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In the era of gravitational waves detection, the need to understand matter at finite temperature
has arisen. The thermal index describes the thermal effects in a neutron star’s equation of state. In
this work we use the virial equation of state of interacting nucleons and consider the contribution
of electrons as an ideal Fermi gas. We compute the thermal index for neutron stars in conditions of
low density and high temperature. We find that the thermal index ranges from 4/3 to 5/3, and is
primarily sensitive to the isospin asymmetry of the system.

I. INTRODUCTION

Following the recent detection of gravitational waves
emitted by the merger of two neutron stars (NSs) [1], the
necessity to understand the thermodynamics of such ob-
jects has increased. To understand this phenomena, we
need to numerically simulate the the merger of two NSs,
which requires an understanding of the micro-physics
of the system. The temperature of the NS during the
merger is expected to raise to 10-100 MeV [2]. At
such temperatures, thermal effects can make up a signif-
icant contribution to the thermodynamics of the system.
Therefore, this phenomena can no longer be described
by the equations of cold matter. Instead, we require a
detailed knowledge of the equation of state (EOS) of hot
matter, that is a relation between pressure, density and
temperature that models the behaviour of matter under
these extreme conditions.

At sufficiently high temperature, all clusters and iso-
topes found in a NS are expected to be unbound, and
one expects a homogeneous gas of neutrons, protons and
electrons should be an approximate model for matter in
these conditions. We consider this gas to be in condi-
tions of chemical equilibrium. The EOS for such gas
has to successfully contemplate the properties of strong
nuclear interactions between nucleons. In contrast, elec-
trons interact rather weakly and can be treated as a an
ideal relativistic Fermi gas [3]. This has allowed us to
derive the EOS of asymmetric matter for electrons and
nucleons separately, using the virial expansion method to
consider the nuclear interactions among the latter.

The thermal index, Γth, is the adiabatic index that de-
scribes the effect of finite temperature in the EOS and
thus is key to developing numerical simulations of NS
mergers [4]. In this work we derive the thermal index
for neutron and asymmetric matter in β-equilibrium us-
ing the virial expansion method, which gives a reliable
result for very low densities and temperatures. In Sec. II
we present the virial expansion method, which we have
applied to pure neutron matter in Sec. IIIA and further
expanded to asymmetric matter in Sec. III B. Finally, in
Sec. IV we present the conclusions drawn.

II. VIRIAL EQUATION OF STATE

The virial expansion method is a general, model-
independent framework to incorporate strong interac-
tions between nucleons in the EOS of a hot dilute gas [5].
The virial EOS is obtained by expanding the pressure in
a power series of the fugacity, z = eµ/T [6], where µ is
the chemical potential,

P =
T

λ3

∞∑
n=1

b(n)zn (1)

For this equation, and throughout the entire work, we
have considered kB = 1. Here λ = ℏ(2π/mT )1/2 is the
nucleon thermal wavelength and b(n) is the nth virial co-
efficient. This expansion is valid on the condition that
z is small, which implies that the expansion is valid for
very low densities. An additional assumption that has to
be made is that the system is in a gas phase and has un-
dergone no phase transition with decreasing temperature
or increasing density.

The nth virial coefficient captures the thermodynam-
ics of the n-body systems, consisting in a non-interacting
term, associated to the free Fermi gas contribution,

b
(n)
0 = (−1)n+1n−5/2, and an interaction-induced term,

∆b(n). This interacting term considers any possible n-
body clusters that may be relevant in the conditions stud-
ied, as well as the scattering phase shifts. It is tempera-
ture dependent, but it is independent on density [5].

To meet the requirements for a valid virial EOS, we
have conducted the study of the thermal index in con-
ditions of low density and high temperature. To study
a homogeneous gas of neutrons, protons and electrons,
we have chosen the range of 1− 25 MeV for temperature
and 10−5−10−1 fm−3 for density. Furthermore, we have
verified that z < 0.5 for all data. For these conditions of
temperature and density, the only relevant bound-state
that we consider in the interacting terms of the virial
coefficients is the deuteron. That is because at high tem-
peratures and high levels of asymmetry the presence of
alpha particles and other clusters is not expected to be
significant [7].
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III. THERMAL INDEX OF A NEUTRON STAR

The EOS for any gas consists of a cold term, the con-
tribution to the thermodynamics of the system for T = 0,
and an additional hot term, for T ̸= 0.

P (n, T ) = P (n, T = 0) + Pth(n, T ) (2)

with n the number of particles for unit of volume and
Pth(n, T ) the thermal contribution to the pressure. The
energy density of the gas follows the same structure,
ϵ(n, T ) = ϵ(n, T = 0) + ϵth(n, T ), with ϵth(n, T ) its ther-
mal contribution. The thermal effects in the EOS are ex-
pressed in terms of the thermal index, which is obtained
from the thermal pressure and thermal energy density
as [4]

Γth = 1 +
Pth

ϵth
. (3)

The thermal index is often considered to be constant and
approximately consistent with an ideal-fluid EOS, Γth =
5
3 . However, Γth is expected to have a strong density
dependence for degenerate matter, such as the one found
in NS cores [8].

A. Neutron Matter

First we consider a pure neutron gas, which is expected
to be a good approximation of NS matter. This allows
us to analyse the effects of nucleon interactions without
the contribution of leptons. We derive its virial EOS
as a power series of the fugacity as explained in Sec. II,
obtaining

P =
2T

λ3
[z + z2b(2)n + z3b(3)n +O(z4)], (4)

where b
(2)
n and b

(3)
n are the second and third virial coef-

ficients for neutron matter respectively. For this section,
all expressions have been derived up to third order in the
fugacity, z.

The second virial coefficient, b
(2)
n , is directly related to

the two-body elastic scattering phase shifts. The inter-

acting term ∆b
(2)
n is calculated following

∆b(2)n (T ) =
1√
2πT

∫ ∞

0

e−E/2T δtot(E)dE (5)

where δtot(E) is the sum of the isospin-triplet elastic scat-
tering phase shifts at laboratory energy E. This sum is
over all partial waves allowed by spin statistics, with two-
particle spin S and angular momentum L. It includes a
degeneracy factor depending on the total angular mo-
mentum, J ,

δtot(E) =
∑
S,L,J

(2J + 1)δ2S+1LJ
(E)

= δ1S0
+ δ3P0

+ 3δ3P1
+ 5δ3P2

+ 5δ1D2
+ ... (6)

Adding the non-interacting term, the second virial coef-
ficient becomes

b(2)n (T ) =
1√
2πT

∫ ∞

0

e−E/2T δtot(E)dE − 2−5/2. (7)

The third virial coefficient, b
(3)
n , is included to make an

error estimate of the results. This coefficient captures
the thermodynamics of the three-body interacting sys-
tem, its calculation has only been achieved for a unitary
gas (a strongly interacting gas with an infinite scattering
length). Assuming the ratio between interacting terms of
the second and third virial coefficient for the unitary gas,

∆b
(3)
unit/∆b

(2)
unit = −0.5022 [9], is the same in a neutron

Fermi gas, we can estimate the value of b
(3)
n ,

b(3)n = 3−5/2 +∆b(3)n = 3−5/2 − 0.5022∆b(2)n . (8)

The density is obtained by differentiating the pressure
with respect to the fugacity, n = z/T (∂zP )V,T , giving

n =
2

λ3
[z + 2z2b(2)n + 3z3b(3)n ]. (9)

The entropy density can be obtained by differentiating
the pressure with respect to temperature, s = (∂TP )µ,
which yields

s =
5

2

P

T
− nlogz +

2T

λ3
[z2b(2)n

′ + z3b(3)n
′], (10)

where b
(m)
n

′ = ∂T b
(m)
n is the temperature derivative of

the nth-virial coefficient. Finally, the energy density is
calculated from the entropy density and the pressure, ϵ =
Ts+ nµ− P , leading to

ϵ =
3

2
P +

2T 2

λ3
[z2b(2)n

′ + z3b(3)n
′]. (11)

By looking at Eq. (4) and (11), and comparing them to
Eq. (2), we see that both the pressure and energy in the
virial approximation are intrinsically thermal. Therefore,
Pth = P and ϵth = ϵ. The thermal index is hence calcu-
lated up to second order of the fugacity using the pressure
and the energy density we derived, resulting in

Γth =
5

3
− 4

9
Γ(1)z +

4

9
Γ(2)z2 (12)

With Γ(1) = Tb
(2)
n

′ and Γ(2) = 2
3Tb

(2)
n

′ − b
(2)
n + 0.5022.

Observing Eq. (12), we expect Γth to approach the
non-interacting limit for a very dilute gas of non-
relativistic neutrons, Γth → 5

3 as z → 0. By looking
at the numerical values calculated of the virial coeffi-
cients, found in table (I) in the Appendix A, we note
that |Γ(1)| < |Γ(2)|, but both add negative contributions
to Γth for all temperatures. Taking this into considera-
tion, we expect the thermal index to decrease as density
increases.
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FIG. 1: Thermal index of neutron matter as a function of
density, for T = 5, 10 and 20 MeV. The shaded area shows

the error, estimated by incorporating ±b
(3)
n . A grey dotted

line shows the value of Γth in the non-interacting limit, for
reference. For all data shown, the fugacity is z < 0.5.

Figure (1) shows the dependence in density of the ther-
mal index for T = 5, 10 and 20 MeV. Each line represents
the evolution of the thermal index for a given tempera-
ture, calculated with thermal pressure (Eq. (4) and en-
ergy (Eq. (11), up to second order in the fugacity. The
error is shown as the shaded area around each line, with

its limits introducing the estimated correction of ±b
(3)
n .

We have added a grey dotted line for the value of Γth in
the non-interacting limit, for reference.

We observe that the thermal index is relatively inde-
pendent of the temperature in the region studied. As
expected for small densities, the value of the thermal in-
dex approaches the non-interacting value, following the
behaviour of a non-relativistic ideal gas. As density in-
creases, the contribution of the interaction results in a
decrease of the thermal index. The value of the the ther-
mal index remains nearly unchanged, having decreased
under a 0.3% for all temperatures considered. It can also
be seen that the relative error estimated with the third
virial coefficient is no more than 0.1%. In the follow-
ing, we do not take the error into account and limit our
discussion to the second order in z.

B. Asymmetric Matter

Now we consider a low density gas of interacting neu-
trons and protons, and free electrons. Beta decay and
electron capture reactions are expected to be in chemical
equilibrium [10],

n → p+ e+ ν̄e, (13)

p+ e → n+ νe. (14)

This leads to an equality between their masses, mτ and
chemical potentials, µτ , where τ = n, p, e. The equality
follows

µn +mn = µp +mp + µe +me (15)

To ensure neutrality of charge, the constraint that both
proton and electron densities must be equal, np = ne, is
added. Therefore, for each density and temperature the
proportion of neutrons, protons and electrons at equilib-
rium is found solving these two equations. The relevant
parameter is the proton fraction, xp =

np

n , since it states
the level of asymmetry of the gas. Here n is the total
baryon density, n = nn + np

1. Electrons: ideal Fermi gas

As stated above, the electrons are considered as an
ideal relativistic Fermi gas. Therefore, the hot EOS for
the non-interacting gas of electrons is easily found. Start-
ing from the zero-temperature chemical potential [3],

µe = (3π2nxp)
1/3 ℏc, (16)

the expression for the thermal pressure can be found from
a power series in T/mue, yielding

P e
th =

µ4
e

12(ℏc)3

[
2

(
T

µe

)2

+

(
7π2

5
− m2

ec
4

2T 2

)(
T

µe

)4
]
.

(17)
For an ideal relativistic gas, P e

th/ϵ
e
th = 1/3, therefore,

ϵeth = 3P e
th. These expressions are valid provided T/µe is

small. To find their validity limit, we consider T ≈ µe.
For each temperature and proton fraction the approxima-

tion breaks below n = 8.8× 10−6
(

0.5
xp

) (
T

10 MeV

)3
fm−3.

2. Baryonic matter

To obtain the virial EOS for baryonic matter, expand-
ing the procedure of Sec. II to protons, we obtain the
pressure as power series in the fugacities, zn = eµn/T

and zp = eµp/T for neutrons and protons respectively.

P =
2T

λ3
[zn+zp+(z2n+z2p)b

(2)
n +2znzpb

(2)
np +O(z3)] (18)

where b
(2)
np is the second virial coefficient for np interac-

tion and b
(2)
n is the second virial coefficient for nn and

pp interactions. We consider the last two equivalent by
neglecting the Coulomb interaction and assuming charge-
independent nuclear interactions.

The coefficient b
(2)
n is obtained as described in Eq. (7).

The coefficient b
(2)
np can be decomposed in the neutron

second virial coefficient, b
(2)
n , and the second virial co-

efficient for symmetric matter, b
(2)
nuc, following b

(2)
np (T ) =

b
(2)
nuc(T )− b

(2)
n (T ).
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FIG. 2: Thermal index of NS as a function of density, n, and the proton fraction, xp, for T = 5, 10 and 20 MeV. The dashed
red line shows the path followed by the β-equilibrium. Each plot shows the range of densities in which the virial EOS is valid,

with both fugacities obeying zn, zp < 0.5

To obtain b
(2)
nuc, the deuteron is considered as a bound-

state contribution with an experimental binding energy
of Ed = 2.22MeV [7]. This contribution, together with
the scattering phase-shifts gives

b(2)nuc(T ) =
3√
2

(
eEd/T − 1

)
− 2−5/2+

+
1

23/2πT

∫ ∞

0

e−E/2T δtotnuc(E)dE − 2−5/2, (19)

where δtotnuc is now the sum over all partial waves and
includes degeneracy factors depending on the isospin, T ,
and the total angular momentum, J ,

δtotnuc(E) =
∑
S,L,J

(2J + 1)(2T + 1)δ2S+1LJ
(E)

= 3δ1S0
+ 3δ3S1

+ 3δ1P1
+ 3δ3P0

+ ... (20)

Each density, nn and np for neutrons and protons respec-
tively, is obtained by differentiating the pressure with re-
spect to their fugacity, nτ = zτ/T (∂zτP )V,T , giving

nτ =
2

λ3

[
zτ + 2z2τ b

(2)
n + 2znzpb

(2)
np

]
, (21)

with τ = n, p. The entropy density is obtained by differ-
entiating the pressure with respect to temperature,
s = (∂TP )µn,µp , resulting in

s =
5P

2T
− nn log zn − np log zp+

+
2T

λ3

[
(z2n + z2p)b

(2)
n

′ + 2znzpb
(2)
np

′
]

(22)

Finally, the energy density is calculated from the entropy
density and the pressure, ϵ = Ts +

∑
i=n,p niµi − P ,

leading to

ϵ =
3

2
P +

2T 2

λ3

[
(z2n + z2p)b

(2)
n

′ + 2znzpb
(2)
np

′
]
. (23)

Like in Sec. IIIA, looking at Eq. (18) and (23), and com-
paring them to Eq. (2), we see that both the pressure and
energy of the system are intrinsically thermal. Therefore,
Pnuc
th = P and ϵnucth = ϵ. Adding the contribution of the

electrons, the thermal index is calculated using the pres-
sures and the energy densities we just derived.

Γth = 1 +
Pnuc
th + P e

th

ϵnucth + ϵeth
(24)

Figure (2) shows the thermal index as a function of
density and isospin asymmetry for three different panels:
T = 5 (left panel), 10 (central panel) and 20 MeV (right
panel). Red dashed lines show the path followed by the
β-equilibrium at each temperature. The composition of a
NS evolves consistently with the increase of temperature.
At low densities it tends to symmetric matter (xp ≈ 0.5),
and it approaches purely neutron matter (xp ≈ 0) as
density increases. This regime shift is clearly observed in
the evolution of the thermal index.

Figure (3) shows the dependence on nuclear interac-
tions of the thermal index. It shows the evolution of
Γth against the density for T = 5, 10 and 20 MeV. Solid
lines correspond to interacting results whereas dashed
lines show the non-interacting case. Two grey doted lines
have been added to indicate the values associated to the
relativistic and the non-relativistic ideal gases.

In contrast with the results obtained for neutron mat-
ter, we observe a dependence with temperature in the
thermal index. However, Γth increases with density in
a similar way for all temperatures. There is an inflec-
tion point that divides this behaviour in two regimes. At
lower densities, the thermal contributions of the electrons
dominate over those of the nucleons, resulting in a ther-
mal index not far from the limit of a relativistic Fermi
gas, Γth ≈ 4

3 . As density increases, the value approaches
the limit for pure neutron matter, a non-relativistic ideal
gas, Γth ≈ 5

3 .
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FIG. 3: Thermal index of neutron-star matter as a function
of density, for T = 5, 10 and 20 MeV. For each temperature,
a solid line shows the thermal index of asymmetric matter in
β-equilibrium considering interactions. A dashed line shows
the thermal index in the non-interacting limit. Grey dotted
lines show the values of Γth in both the relativistic and the
non-relativistic limits. Red dots show the estimated density
at the inflexion point. All data shown complies z < 0.5.

Figure (3) also shows, in the form of a red dot, the
density at which this regime shift is expected to occur.
This value can be estimated considering P e

th ≈ Pnuc
th and

xp ≈ 0.5, obtaining a value of n = 10−4
(

T
10 MeV

)3
fm−3.

The effect of interactions is consistent with the results
in Sec. III A for T > 10 MeV, as they decrease the value
of the thermal index when density increases. Although
considering interactions provide a 9% (10%) modification
in Pth (ϵth), they only decrease Γth by 0.3%. Their effect
is once again negligible.

IV. CONCLUSIONS

In order to study the thermal index of a NS we have
considered a homogeneous gas of diluted neutrons, pro-
tons and electrons at high temperature. We have treated
the electrons as a relativistic free gas and have included
the nucleon interactions through the virial coefficients.

Using this method, we have seen the quantitative effect
that nuclear interactions have in the thermodynamics of
a hot NS. For both pure neutron matter and asymmetric
matter we have found that, the effect interactions have
on the thermal index are of the order of 0.3%. We have
also estimated the error, found to be of the order of 0.1%.

Furthermore we have studied the dependence of Γth

with density. We have found that, although nuclear in-
teractions don’t seem to have a big effect on the thermal
index, the system’s isospin asymmetry is key to deter-
mine its value. We have found the thermal index of a low
density NS ranges from Γth = 4

3 to 5
3 , smoothly evolving

from an electron-dominated phase at low densities to a
neutron-dominated phase as density increases.

These results can be applied to simulate the merger of
NS, now contemplating the dependence of the thermal
index with density, temperature and isospin asymmetry.
To further extend the study on the thermal index, the
interaction of electrons and the presence of other bound
states, such as alpha particles [7], could be considered to
verify the significance of their contributions. Addition-
ally, to expand the range of temperature, the presence of
pions could be included.
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Appendix A: Numerical values of the virial coefficients

T [MeV] b
(2)
n (with CIB) Tb

(2)
n

′ ≡ Γ(1) b
(2)
np Tb

(2)
np

′ b
(2)
nuc Tb

(2)
nuc

′ Γ(2)

1 0.2514 0.0389 19.3522 -43.5383 19.6037 -43.4994 -0.2248

2 0.2723 0.0176 6.1185 -7.3684 6.3908 -7.3508 -0.2182

3 0.2782 0.0085 4.0329 -3.5351 4.3111 -3.5266 -0.2183

4 0.2807 0.0046 3.2099 -2.3074 3.4906 -2.3029 -0.2185

5 0.2821 0.0034 2.7636 -1.7314 3.0457 -1.7280 -0.2178

6 0.2832 0.0037 2.4795 -1.4031 2.7627 -1.3994 -0.2165

7 0.2844 0.0048 2.2801 -1.1926 2.5645 -1.1878 -0.2146

8 0.2855 0.0064 2.1309 -1.0464 2.4164 -1.0400 -0.2124

9 0.2866 0.0083 2.0140 -0.9392 2.3006 -0.9309 -0.2100

10 0.2878 0.0104 1.9194 -0.8572 2.2072 -0.8469 -0.2075

11 0.2890 0.0123 1.8407 -0.7926 2.1297 -0.7802 -0.2050

12 0.2903 0.0142 1.7739 -0.7403 2.0642 -0.7261 -0.2025

13 0.2916 0.0158 1.7163 -0.6973 2.0079 -0.6814 -0.2000

14 0.2930 0.0173 1.6659 -0.6613 1.9589 -0.6440 -0.1977

15 0.2944 0.0186 1.6212 -0.6308 1.9156 -0.6123 -0.1955

16 0.2958 0.0196 1.5813 -0.6048 1.8770 -0.5851 -0.1933

17 0.2971 0.0205 1.5452 -0.5823 1.8423 -0.5617 -0.1914

18 0.2984 0.0212 1.5124 -0.5628 1.8108 -0.5416 -0.1896

19 0.2997 0.0218 1.4823 -0.5458 1.7820 -0.5240 -0.1880

20 0.3009 0.0222 1.4546 -0.5309 1.7555 -0.5087 -0.1865

21 0.3021 0.0224 1.4289 -0.5178 1.7310 -0.4954 -0.1852

22 0.3032 0.0225 1.4050 -0.5062 1.7082 -0.4837 -0.1840

23 0.3043 0.0224 1.3826 -0.4961 1.6869 -0.4737 -0.1830

24 0.3053 0.0221 1.3616 -0.4871 1.6669 -0.4649 -0.1822

TABLE I: Numerical values of the second virial coefficients for both neutron and nucleon interactions, calculated following
Eq. (7) and (19), using the Granada database phase shifts for energies up to 350 MeV [11]. The second virial coefficient for

neutron interactions takes into account the effects due to charge-independence breaking (CIB). The coefficients Γ(1) and Γ(1)

from Eq. (12) are also shown.
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