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Abstract: We study how a one-layer Artificial Neural Network performs when applied to a
quantum three-body problem with a central potential. We use the harmonic oscillator as a bench-
mark to test how the neural network solution performs upon changing parameters. With the best
combination of these, we managed to get the ground state energy with a relative error of 0.03 %
with respect to the analytical one, and a wave function with an overlap of the 99.996 % with the
analytical solution.

I. INTRODUCTION

In the last decade, Machine Learning techniques and
Artificial Neural Networks (ANNs) have gained a lot of
popularity. Particularly in physics, these methods have
been able to produce notably good results in a big variety
of research fields [1]. These methods have become handy
in problems where one needs to classify large amounts
of data. ANNs can be used to minimize functions where
the solution is unknown. This is helpful when solving
quantum many-body problems as we want to minimize
the energy [2, 3]. Inspired by Ref. [4], where the bind-
ing energy of the deuteron is found, we add one parti-
cle more and solve a quantum three-body problem using
similar methods. Three-body problems are important in
nuclear physics, as there are three-particle nuclei such as
tritium or helium-3, but also they are important in sub-
atomic particle physics in the study of baryons formed
by 3 quarks [5].

A. Physical problem

First, we shall introduce the Hamiltonian for a three-
body system, which consists of a kinetic part and a po-
tential,

H = − ℏ2

2m1
∇2

r⃗1
− ℏ2

2m2
∇2

r⃗2
− ℏ2

2m3
∇2

r⃗3
+ V (r⃗1, r⃗2, r⃗3) ,

(1)

where mi are the masses of particles i = 1, . . . , 3 and ∇r⃗i

the Laplacian with respect to the coordinate r⃗i. Eq. (1) is
a problem of 9 variables, but since we are only interested
in the relative motion of the three particles, we can reduce
it to 6 by doing the following change of variables:

x⃗ = r⃗1 − r⃗2 y⃗ =
m1r⃗1 +m2r⃗2
m1 +m2

− r⃗3 . (2)

Ignoring the kinetic term of the global center of mass of
the system we end up with:

H = − ℏ2

2µx
∇2

x⃗−
ℏ2

2µy
∇2

y⃗ + V (x⃗, y⃗) , (3)

where the reduced masses are defined as,

µx =

(
1

m1
+

1

m2

)−1

µy =

(
1

m1 +m2
+

1

m3

)−1

.

(4)

In order to make the problem simpler, we consider a cen-
tral potential. Which in this case, is a potential indepen-
dent of the directions of x and y. With this in mind, our
goal is to find the ground state of the system given a po-
tential. This can be solved with the variational method
by minimizing the energy of the quantum system. Be-
cause the potential does not depend on the directions of
x and y, the solution will be proportional to the spherical
harmonics, so the wave function can be written as,

ψ(x⃗, y⃗) =
u(x, y)

xy
Ylx,mx

(Ωx)Yly,my
(Ωy) , (5)

where li, mi are the angular momentum quantum num-
bers and Ωi is the spherical angle for i = x and i = y; x
is the modulus of x⃗ and the same for y. We introduced
the reduced radial wave function u(x, y) = xyR(x, y).
When using this, we have to impose the boundary con-
ditions u(x, 0) = u(0, y) = 0. This function is important
because it simplifies the radial part of the Laplacian in
Eq. (3) to a single second derivative. The angular part
of the Laplacian applied to the spherical harmonics gives
us ∇2

ΩY (Ω) = l(l + 1)Y (Ω). Applying the Hamiltonian
to the wave function we get:

Ĥψ(x⃗, y⃗) =
[
− 1

2µx

∂2

∂x2
− 1

2µy

∂2

∂y2
+ Veff (x, y)

]
(6)

u(x, y)Yx(Ωx)Yy(Ωy) ,

where the effective potential includes the angular mo-
mentum Veff (x, y) = lx(lx + 1) + ly(ly + 1) + V (x, y).
Now, we can find the functional of the energy,

E =
⟨ψ|Ĥ|ψ⟩
⟨ψ|ψ⟩ =

∫∞
0

∫∞
0
u(x, y)Ĥu(x, y)dxdy∫∞

0

∫∞
0
u(x, y)u(x, y)dxdy

. (7)

With this simplification, we end up with a problem of
finding a 2 variable function u(x, y) which minimizes the
energy of the three-body system.
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We want to study if minimizing Eq. (7) via Neural
Networks is doable, so we are going to use a potential
with a known analytical solution,

V (x, y) =
1

2
µxω

2
xx

2 +
1

2
µyω

2
yy

2 . (8)

The analytical solution of this problem is the tensor
product of two isotropic 3d harmonic oscillators, one
for x and one for y. The individual Hamiltonian H =

− h2

2m∇2
r⃗ + 1

2µω
2r2 is solved via separation of variables

and the energy solution is E = ℏω
(
k + l + 3

2

)
, where

k = 0, 2, 4, . . . and l = 0, 1, 2, . . . . The analytical wave
function for the ground state (k = 0 and l = 0) for one
isotropic oscillator is

ψ000(r⃗) = 2

(
1

π

(µω
ℏ

)3
)1/4

e−
1
2

µω
ℏ r2Y00(Ω) . (9)

As we said, the solution to our problem is the tensor
product of the two individual 3d harmonic oscillators.
Consequently, the final energy is the sum of the energies
of the individual problems

Ekxlxkyly = ℏ
[
ωx

(
kx + lx +

3

2

)
+ ωy

(
ky + ly +

3

2

)]
,

(10)

and the global wave function is the product of two
Eq. (9), one for x and one for y. The solution to this
problem can be found in Refs. [6, 7].

II. NUMERICAL METHODS

In this section, we explain all the methods used to find
the solution to the problem. The most important part of
this work is the Artificial Neural Network (ANN). It is
used in a big variety of problems where the objective is
to minimize the so-called loss function, which in our case
is Eq. (7).

A. Artificial Neural Networks

Our ANN consists of three parts: an input layer, a
hidden layer (formed by what we call hidden neurons)
and an output layer, the architecture is shown in Fig. 1.
For each connection we have an arbitrary parameter,
we call the collection of parameters that connect the
input layer with the hidden layer W(1) and those that
connect the hidden layer with the output layer W(2),
these objects are called weights.

This ANN architecture can be written mathematically
as:

ϕANN (X) =

Nhid∑
i=1

W(2)
i σ

 2∑
j=1

W(1)
ij Xj + bi

 , (11)

x

y

b

ϕANN

Input
layer

Hidden
layer

Ouput
layer

W(1) W(2)

FIG. 1: The Neural network architecture that we use with a
number of hidden neurons of Nhid = 4. The two inputs are
the variables x and y. There is a bias b added to the hidden
layer. It has one output ϕANN .

where X⃗ is a vector that includes the inputs X1 = x and
X2 = y; σ is the activation function, which in our case
we use one called Softplus σ(x) = ln (1 + exp(x)); and
we introduce a bias b in the hidden layer.

In our problem, the ANN takes the role of the reduced
radial wave function. This function has to be zero when
x = 0 or y = 0 in order to satisfy boundary conditions
u(x, 0) = u(0, y) = 0. With this in mind, we employ as
the reduced radial function the ANN times a function
that applies the boundary conditions

u(x, y) = f(x, y)ϕANN (x, y) , (12)

f(x, y) = xy(x− x1)(y − y1) , (13)

where x1 and y1 are the limits of the area where we are
computing the energy, x ∈ (0, x1) and y ∈ (0, y1). The
factor (x − x1)(y − y1) is added because we want the
function to go to 0 when approaching x1 and y1.

B. Training

Our ANN has 4Nhid parameters which are included
in W(1), b and W(2). At the start, these parameters are
selected random between −1/

√
2 and 1/

√
2 uniformly.

Our objective is to train our ANN to find a good com-
bination of parameters that minimizes our loss function
Eq. (7). To do it, what is used is an optimizer, which
is the algorithm used to update the weights in order to
decrease the loss function. The idea behind them is to
find the gradient of the loss function with respect to
the parameters and make a step in the direction of the
negative gradient. The size of this step is determined
by the learning rate. The optimizers that we use in this
work are RMSprop [8] and Adam [9].

In our case we initialize a grid of (x, y) coordinates
with N ×N points evenly spaced in the range x ∈ (0, x1)
and y ∈ (0, y1). In our training, first we pass all the
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points in the grid through the ANN; with the outputs,
we compute the loss function Eq. (7) by integrating over
all the grid; and lastly we update the weights via the
optimizer. We call one iteration passing over all these
actions one time. To implement all of this we use the
PyTorch library [10].

In order to compute the loss function we have to first
compute a second derivative with respect to the inputs of
the network and later compute two 2d integrals Eq. (7).
Since we are using a discrete grid we need to use nu-
merical methods for derivation and integration. For the
derivation, we use a 3-point central second derivative and
Simpson’s rule for the integrals. Because of Simpson’s
rule, we have to use an even number of intervals, hence
an odd number of points.

III. RESULTS

In order to deal with the uncertainty of the grid, the
energy benchmark employed in the results is computed
numerically by applying the analytical wave function
into Eq. (7) in the N × N grid. For increasing values
of N , the energy benchmark approaches the analytical
solution. The analytical wave function is the multiplica-
tion of Eq. (9) for x and the same function for y.

Before starting with the results, we choose some spe-
cific values to test whether the network can deal with
asymmetric conditions along x and y axis:

µx = µ µy = 2µ , (14)

ωx = 3ω ωy = ω . (15)

We want to find the energy of the ground state so k = 0
and lx, ly = 0. Taking all these variables into Eq. (10)
we get an analytical energy of E = 6 ℏω.

The range of coordinates that we use in our grid is x ∈
(0, 3)r0 and y ∈ (0, 3)r0, where r0 =

√
ℏ
µω is the natural

length unit of the harmonic oscillator. With the energy as
the loss function we get a decent result in approximately
5000-10000 iterations, this depends on the parameters:
number of hidden neurons, learning rate and size of the
grid. We study these parameters individually in order to
see which are the best to choose.

A. Learning rate

The learning rate is the value that controls the rate at
which the weights change from iteration t through t+ 1.
We expect that a high learning rate can be inadequate
because it can jump the minimum whereas a low learning
rate can take a lot more time to converge. We carry out
some tests for a grid of 51×51 points with 4 hidden neu-
rons Nhid = 4 for the 2 optimizers Adam and RMSprop.

Fig 2 shows the energy associated to the ANN ansatz as a
function of the iteration number. The energy benchmark
is represented with a dashed line.
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FIG. 2: Energy of the ANN ansatz as a function of the it-
eration number for different learning rates in a grid of 51 x
51 and Nhid = 4. Upper panel shows Adam optimizer and
lower panel RMSprop. The dashed line represents the energy
benchmark.

We can see in Fig. 2 that small learning rates (10−3

and 10−4) are very slow, with 30000 iterations the last
one has not yet converged. For large learning rates like
10−1 the solution fluctuates, this could be because the
step is big enough to make the ANN jump around the
minimum. Comparing between optimizers: for the best
learning rate, we get almost the same results with dif-
ferences of approximately 1 % between optimizers. For
large learning rates, Adam oscillates a lot more than RM-
Sprop. In both cases the best learning rate is 10−2, so
that is the one that we use in the following sections.

B. Hidden layer size

Changing the number of hidden neurons changes a lot
the number of parameters of the ANN. If Nhid is raised
we expect to have better results but it also means that the
time of computation is increased. We execute some tests
similar to the previous subsection, with a grid of 51× 51
points and a learning rate of 10−2 for both optimizers.

We can see in Fig. 3 that as expected, the solution
tends to be better if we increase the number of hidden
neurons. As with the learning rate, we get similar results
for both optimizers and Adam fluctuates more than RM-
Sprop. When using the RMSprop for higher values of
Nhid than the ones represented in Fig. 3, the ANN cre-
ates discontinuities that generate a wrong result, this is
why we use Adam in the following sections.
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FIG. 3: The same as Fig. 2 but for a fixed learning rate
lr = 10−2 and different hidden layer sizes Nhid.

C. Size of the grid

Now we want to see how the result varies when in-
creasing the number of points in the grid, obviously an
increase of this type increases the computation time, but
it should get better results. This time we only used the
Adam optimizer with Nhid = 8 and a learning rate of
10−2.
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FIG. 4: Comparison of the relative error for a different num-
ber of points in the grid on Adam optimizer with Nhid = 8
and a learning rate of 10−2.

Fig. 4 represents the relative error as a function of the
number of iterations for a different number of points in
the grid N ×N . The relative error is calculated by com-
paring it with the corresponding benchmark energy of
each grid. In Fig. 4 we can see that for 30000 iterations

the error is almost the same in the 3 grids, but in the
following iterations, the error in the 201 × 201 grid de-
creases, and the same happens later for the 101×101 grid.
Seeing the end results it is clear that for more points one
gets a better result.

D. Final result

Now with all the information we gathered, we train the
ANN with the best parameters that we found for a large
number of iterations and analyze the result. The result
is obtained by training 5 times a new ANN with different
initial parameters. For each training, we gather the en-
ergy of the last 10000 iterations. From all the 5× 10000
values obtained, we calculate the mean E, the difference
between the biggest value and the mean δE+, the differ-
ence between the mean and the lowest value δE− and the
standard deviation σ. Each training is done in a 101×101
grid with Adam optimizer and a learning rate of 10−2 for
100000 iterations. We do this for larger values of Nhid

than in the previous subsection III B to see how the en-
ergy and uncertainty decrease in this range.

TABLE I: Final energies obtained by the process described
previously for different sizes of the hidden layer Nhid, ℏω are
the energy units.

Nhid E δE− δE+ σ

5 6.011 0.005 0.007 0.002

10 6.005 0.005 0.009 0.004

15 6.0000 0.0009 0.0040 0.0005

In Table I we can see the different values obtained
of E, δE−, δE+ and σ for different values of Nhid.
For Nhid = 15 we get a result with a relative error
of 0.03 % comparing it to the energy benchmark for
the 101 × 101 grid E = 5.99846 ℏω. The uncertainties
decrease considerably between Nhid = 10 and Nhid = 15.

In Fig. 5, the left panel shows the representation of the
analytical wave function, in the right panel is represented
the difference between the analytical function and one of
the previously trained ANN with Nhid = 15. The dif-
ferences between wave functions are minimal, computing
the overlap we get a result of ⟨ψANN |ψreal⟩ = 0.99996.

IV. CONCLUSIONS

In this work, we have been able to find the ground
state energy of a quantum mechanical three-body
problem with a harmonic oscillator potential Eq. (8)
with an ANN of one hidden layer. Making the com-
putational parameters more suitable for our problem
we managed to get an energy result of E = 6.0000 ℏω
with a standard deviation of σ = 0.0005 ℏω, compared
to the energy benchmark of 5.99846 ℏω which comes
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FIG. 5: Left panel: representation of the analytical reduced radial wave function (multiplication of two Eq. (9)) normalized
to 1. Right panel: representation of the difference between the analytical function and the ANN, both normalized to 1. ANN
trained with Adam for Nhid = 15, learning rate 10−2 and with a grid of 101× 101 points for 100000 iterations.

from computing the energy in the same discrete grid
(explained at the start of section III), makes a relative
error of 0.03 %. The overlap between the wave function
from the ANN and the analytical one gives a value of
⟨ψANN |ψreal⟩ = 0.99996.
With respect to the work on [4] we increased one
dimension to the problem, we found out that with this
change, it is necessary to apply Eq. (13) multiplying the
ANN in order to satisfy boundary conditions.
We also did a study on the different computational
parameters of the problem: learning rate, hidden layer
size and grid size. We compared the results between two
different optimizers and found out that for our problem
the results of both optimizers with a learning rate of
10−2 have differences of approximately 1 %. We also
saw how the error decreases when rising the grid size,
this decrease only happens after a certain amount of
iterations, in our case are 30000.
It is necessary to emphasize that the program made

to solve this problem not only works for a har-
monic potential but for any central potential that
can be thought of. The code can be found on
https://github.com/Marcjaser/threebodyANN.

This work could be extended in multiple ways. One way
is trying to make the program capable of working with
non-central potentials. Another option is changing to
other numerical methods for derivation and integration,
for example implementing Montecarlo integration in
order to not have a fixed grid and make the training
more focused on the more complex parts of the wave
function.
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