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Abstract: Colloid self-assembly processes are quite difficult to predict; in spite of that, because
of its relevance in material science such as building complex materials, it is an important subject of
study. In this work the superparamagnetic colloid (SPC) self-assembly process in 2D under magnetic
fields was studied using brownian dynamics simulations. The dynamics and the equilibrium states
properties were studied for different concentrations and magnetic field conditions. Chains where
formed for low magnetic field values (for every density studied) and bundles of chains appeared
when magnetic field increased for higher densities. In both cases equilibrium was reached.

I. INTRODUCTION

Colloidal self-assembly is a relevant alternative to
chemical synthesis route and an important factor in fabri-
cation techniques for building increasingly complex struc-
tures and materials [1]. Studying the behaviour of these
particles may help to clarify crystallisation and phase
transition mechanisms because, thanks to their meso-
scopic size, their dynamics are slowed down sharply in
comparison with atomic systems, making its study much
more accessible and efficient.

Among the variety of strategies for guided assembly
of colloidal matter, magnetic-field induced assembly rep-
resents a unique route due to the instantaneous and
anisotropic nature of magnetic interactions [1]. This as-
sembly process occurs mostly due to dipole-dipole in-
teractions (which can be either attractive or repulsive).
In addition, the strong response to an external mag-
netic field makes aggregation a fast process. Further-
more, their interaction is at a distance, implying inde-
pendence of changes in experimental conditions. Finally,
magnetic fields can be easily created and manipulated.
Moreover, being easily torqued by an external field and
the corresponding orientation being visualized by sim-
ple optical techniques is one of the main reasons that
encourage the study of colloid assembly. These proper-
ties can be employed in several applications [4–6, 10],
where anisotropic magnetic particles are used as force
sensors, microstirrers, active components in constrained
geometries, micro-rheological probes or externally actu-
ated micropropellers. Moreover there is a special interest
in the medical field where different techniques use mag-
netic colloids in diagnosis and medical imaging. In addi-
tion, assembling colloids into 1D chains, 2D arrays and
3D superlattices continues to be one of the grand goals
in colloid and nanomaterial science owing to the inspir-
ing properties found in their microscale and macroscale
assemblies [10].

Specifically, colloids treated in this study are super-
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paramagnets. The main attribute of superparamagnetic
materials is having an exceptionally strong response to
applied magnetic fields. Moreover, superparamagnets do
not present magnetic hysteresis and, in the absence of ex-
ternal field, their magnetization is zero (they do not have
remnant magnetization) [2]. Such colloids are particles
of typical size in the range 50 nm to 2 µm.
The aim of this work is to study with numerical sim-

ulations the aggregation and the equilibrium state of a
set of N SPCs randomly distributed on a plane with cer-
tain density under static magnetic fields applied in the
plane. Since the field is only applied on the plane, we ex-
pect SPCs to form chain or bundle structures along the
field direction. The objective is to observe in what condi-
tions the equilibrium is reached, what properties do the
formed structures have and under what conditions chains
or bundles appear. The study was done with Brownian
dynamics simulations, which could be used since SPC
have micrometric size and therefore their dynamics is
overdamped (Re ≪ 1) and thermal agitation is impor-
tant.

II. METHODS

A. Model

The superparamagnetic colloids are described as spher-
ical particles which interact through finite volume (aka
steric) interactions and magnetic interactions. To eval-
uate colloidal magnetic interactions it is mandatory to
know the value of the magnetic moment m⃗ of each col-
loid. We can consider that m⃗ can be obtained from:

m⃗i = χV (Hext +Hdip) = χV

Hext +
∑
j ̸=i

H
(j)
dip(ri)


(1)

Here χ is the volume magnetic susceptibility of the
paramagnetic particle, V = πσ3/6 its volume where σ
represents the diameter of the SPC, and Hext and Hdip

the external field and the dipolar field caused by the other
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magnetic particles. Note that Eq. 1 is an implicit equa-
tion, since Hdip depends on the value of the magnetic
moments {mi}. In order to solve it, it will be neces-
sary to use an iterative procedure. Then, starting from
a magnetic moment of a SPC under an external field
Hext = H0 that can be expressed as m0 = χV H0 we can
obtain a first approximation by inserting m0 into Eq. 1
which also depends on m. Once this new m is obtained
we could simply replace it in Eq. 1 to have a better ap-
proximation an so on. In this work, the iteration stops
at the first approximation. Notice that near neighbours
effect is considered in the dipole-dipole interaction. In
this approximation, the magnetic moment is then given
by:

m⃗i ≈ m⃗i
(0) + m⃗i

(1) = χ
πσ3

6
H0×

×

1− σ3χµ0

24

∑
j ̸=i

1

r3ij

 ĥ+
σ3χµ0

8

∑
j ̸=i

ĥ · r̂
r3ij

r̂


(2)

In Eq. 2 ĥ is the direction of the applied field, rij =
|r⃗i − r⃗j |, r̂ = (r⃗i − r⃗j)/rij and µ0 is the permeability of
vacuum. As previously stated, the magnetic moment in
Eq. 2 gives the necessary information to determine the
dipolar magnetic force on each particle due to the other

colloids, F⃗
(m)
i . On the other hand, we use the WCA

potential (U0(r)) [11] to generate the steric force (F⃗
(r)
i ).

U0(r) is similar to the Lennard-Jones potential, being
U0(r) = 0 for r > 21/6σ and:

U0 = 4ϵ

[(σ
r

)12

−
(σ
r

)6
]
+ ϵ, for r < 21/6σ (3)

Here ϵ is a characteristic energy and its order is ofKBT
(specifically ϵ = 10kBT was used). This potential grants
that no overlapping occurs. The dynamics of the problem
is that of a forced Brownian motion in a 2D plane with
a diffusion constant Dt. The equation that needs to be
solved is:

dr⃗i(t)

dt
= βDt(F⃗

(r)
i + F⃗

(m)
i ) +

√
2Dtξ⃗i(t) (4)

Here, β = 1/KBT and the last term is a random force
which takes into account thermal noise, computed with

ξ⃗i(t) which takes the form of a Gaussian random noise.
To solve the dynamics it is convenient to write Eq. 4 in
a dimensionless form. Then we define T = σ2/Dt as
a temporal unit and L = σ as a length unit. Defining
x⃗ = r⃗/L i τ = t/T we can rewrite (4) as:

dx⃗(τ)

dτ
= βϵf⃗

(r)
i + βσfmf⃗

(m)
i +

√
2ξ⃗i(τ) (5)

Where the relations F⃗
(r)
i = ϵ

σ f⃗
(r)
i and F⃗

(m)
i = fmf⃗

(m)
i

have been used. Now (5) is written as a function of the
following dimensionless parameters:

ε = βϵ, Γ = βσfm =
4πχ2µr

3
µ0H

2
0σ

3β (6)

These parameters are defined as the energy and mag-
netic parameters, respectively and govern the dynamics
of the problem.

B. Analysis

The dynamics of the system are integrated numerically
using an in house Fortran program which numerically
solves Eq. 5 with a discrete time of dt = 10−4τ . At each
time step all stated interactions are being evaluated plus
the random noise is generated using the Marsaglia polar
method [12]. Then Euler’s algorithm is used to advance
to the next time step. This process is iteratively repeated
until the final time of integration tfin is reached.
The particle system is initialized in a random config-

uration in the XY plane in accordance with the desired
number of particles (N) and the desired density and mag-
netic parameter in Eq. 6 while the energy parameter is
maintained fixed at a value of 10. Moreover, the program
used Periodic Boundary Conditions (PBC) so if a parti-
cle was to exit the ”box” from one side, it would appear
in the opposite end of the simulation box.

FIG. 1: Snapshot of a simulation of a system with Φ = 0.22
and Γ = 18.5. Chains and bundles can be spotted.

The output returned by the simulation code consists
of a trajectory file which contained the positions of every
colloid whenever a time step iteration (snapshot) finished
and could be visualized graphically. In Fig. 1 we can
observe a snapshot of the simulation where colloids form
aggregates in the shape of chains.
To analyze the trajectory a Python program was used.

This program should be able to identify all the aggregates
that appear for every snapshot using a certain criteria of
distance between particles that was set after manually
analysing some snapshots where chains were formed. In
this process it is mandatory to have extreme care with
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PBC since they can widely modify the results obtained.
We can see different aggregates in Fig. 2.

The output returned by the program is a distribution
of the different sizes of the aggregates and the average
aggregate size ⟨n⟩ for every snapshot. This information
allows us to follow the dynamics of the system on the
basis of the initial random configuration and to identify
when the equilibrium state is reached.

FIG. 2: In this frame of a system with Φ = 0.16 and Γ =
18.5 we can see that the analysis program has identified 224
different bundles (represented in different colors).

III. DISCUSSION

To identify the different structures reached in equilib-
rium we represent in Fig. 3 a phase diagram where the
average number of colloids per aggregate ⟨n⟩ is plotted
as a function of the density (Φ) and magnetic (Γ) param-
eters. The phase diagram is divided in two zones by a
red line. This line was plotted using from each density
the ⟨n⟩ where bundle structures started forming.

FIG. 3: Phase diagram obtained as a function of magnetic
parameter Γ and density Φ for systems of N=100 particles.
Interpolation points have been shaded. The color-bar shows
the average particles per chain (⟨n⟩) for every system. A red-
dashed line marks the systems from which bundle formation
appears.

Observing the phase diagram we notice that, at low
values of Γ, we obtain low values for the average of par-
ticles per bundle. However, maintaining a fixed value of
Γ, ⟨n⟩ increases with the density. Moreover, as Γ grows

higher, density becomes more relevant and the difference
with ⟨n⟩ becomes significant. In addition, we can ob-
serve that at low Γ values thermal agitation is dominant
against dipolar magnetic interaction and not even chains
get formed.
On the one hand, observing the different simulations of

magnetic colloids departing from random initial configu-
rations, we notice that a stationary state is reached. In
this state chains are being formed and destroyed dynam-
ically and the ⟨n⟩ oscillates about a fixed value, which
might indicate an equilibrium state. On the other hand
at high values of Γ and Φ, we can distinguish some chains
that stick together in what seems a different dynamical
structure (bundles). Therefore, there are two kind of self-
assembled structures that may be studied: chains and
bundles.

A. Chains

First of all systems with chain formation were studied.
The aim of this section is to find if there is any stability
at all (if the system reaches equilibrium) and to see how
it evolves with time.
First we studied the ⟨n⟩ stability for different systems

that evolve into an equilibrium state with chain forma-
tion. In order to do so, multiple simulations with a thou-
sand particles were performed. A representative exam-
ple starting from a random distribution (therefore with
⟨n⟩ = 1) is shown in Fig. 4. It is noticeable that ⟨n⟩ grows
higher monotonously until it reaches a plateau where it
oscillates around a stable value.

FIG. 4: Mean plot of the average number of particles per
aggregate versus time for a system with Φ = 0.16 i Γ = 18.5
(Chain, in yellow) and a system of with Φ = 0.23 i Γ = 18.0
(Bundle, in blue) obtained from 10 simulations each. Regres-
sion lines are represented which interception values indicates
the stability values of the systems and have slopes compatible
with 0 within the statistical error.

In Fig. 4 we can distinguish a regime where equilib-
rium has been reached. Furthermore, we can see that
equilibrium has been reached in a time around τeq = 180
which means that it is teq = 180 · σ2/Dt s. Here we can
do a estimation for a colloid of typical size σ = 1µm
using the Stokes-Einstein formula for the diffusion coef-
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ficient for an spherical particle Dt = kBT/(3πησ), where
η ≈ 0.001Pa · s is the viscosity of water and we assume a
temperature T = 300K. Then, we obtain teq ≈ 40.91 s.

It is also of interest the equilibrium distribution of
probability for a chain to be formed of n particles using
the snapshots where the ⟨n⟩ fluctuates around a fixed
value, see Fig. 4).

FIG. 5: Average probability ⟨P ⟩ of finding a chain of a cer-
tain length (n) in equilibrium for a system with Φ = 0.16 i
Γ = 18.5 (Chain, in yellow) and a system of with Φ = 0.23 i
Γ = 18.0 (Bundle, in blue) obtained from 10 simulations each.

In Fig. 5 the probability of finding a chain of length
n in equilibrium is plotted against n for a representative
case where chains are formed. The average value of par-
ticles per chain in equilibrium is marked in yellow. The
average probability of finding a chain of length n in equi-
librium is marked with a larger point and its standard
error is plotted. We can see that P decreases as n in-
creases monotonically. The probability of finding a non
aggregated particle in equilibrium is pretty high.

B. Bundle

Now we will consider those cases where two or more
chains stick together an become a single aggregate this
happens only when we have high values of Γ and Φ (as
marked in Fig. 3). As we can see in Fig. 10 in [2], when
chains have a certain number of colloids, it is energeti-
cally favorable to form bundle structures instead of longer
chains. For these cases, we see that chains prefer to ag-
gregate in zip formation instead of in parallel.

(a) Zip. (b) In parallel.

FIG. 6

This is because zip aggregation is energetically more
favorable. If we consider that the dipole field is negli-
gible (since its much weaker than the external field) the
main contribution to the total energy is the dipole-dipole
pair interaction[9]. Taking into account that colloids have

approximately the same magnetic moment, then we can
rewrite the dipole-dipole energy between two particles for
the whole bundle as a function of the angle θ between the
magnetization and the distance between particles r̂ as:

Ebundle = −µ0|m|2

4π

∑
ij

3cos2(θij)− 1

|rij |3
; (7)

FIG. 7: Energy for a particle in a system where two chains
(both of size n) are in parallel Ep or in zip Ez. The result is

expressed in function of C = µ0|m|2
4π

(in Eq. 7 ).

To calculate Eq. 7 we have assumed that the distance
between particles (in the same chain and with the par-
ticles of the other chain) is low enough to consider that
they are in contact. In Fig. 7 we represent the energy
of a bundle of n particles both in zip and in parallel for-
mation. We can see that Ez < Ep for every n value
which confirms what we expected. In Fig. 1 and 2 we
can appreciate some zip aggregated structures.
In Fig. 4 we can see the mean value for every frame

for systems where zip formation was observed (In blue).
We would expect a region with chain formation be-
fore they aggregate into bundles but it is not appre-
ciable. However we can see that in equilibrium ⟨n⟩ =
12.88±0.01part/chain and that is reached around teq =
280 · σ2/Dt s. The fact that equilibrium is reached quite
late may be due to the chain equilibrium that should
have been reached before the appearance of bundles. In
addition we can observe as in the previous case the dis-
tribution of the probability when equilibrium is reached
(see Fig. 5, in blue).

IV. CONCLUSIONS

In this work superparamagnetic colloids (CPS) self-
assembly has been studied under the effect of an exter-
nal magnetic field on a plane. This external field in-
duces a magnetic dipole on each colloid and can generate
self-assembly. Due to the rising interest in colloid self-
assembly (CSA) for the wide variety of applications that
it has, it is important to predict the collective behavior of
colloids under certain circumstances such as temperature
or external fields.
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The main focus of this work has been the study of
CSA by means of simulations of brownian dynamics of
a system of CPS in a plane under the effect of a mag-
netic field in terms of basic particle characterization data
(magnetic response) and experimental conditions (con-
centration and temperature). Then the evolution of this
system was studied until a stable state which is identified
as equilibrium state was reached. Next, this state was
characterized calculating the equilibrium distribution of
probability of aggregates in function of its size.

From this analysis it has been observed that depend-
ing on the magnetic parameter and the concentration of
colloids they stay disaggregated (for low values of both
parameters), they form chains along the external field di-
rection (mid values) and bundles of chains (high values).
Therefore, an important result is that CSA reaches a sta-
ble state when chains are being formed and destroyed sys-
tematically around an average chain length that increases
with the parameters of the problem Γ,Φ. Equilibrium is
reached with a monotonous increase of ⟨n⟩ in both stud-
ied cases. A relevant remark is that, when bundles were
formed, it was impossible to observe a first plateau re-
lated to chain formation.

Another important result is that the distribution of
probabilities of finding chains of size n in equilibrium de-
creases with n in the case of chain formation. In the stud-
ied case we can clearly see that in spite of forming chains
of average size around ⟨n⟩ = 5.14, the highest probability
of finding a chain of size n is for n = 1. However, the
probability of finding chains of size around ⟨n⟩ is pretty
high in comparison of the one corresponding to longer

chains. When doing the same analysis with bundles we
can see that something similar happens since ⟨1⟩ has the
highest probability and that the probability of finding a
chain of the equilibrium size is much higher than that of
a much longer chain. Finally, we observe that occasion-
ally huge bundles where formed but with a probability
of nearly 0. This may indicate an artifact from periodic
boundary conditions.

All an all, this study has only delved into one face of
many of CSA. For example the magnetic field was main-
tained static and also in the same direction. Further-
more equilibrium was studied as a dependence of time
in one case but it could be extended at different sys-
tems and search a relation between the studied parame-
ters and ⟨n⟩. Another interesting study that could have
been made was to change the intensity of the field with
time and study what would happen with equilibrium. In
addition, systems with different particles other than col-
loids (or adding different kinds of colloids or particles
to the actual system) may have some interest when try-
ing to achieve the birth of new materials. Anyway, this
study is a small step to reach the goal of CSA being fully
understood.
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