,c—b;c—a—b—{—1;:1:),

I'(c — a)T'(c —b) T'(a)T'(b)
(A15)
and from the fact that the gamma function I'(—n) diverges for n = 0,1,2,..., we have
(=2/3)n(~ 1/6) 1
_ —-1/6 o 1- .
J(z) = Z @/, Fl-n1il+-nz). (A16)
On the other hand, from Eq. (A14) we see that
_ —2/3)y, —2/3)n(—1/6),
J = (1 — 1/6 k ,
((L‘) ( JZ) ;) 2/3 Z (k + 2/3 nn|
which, after using some properties of the Gauss hypergeometric functions, reads
J(IE): F(3/2) (2/3)(1_$)—1/6F —-2,1;§;:E .
['(4/3)I'(5/6) 376
Substituting this into Eq. (A13) yields
T'(3/2)T'(5/6) —1/6 2 5
= ———— (] — ——,1; —; . A17

The substitution of Eqgs. (A12) and (A17) into Eq. (A7) proves Eq. (3.5).
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APPENDIX B: DERIVATION OF EQ. (3.6)
We introduce Eq. (3.5) into Eq. (3.1) with the result
r'(2/3)T'(3/2)
T (u.0 I WV B A G Ll CA _ , B1
1(60) = 376r213/3) (“ * 2aT(5/6)T(a/3) V(W) ~ Y2(w] (B1)
where
[ —2/3_-1/6 ~1/6 2.5,
P1(u) = (u—2) z (1-2) F 1,—3,6,z , (B2)
0
and
_ [ ~2/3_-1/6 -1/6 2.5,
Pa(u) = (u—z) z (1-2) F 1,—§,é,l—z . (B3)
0

1. Evaluation of Eq. (B2)

Starting from Eq. (B2) and using the definition of the
Gauss hypergeometric series (A14) we have

1/6 23 u”
Yau) =¥ Z 5/{3

1
X/ tn¥1/6(1_t)—2/3(1
0
From Eq. (A10) we get
PO/3T(/6) 1e

ut) Y/ 8dt.

Y1(u) =

I (7/6)
2 (=2/3)n a1 5 7
<> T v (g g o)

(B4)

and, taking into account the linear transformation for-
mula (18]
F(a,bjc;u) = (1 —u)* " PF(c—a,c—

b;c;u), (B5)

[

We finally use the property [27]

Z(a b)n nF(a+an+n m):F(a,b"‘b’;C;fL’)a
(c)nn!

to obtain

() = DA/BE/6)

17
16(1 — u)/OF (L——;—;u)-
NGO (1-w) 36

(B6)

2. Evaluation of Eq. (B3)

From Egs. (B3), (A14), and (A10) we have

LU/BITG/6) 1/
T(7/6)

= (—2/3)n 1 5.7.
<% o G rae):

Using the linear transformation formulas (A15) and

P2(u) =

we have (B5), taking into account the expression [27]
CO/TE/) ogay o o
X nz:% %ﬁ u"F (1 +n, %; g + n; U) . and some cancellation of terms, yield
J
n=0
where
_ e (<2/8),T(n+1/6) (1 55
x(u) = T(5/6)u’/ nZ::O (5/6).T(n 1) F (6 —n,gig Ml ) . (B8)

If we recall that I'(—1/6)/I'(1/6) =
side of Eq. (B7) coincides to —1(1 — u). Therefore,

P2(u) = x(u)

- 7/)1(1 — u).

—TI'(5/6)/T(7/6), then from Eq. (B4) we see that the last term on the right-hand

(B9)
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Let us now evaluate x(u). From Egs. (B5) and (B8) we write

x(u) =T'(5/6)T'(1/6) Z (—?E(/;}—)G)%F <§, —n; Z —n;1— u) .

n=0

The use of Eq. (A14) and some manipulations yield whence
S I'(1/6)T2(5/6)T'(4/3) 43
= . B10
where -
Therefore 13 (u) is given by Eq. (B9) along with Egs. (B6)
S(k) = T(1/6) (=2/3)k N (1/6)m(k —2/3)m and (B10). Finally the substitution of the expression of
(k) =T(1/6) (5/6 ZO (k+5/6)mm! 2(u) thus obtained into Eq. (B1) reads
Note that [cf. Eq. (A14 r(1/6)I'(3/2
e Ba (A1) T1(0,0) = iy et () + (1 =)
S (/8)mlk—2/3)m _ Tlk +5/6)0(4/3
— (k+ 5/6 )ymm!  T(k+2/3)[(3/2)
"= which, after using Eq. (B6), proves Eq. (3.6).
Hence,
(u) = L'(1/6)I(5/6)T'(4/3) i 2/3 Y APPENDIX C: DERIVATION OF EQ. (4.2)
T(2/3)T'(3/2) - :
We write Eq. (2.12) in the form
but R .
> R(s,y) = G(s,y) + H(s,y), (C1)
(1-2) Z (2] < 1),
n=0 where
- oo y
G(s,y) = ns™4/3 l:Bi(ysl/3)/ Ai(yos'/®)dyo + Ai(ysl/B)/ Bi(yosl/?’)dyo} , (C2)
y 0
and
H(s,y) = 37255 75/3 Aj(yst/3). (C3)

Let us proceed to invert these transforms. We start by inverting [:I(s, y). Note that the convolution theorem allows
us to write

~1/27T u
H(u,y) = %(‘ITSA h(z,y)(u — z)1/3dz,

where
h(u,y) = L7{s /3 Ai(ys/3)).
From Egs. (2.13) and (2.14) we easily see that

3 ey’ /9u
hlu,y) = (371%/2m) =5
Therefore,
31/3 e Y /9z
H(wy) = ori7s) / s (= 2)Pde. (C4)

We will now evaluate G(u,y). Taking into account Eq. (2.13) and the expression [18]

. 1/3 y31/3 v 2 3/2.1/2 2 3/2.1/2
Bi(ys™/") = 3 I 43 gy s + I3 3y > (C5)
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we can write G(u,y) in the form
. 1/2 2 2
G =¥ { / WKy (k 3/2 1/2> [Lm (gye./zsm) T ( a/2, /)] do
v
v 2 2 3/2 3/2 1/2
+/ yé/zKl/3 <§y3/231/2> [I~1/3 (gyg/ 31/2> +1s (3 / )] dyo}-
0
From the inversion formula [19,25]
—(a®+b%)/4u ab
LY, K, (b = " (®
{1t (aVs) K, (bV/5)} o | 5 (C6)
(0 <a<b), we get
R 1/2 poo 3/2y 3/2 3/2y, 3/2
- ) 1/2 —(y3+42)/9u 2y 2y
L7HYsG(s,y)} = ?1;/0 yo/ Pem (W HuR)/9 [Ll/s (*——gu ) + I3 (—_Qu dyo.
But [19]
oo y3/2 3/2 3
1/2—y3/9uf Yo 1/2_y%/18u ¥y
/0 Yo € v ( 9u dyo = (mu)*/%e I,/ A
Hence
T2 Y 12 —y%/18s y® y°
Glug) = Ty [erre s (1o () 4 e (£)] ()

The substitution of Egs. (C4)—(C7) into the inverse Laplace transform of Eq. (C1) proves Eq. (4.2).
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