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Abstract: We develop a mathematical model to characterize Newtonian and non-Newtonian
fluids and compute their viscosity. Experimental data of mice blood infected by Plasmodium yoelii
is analysed in order to obtain its viscosity. A comparison between different periods of infection is
made with a view to determine viscosity changes throughout the disease advance. The results are also
compared with non-infected human blood viscosity values to study how malaria affects the viscosity.
Results successfully correlate with the already known viscoelastic changes of malaria-infected red
blood cells.

I. INTRODUCTION

Microfluidics is the science that studies the behaviour
of fluids at a very small scale, usually dealing with low
Reynolds numbers. This allow us to get precise and ac-
curate measurements with very low volumes of fluids.
Hemorheology is the study of blood flow and its viscoelas-
tic properties. Microfluidic devices are often needed in
this field in order to study blood viscosity and its changes
due to hematological disorders.

Nearly half of blood volume is red blood cells (RBCs),
thus its viscosity will rely on the viscoelastic properties of
these blood cells. More specifically, it depends on hema-
tocrit (volume percentage of RBCs in blood), RBCs de-
formation and elasticity (which affect aggregation prop-
erties), and plasma viscosity (being the less prominent
contribution) [1]. It also depends on the shear rate ap-
plied (the rate at which tangential force is applied), which
changes the viscoelastic properties of RBCs and their ag-
gregation.

Malaria is one of the most contracted parasite diseases
worldwide, having more than 200 million cases in 2016
[2]. It is caused by parasites of the Plasmodium group
that are transmitted by the bite of an infected Anophe-
les mosquito. Only a small fraction of victims die from
malaria, the vulnerable population (elders and children)
being the most endangered. For instance, Plasmodium
vivax is associated with a greater risk of sever thrombo-
cytopenia and sever anemia in infants [3].

When a Plasmodium parasite hosts a healthy RBC, the
erythrocyte’s viscoelastic properties change, modifying
the whole blood viscosity. The infected RBCs (IRBCs)
rigidity and flexibility changes depending on the Plas-
modium specie infecting. This is experimentally shown
elsewhere [4], which proves that as the parasite matured,
P. falciparum IRBCs increased their rigidity whereas P.
vivax IRBCs doubled their flexibility. Rigidity of the
RBCs when infected by P. falciparum is also experimen-
tally confirmed in [5]. It is also shown that P. vivax tends
to increase the surface area of the RBC, which results in
a higher flexibility [6].

A way to study blood infected by malaria is to first
use mice blood, which is the aim of this study. The two

most common species of Plasmodium in humans are fal-
ciparum and vivax but in order to study the effects on
blood viscosity we can experiment with their equivalent
Plasmodium species for mice, P. chabaudi and P. yoelii,
respectively. This is a more ethical way to study these
parasites, as direct infection of a human is not needed.
Both P. vivax and P. yoelii exhibit tropism for reticu-
locytes (immature RBCs) and both tend to increase the
flexibility of the RBCs.

II. MATHEMATICAL MODEL

As for any fluid, we need to derive the Navier-Stokes
equation. This model works for any fluid not depending
on the deformation history or the temperature (we will
work at constant temperature). This includes Newto-
nian and non-Newtonian fluids. Considering a Ostwald-
de Waele power law behaviour we can approximate the
viscosity of the fluid η depending on the shear rate ap-
plied γ̇:

η = mγ̇n−1 (1)

Here m is the flow consistency index and n is the power
law exponent, which depends on the fluid behaviour. For
Newtonian fluids n equals to 1, since viscosity doesn’t de-
pend on the shear rate applied. For non-Newtonian fluids
n can be n > 1 for shear-thickening and n < 1 for shear-
thinning fluids. Blood has a shear-thinning behaviour,
so we will be dealing with values of n < 1.
The shear rate applied inside the microchannel can be

approximated as:

γ̇ =
∂vx
∂z

≃ ḣ

b
(2)

where ḣ is the mean front velocity and b the height of the
microchannel, which is seen in Fig. 1.
We first solve the Navier-Stokes equation inside the

microchannel. Since the microchannel has a rectangu-
lar shape we define the velocity field in Cartesian coor-
dinates. Due to the geometry and the low size of the
experimental setup, the velocity only has an x compo-
nent, and it only depends on the z coordinate. This is
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FIG. 1: Schematic image of the experimental setup used in
the measurements of the pressure and the velocity of the mean
fluid front. Extracted from Fig 1 of Trejo [7].

expressed as v⃗ = vx(z) x̂, in Cartesian coordinates. The
velocity field should depend on y and z coordinates be-
cause there is a front interface curvature due to capillary
pressure, but since b/w ≪ 1 we only consider the change
in velocity with z.

F = τ = η

(
dvx
dz

)
= η γ̇ (3)

This force is related to the tangential shear stress τ (note
the difference with axial stress σ), since we are addressing
the force applied tangentially to a differential layer of
fluid.

We first need to start on the basis of Cauchy momen-

tum equation for an incompressible fluid (∇⃗ · v⃗ = 0):

ρ
Dv⃗

Dt
= −∇⃗p+ ∇⃗ · τ⃗ (4)

where ρ is the density of the fluid and ∇⃗p the pressure
gradient.

Since we are in a low Reynolds number regime (Re ≈
10−3) the stationary and convective terms equal to zero.

Then we are left with ∇⃗p = ∇⃗ · τ⃗ , which can be written
as (in Einstein notation):

∂p

∂xi
=

∂

∂xj
(τij) (5)

The stress tensor τij (which is symmetrical) for an in-
compressible fluid is expressed as:

τij = η

(
∂vi
∂xj

+
∂vj
∂xi

)
(6)

Since we only have an x component for the velocity
field (only depending in z ) we derive the shear tensor
Eq. (6), considering i = x and j = x, y, z:

∂

∂xj
(τx) =

∂

∂x

[
2η

∂vx
∂x

]
+

∂

∂y

[
η

(
∂vx
∂y

+
∂vy
∂x

)]
+

+
∂

∂z

[
η

(
∂vx
∂z

+
∂vz
∂x

)]
(7)

Since ∂vx
∂z is the only non-zero term we are left with

an Stokes equation for fluids whose viscosity is shear-
dependant:

∂

∂z
(η γ̇) =

∂p

∂x
(8)

Since the velocity only has an x component, from now
on we will be considering that v ≡ vx, for the sake of
simplicity.
The pressure gradient can be expressed as a function

of the fluid mean front position, h(t), and the pressure
drop along the system, ∆p:

∂

∂z
(η(z) · γ̇(z)) = ∆p

h
(9)

The pressure drop have three main contributions: the
hydrostatic pressure phyd (which serves as the main pres-
sure source to keep the front moving forward), the capil-
lary pressure ∆pY L (which is related to the curvature of
the fluid front) and the pressure drop along the micro-
tube ∆pt (since we have a viscous fluid):

∆p = phyd −∆pY L −∆pt (10)

The hydrostatic pressure can be assumed as constant
in time since the height difference to get the microchannel
completely filled is negligible (the container area is very
big) [8].
The capillary pressure can be calculated with:

∆pY L = 2 τ cos θ

(
1

b
+

1

w

)
(11)

where θ is the contact angle between the fluid front and
the microchannel wall (see Fig. 1), τ is the surface ten-
sion of the fluid and w is the width of the microchannel.
Substituting Eq. (1) in Eq. (9) and integrating we

obtain the shear rate:

γ̇ =

(
z

m

∆p

h

) 1
n

(12)

which depends on h (therefore depends also on time).
In order to compute the integration constant we have
considered that the shear rate is 0 at the z = 0 plane
as boundary conditions. Integrating Eq. (12) we get the
velocity of the fluid as a function of z :

v(z) =
n

1 + n

(
∆p

mh

) 1
n

[
z

1
n+1 −

(
b

2

) 1
n+1

]
(13)

To calculate Eq. (13) we have considered non-slip bound-
ary conditions because the fluid have velocity equal to
zero relative to the wall, so v(z = ±b/2) = 0.
In order to relate the velocity of the fluid with the

flow we need to compute the total flow through the mi-
crochannel Qm using Eq. (13):

Qm =

∫
S

v(z) dS = w

∫ b
2

− b
2

v(z) dz = 2w

∫ b
2

0

v(z) dz =

= 2w

(
n

1 + 2n

)(
∆p

mh

) 1
n
(
b

2

) 1
n+2

(14)
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Since the flow through the microchannel is also Qm =
bwḣ we are able to express the total pressure drop (which
can be obtained through measurements) arranging Eq.
(14) like:

∆p =

(
1 + 2n

n

)n (
2

b

)n+1

mhḣn (15)

We first need to compute the pressure drop through the
micro-tube. Starting again from Eq. (5) and Eq. (6), but
now using cylindrical coordinates and taking into account
the new scale factors because the geometry of the micro-
tube is different from the microchannel. The velocity
only has a z component (due to mass conservation and
that the fluid is incompressible) and only depends on
the radius which is expressed as v⃗ = vz(r) ẑ. The stress
tensor for the z component in cylindrical coordinates is:

∂

∂xj
(τz) =

∂

∂z

[
2η

∂vz
∂z

]
+

1

r

∂

∂ϕ

[
η

(
∂vϕ
∂z

+
1

r

∂vz
∂ϕ

)]
+

+
1

r

∂

∂r

[
r η

(
∂vz
∂r

+
∂vr
∂z

)]
(16)

Given that the only non-zero term is ∂vz
∂r we are left

with:

1

r

∂

∂r

(
r η

∂vz
∂r

)
=

∆pt
lt

(17)

where we directly substituted ∂p
∂z = ∆pt

lt
, being lt the

length of the micro-tube.
Following a similar procedure than before we integrate

Eq. (17) and obtain the velocity profile:

vz(r) =

(
∆pt
2mlt

) 1
n
(

n

1 + n

)[
r

1
n+1 − r

1
n+1
t

]
(18)

where rt is the radius of the micro-tube. In Eq. (18)
we also considered non-slip boundary conditions vz(r =
rt) = 0. Now we compute the flow through the micro-
tube Qt:

Qt = 2π

(
∆pt
2mlt

) 1
n
(

n

1 + n

)∫ rt

0

[
r

1
n+1 − r

1
n+1
t

]
r dr =

=

(
∆pt
2mlt

) 1
n
(

n

1 + 3n

)
πr

1
n+3
t (19)

Since Qt = πr2t vt (being vt the mean velocity through
the micro-tube) we can obtain ∆pt substituting in Eq.
(19):

∆pt = 2mlt v
n
t

(
1 + 3n

n

)n (
1

rt

)n+1

(20)

From flow conservation (Qt = Qm) we can relate the
velocities inside the micro-tube and inside the microchan-
nel:

πr2t vt = bwḣ (21)

By substituting Eq. (10), Eq. (20) and Eq. (21) into
Eq. (15) we finally obtain the mean front velocity:

ḣn =
phyd −∆pY L[(

1+2n
n

)n ( 2
b

)n+1
mh+ 2mlt

rn+1
t

(
bw
π r2t

(
1+3n

n

))n]
(22)

In Eq. (22) we have a very complex expression, but
we can reduce it by considering the height of the mi-
crochannel b. In the denominator we have two terms:
the first term is ∝ b−(n+1) while the second one is ∝ bn.
In order to get rid of the h dependence (since its difficult
to measure the front position along time) we need a big
value of b. As long as the height of the microchannel is
high enough, the first term of the denominator will be
much smaller than the second one and it can be omitted.
This happens because the resistance in the micro-tube is
higher than in the microchannel [7]. With this approx-
imation, we are left with a much simpler expression of
Eq. (22).
Given that we neglected the h dependant term, we

can assume that the velocity of the fluid mean front ḣ is
constant through the microchannel (ḣ ̸= ḣ(t)). From Eq.
(22) we are left with:

phyd −∆pY L =
2 lt
rn+1

[
bw

π r2t

(
1 + 3n

n

)]n
mḣn (23)

This equation will allow us to measure the m variable for
any non-Newtonian fluid. With this value we will be able
to calculate the viscosity of the fluid with Eq. (1).

III. EXPERIMENTAL METHOD

To obtain the viscosity of blood we need experimental
data of the mean front velocity ḣ for various pressure val-
ues Peff . The measured pressure is labelled as effective
pressure, Peff , which we define as: Peff = phyd−∆pY L.
So values of the height of the fluid column and the con-
tact angle are needed. The mean front velocity and the
contact angle are measured with the footage taken from
a high speed camera on a microscope. By tracking the
mean front position of the fluid and measuring the time
between segments of the microchannel, the velocity of the
fluid is computed.
By repeating the same measurements for different col-

umn heights we will obtain a qualitative plot of the vis-
cosity depending on the shear rate applied. The exper-
imental setup characteristics and parameters are shown
in Table I.
Because the viscosity of blood is shear dependant we

need to compute the flow consistency index m and the
power law exponent n with Eq. (23). With the given

experimental data we can plot Peff versus ḣ to obtain a
graph like Fig. 2, however it is not viable to directly ob-
tain the value of n with Eq. (23). By applying logarithms
to both sides of the equation we get:

logPeff = n log ḣ+ logK (24)
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TABLE I: Experimental setup conditions.

b 350µm

w 1000µm

rt 127µm

lt 0, 43m

τ 0, 0612N/m

ρ 1060 kg/m3

K is a constant defined as:

K =
2 lt
rn+1

[
bw

π r2t

(
1 + 3n

n

)]n
m (25)

Therefore plotting the logarithm of Peff versus the loga-

rithm of ḣ and making a linear regression we can compute
n (which equals the slope of the linear regression) and m
(dividing the value of K by all the prefactor of m in Eq.
(25)).

IV. EXPERIMENTAL RESULTS AND
DISCUSSION

As mentioned in the introduction, we analyse exper-
imental data from mice infected by Plasmodium yoelii -
GFP transgenic line. This non-lethal parasite serves as a
basis to understand P. vivax in the future, due to the sim-
ilar structural changes that IRBCs suffer upon infection.
The experimental data was measured by Aleix Elizalde
and Claudia Trejo in 2017 and briefly analyzed in [9], not
computing the viscosity of the samples.
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FIG. 2: Effective pressure as a function of mean front velocity
for the P. yoelii infected mice blood.

The experimental data comes from four mice that were
infected by Plasmodium yoelii -GFP transgenic line and
were killed 3, 5, 8 and 9 days after the infection. This was

made in order to analyse the change in blood rheological
properties along time.
Working with the experimental setup described earlier

we obtain the mean front velocity ḣ for every pressure
applied Peff . Using the equations described before we
obtain the viscosity and we can plot the viscosity versus
the shear rate extract useful information.
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FIG. 3: Viscosity as a function of shear rate for the P. yoelii
infected mice blood.

As seen in Fig. 2, the slope of the curve decreases with
infection time. Since the slope is related to the viscosity
of the blood we will see a decrease in blood viscosity,
which is noticeable in Fig. 3. These P. yoelii results
have correlation with the recent studies of P. vivax. As
the parasite mature the RBCs become more deformable
[4], which can be seen in Fig. 3 if we directly relate the
deformability of the RBCs with the viscosity of the blood.
We can also observe that in Fig. 3, the shear-thinning

behaviour of blood is less noticeable as the infection pro-
gresses. This could happen due to the increase of de-
formability of the RBCs. Another cause could be the de-
crease of rouleaux formation because of the deformability
changes. Rouleaux are aggregations of RBCs due to their
unique biconcave discoid shape, and are the main cause
of increased blood viscosity at low shear rates. Since
P. vivax tends to enlarge the surface area, this might
affect the number of rouleaux formed and consequently
decrease the viscosity of blood at this lower shear rates.
More studies are needed to understand the structural

and deformability changes in IRBCs by P. vivax in order
to properly compare these changes with the viscosity of
the blood.
Finally, the viscosity results of non-infected human

blood extracted from [8] are shown in Fig. 4. Since mice
and human blood has a similar hematocrit (circa 48%)
we can approximately compare the viscosity values. We
will consider the pink curve, as is the less aged blood
sample with an hematocrit of 48%. The mice infected
blood results we obtained have a lower value than the
human blood results. The viscosity of the blood with 3
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FIG. 4: Viscosity as a function of shear rate for the non-
infected by malaria human blood. Plot extracted from Fig
9.4 of Trejo [8].

days after infection is lower than the human non-infected
blood; the same happens for larger infection periods of
time. This could be related to the higher deformability
that RBCs undergo when infected by P. vivax, resulting
in an overall decrease of blood viscosity as the disease
advance.

V. CONCLUSIONS

We have successfully employed a mathematical model
to calculate the viscosity of P. yoelii and non-infected

blood for different shear rate values. A qualitative rela-
tion between the viscosity values and the already known
viscoelastic changes in IRBCs is made with the aim of
better comprehending the unusual behaviour of blood
viscosity when infected by malaria.

My future objective is to inquire more deeply into the
rheology of human blood, especially blood infected with
malaria, working along Dra. Aurora Hernández Machado
and Dr. Hernando del Portillo. A focus on P. vivax
and P. falciparum is required to better understand their
effects on blood viscoelastic properties and advance to-
wards a faster diagnosis, a more effective cure and the
eradication of this disease.
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