
GRAU DE MATEMÀTIQUES

Treball final de grau

THE SCHRÖDINGER
EQUATION AND CHAOTIC

DYNAMICS

Autor: Marta Botella Garcia

Director: Dr. Marina Gonchenko

Realitzat a: Departament de Matemàtiques i Informàtica

Barcelona, 13 de juny de 2022





Abstract

This work explores dynamical billiards and its general properties and focuses,
in particular, in the Bunimovich stadium which is one of the most studied among
known chaotic billiards. This project follows with the analytical resolution of
the time independent Schrödinger equation for the case of the simple harmonic
oscillator potential. It is also solved numerically for the one-dimensional and
two-dimensional cases, developing a Matlab programming that uses the finite-
differences method with the aim to find the eigenvalues and eigenfunctions. Fi-
nally, the union of chaotic dynamics and quantum mechanics is explored to in-
vestigate quantum chaos and one of its most striking manifestations, quantum
"‘scars"’. The numerical analysis is able to replicate the evidence of scarring for
the Bunimovich stadium.
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Introduction

A large number of problems in Physics can be modelled as a billiard dynamical
system: the building blocks are a point mass particle confined to a certain domain
where it moves at constant speed and without friction and collides elastically with
the billiard’s boundary, whose geometry can be used to reproduce a broad variety
of behaviours, including chaotic ones. It is the simplicity and pliability of the bil-
liards that allow a plethora of issues in different disciplines to be analysed: from
the behaviour of gas particles in a certain container, to optics, to a particle confined
to an infinite square well.

Far from analytical and steady solutions, chaos is commonplace in most sys-
tems. There is yet no agreement in a definition of chaos, however, it perfectly
evokes the persistent disorder and lack of regularity that a chaotic system has.
This is why chaotic billiards are one of the most captivating types of billiards as
well as most challenging, and one of the main elements in this thesis. Their study
only dates back to the seventies, although some of them, such as the Bunimovich
stadium, have been finely explored. Bunimovich introduced this billiard shaped
as a rectangle capped by semicircles at each end and showed on [6] that such a
surprisingly simple structure was ergodic and able to capture chaotic orbits as
well.

Billiards are Hamiltonian systems and as such their state can be specified by
the Hamilton-Jacobi equations with a certain associated potential V. Furthermore,
the Hamiltonian formulation is considered a link between Classical Mechanics and
Quantum Mechanics, which leads us to the next main element of this work.

Another popular and relatively recent discipline is Quantum Mechanics (QM).
Its arrival brought with it the abandonment of the paradigm of classical physics,
determinism. The formalism in itself became probabilistic: the theory unambigu-
ously specifies the possible results of the experiment, but only provides their asso-
ciated probabilities. Nevertheless, the fact that QM works with probabilities does
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iv Introduction

not mean that we lack some information about the system, but rather that the
"‘randomness"’ is ingrained in the quantum approach.

One of the pinnacles of QM is the Schrödinger equation, Ĥψ = Eψ, where Ĥ is
the Hamiltonian operator of the quantum system. Its solutions provide the wave
function, ψ(⃗r, t) that describes the quantum state of our system at a particular
point in time t. Its importance resides in the fact that the Schrödinger equation
encapsulates the probabilistic character of QM, how the physical system evolves
between measurements and the wave-particle duality.

When quantum mechanics and chaos coalesce, one gets quantum chaos and,
in particular, chaotic quantum billiards. The study of the existence of chaos in
quantum mechanics is a young field and, subsequently, a lot of questions remain
unanswered. For the classically chaotic Bunimovich stadium, the determination
of eigenvalues and eigenfunctions of the Schrödinger equation led to the discov-
ery of some unexpected "‘ridges"’ when plotting the probability density of certain
eigenvalues. These are symptoms of chaos in the classical framework that are
manifested at the quantum level and are associated with unstable classical peri-
odic orbits. In his paper [13], Heller called these regions of enhanced probability
density quantum "‘scars"’.

This work is organised as follows. Chapter 1 explores the dynamical sys-
tem and properties of billiards and also introduces chaotic billiards, in particular,
the Bunimovich stadium which will be the scenario where we will discuss quan-
tum chaos and quantum "‘scars"’. Chapter 2 dives into the Schrödinger equation.
Analytical solutions are discussed for the particular case of the harmonic oscilla-
tor potential, also a numerical resolution is provided using the finite differences
method for both one and two-dimensional cases. Ultimately, chapter 3 also uses
a Matlab code to numerically solve the Schrödinger equation in the Bunimovich
stadium and computes the wave functions and eigenvalues in search of evidence
of quantum chaos and quantum "‘scars"’. Finally, the last section contains some
concluding remarks and possible future directions on the topics here discussed.



Chapter 1

Billiards

1.1 Motivation

Mathematical billiards are models used to describe the inertial motion of a
point mass in a frictionless domain Ω in which it freely moves at a constant veloc-
ity, continuously colliding with its boundary walls ∂Ω in a specular manner. That
is, the billiard moves along a straight line, eventually bouncing off the boundary
following the elastic reflection rule, namely, the angle of reflection equals the angle
of incidence. Figure 1.1 shows how the point mass moves in a very simple setting,
a circle billiard.

Ω

O

αα

Figure 1.1: Billiard in a circle
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2 Billiards

Circle billiard tables have convex walls and as such have a focusing effect on
the reflecting trajectories of the particle, as opposed to a dispersing effect.

The billiard trajectory is completely determined by the initial position, direc-
tion and velocity. Usually billiards appear when addressing many problems in
classical mechanics. One of the most studied cases in classical thermodynamics
corresponds to the Boltzmann gas whose particles are modelled as spheres that
interact through elastic collisions among each other and with the container walls.
The study of the mechanics of the gas particles can be reduced to a dynamical
system of billiards.

As a general motivation, we will consider the example of a billiard in a square
domain as seen in Figure 1.2. Let our domain be the unit square:

Ω = {(x, y) : 0 ≤ x, y ≤ 1}.

Ω α α

β

β

Figure 1.2: Billiard in a square

First, consider the trajectories that do not collide with the vertices of the square.
As in [8] denote by qt = (xt, yt) the coordinates of the point mass at time t and by
vt = (vx

t , vy
t ) the velocity vector, where vx

t and vy
t correspond to the components

of the velocity along the x and y axis, respectively. At a time t + s and as long
as the particle does not collide with the boundary, the laws of motion allow us to
compute its position and velocity by the equations of a uniform rectilinear motion
problem:

xt+s = xt + vx
t s , vx

t+s = vx
t

yt+s = yt + vy
t s , vy

t+s = vy
t

(1.1)
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When the particle collides with the boundary

∂Ω = {{0, 1} × [0, 1] ∪ [0, 1]× {0, 1}},

the velocity vector v gets reflected across the tangent line to ∂Ω at the point of
collision. As a result of the elastic collision, the normal component changes sign
while the tangential component remains unchanged, that is, if the particle collides
with a vertical side of the Ω region at time t, then vx

t = −vx
t while vy

t remains the
same; on the other hand, if it strikes a horizontal side, then vx

t is unchanged and
vy

t = −vy
t . Consequently, the velocity norm does not change and the vector v can

be assimilated to a unit vector. After m ∈ Z number of collisions with the vertical
sides and n ∈ Z with the horizontal sides, the velocity of the particle will be

vx
t = (−1)mvx

0 and vy
t = (−1)nvy

0 (1.2)

where vx
0 and vy

0 are the components along the x and y axis of the initial velocity.

After a reflection, the particle resumes again its free motion inside the domain
Ω, until it collides again with the boundary and so on. Without any frictional
or external forces, this type of motion can continue infinitely. Nonetheless, for a
particle that collides against a vertex of the polygon, the reflection rule does not
apply and its trajectory ends. This type of trajectories are called singular.

In this example, and as stated in [7], the orbit of the billiard is the set of broken
lines in the configuration space that represent the free motion paths within the
domain and the corresponding reflections off its boundary.

We can now look at the orbit of the billiard under a different light. Instead of
reflecting its trajectory back to the interior of Ω after any strike to any of the sides,
we reflect the polygon across the respective collision side. We can do this since the
boundary of a polygon has smooth and flat components. As in [8], the replicas of
Ω are denoted by

Ωm,n = {(x, y) : m ≤ x ≤ m + 1, n ≤ y ≤ n + 1}. (1.3)

The set of these replicas Ωm,n tiles the plane R2 as a square grid. As we can
observe in Figure 1.3, the unfolding of the billiard trajectory yields a straight line
on the plane. Therefore, periodic orbits in billiards in polygon tables are never
isolated [7]. To recover the original trajectory in Ω, the reverse process is carried
out, folding the successive adjacent created copies of Ω back onto themselves.
Two lines in the plane correspond to the same billiard trajectory if they differ by a
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Ω Ω1,0

Ω1,1 Ω2,1

Ω3,1 Ω4,1

Ω4,2 Ω5,2

Figure 1.3: Unfolding of the billiard trajectory in a square [8]

translation through a vector from the lattice 2Z + 2Z.

This method provides more information about the orbit of the billiard. For in-

stance, if the slope of the trajectory is a rational number, vy
0

vx
0
∈ Q, then the billiard

trajectory is periodic; if it is irrational, vy
0

vx
0

/∈ Q, then the trajectory is dense and
uniformly distributed in the square.

As stated in [18], with this method we can further extract the number of peri-
odic trajectories of a certain length L. If we consider a trajectory that goes from the
origin to the point (2p, 2q), its length equals 2

√
p2 + q2. Thus, since the unfolding

of a periodic trajectory is a segment in the plane whose end-points differ by a
vector from the lattice 2Z + 2Z, the number of periodic trajectories of length L is
the number of pairs of integers that satisfy p2 + q2 < L2/2.

Starting from the tiled R2 plane by the squares Ωm,n, consider the set of four
unit squares that have one common vertex

K2 = {(x, y) : 0 ≤ x, y ≤ 2}.

Observe that the parallel translations of K2 also cover the entire plane. Therefore,
identifying the opposite sides of K2, we are able to construct a torus where we can
study the unfolded trajectories as geodesics.

It is worth noting that billiards in polygons are non-chaotic [7], in the sense
that if the sequence of sides where the particle has collided is known, then the
future sequence of sides from which it will be reflected is uniquely defined.

1.2 Fundamentals

After an intuitive explanation of billiards, this section introduces the funda-
mentals of the theory behind them. Note that we will restrict our study to two-
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dimensional billiards.

A billiard in a planar region is defined as follows:

Definition 1.1. Let Ω ⊂ R2 be a bounded connected domain with a piece-wise smooth
boundary ∂Ω. A billiard system represents the free motion of a point particle inside the Ω
region with elastic reflections off the boundary.

An important aspect of the billiard trajectory is the angle of incidence, which
will be characterised as follows:

Definition 1.2. The angle of incidence is the angle measured between the incoming tra-
jectory and the line tangent to the boundary, at the point of collision.

Following [8], the boundary of ∂Ω is a finite union of compact curves:

∂Ω = Γ1 ∪ . . . ∪ Γr. (1.4)

Each curve Γi is defined by a continuous one-to-one C2 map fi : [ai, bi] → R2.
If fi(ai) ̸= fi(bi), then Γi is an arc; if fi(ai) = fi(bi), then Γi is called a closed curve.
We also assume that the boundary components Γi satisfy

Γi ∩ Γj ⊂ ∂Γi ∪ ∂Γj i ̸= j, (1.5)

that is, the boundary elements can intersect each other only at their endpoints.
Furthermore, the second derivative f

′′
i can only either be f

′′
i ≡ 0 or f

′′
i ̸= 0, in all

[ai, bi]. According to the value of f
′′
i , billiard walls can be one of three types: flat

walls when f
′′
i ≡ 0; focusing walls if it is convex such as the circle introduced in

the previous chapter; and dispersing walls when it is concave.

Since we have discussed a square billiard table in the previous section, we can
define what is understood as polygon billiard:

Definition 1.3. A polygonal billiard consists of a closed region Ω bounded by a convex
polygon ∂Ω in the Euclidean plane R2 where a point mass moves, given initial position
and direction.

To construct the dynamics of the billiard, we follow the notation in the previous
section and in [8]. Let q(t) ∈ Ω denote the position of the particle and v(t) ∈ R2

its velocity, as functions of time t ∈ R. When the particle moves freely in the
interior of the domain, q ∈ Ωo, its velocity remains constant and, hence, follows:

q̇ = v v̇ = 0 (1.6)
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When the particle collides with the boundary of the domain, q ∈ ∂Ω, its ve-
locity changes instantaneously and it is reflected across the tangent to ∂Ω at the
point of collision q. This stems from the rule that the angle of incidence is equal
to the angle of reflection and, thus, establishes the following relation between the
velocity vectors before v− and after v+ the collision

v+ = v− − 2⟨v, n⟩n, (1.7)

where n is the unit normal vector to ∂Ω. Equations (1.6) and (1.7) describe the
laws of motion of the billiard and preserve the norm of the velocity vector v which
is then taken to be equal to the unit. Henceforth we will consider the vector v
to be the direction vector which, for every p ∈ ∂Ω, will define an angle with the
tangent vector to ∂Ω, measured counter-clockwise.

If the moving billiard collides with a vertex of the domain Ω, its trajectory
stops. Otherwise, the trajectory of the particle is defined at all times −∞ < t < ∞
by (q(t), v(t)), where q ∈ Ω and v ∈ S1.

Definition 1.4. A collision is regular if the billiard strikes the boundary at a regular
smooth component Γi for some i and the velocity vector v− is not tangent to ∂Ω.

As we have introduced, the state of the particle at a time t is determined by
the pair (q(t), v(t)) where q ∈ Ω and v ∈ S1. With this, we can define the phase
space of the system.

Definition 1.5. The phase space of the dynamical system of the billiard is

Λ = {(q, v)} = Ω × S1. (1.8)

It is a three-dimensional manifold with boundary ∂Λ = ∂Ω × S1.

Now, let M be the unit tangent vector space of x = (q, v) such that q ∈ ∂Ω.
Consider x = (q, v) the initial vector of the billiard ball and x

′
= (q

′
, v

′
) the vector

when the billiard collides with the boundary at point q
′

with reflected velocity v
′
.

Then we define the following application:

Definition 1.6. The billiard ball map

T : M → M

(q, v) → (q
′
, v

′
)

(1.9)

Now, we have the elements to define the billiard orbit:
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Definition 1.7. A billiard orbit is the set of pairs (q, v) that generate a billiard trajectory.
It is obtained from the segmented paths drawn by the billiard through its free motion within
Ω and the vertices corresponding to the collisions off the boundary following a direction
determined by the reflection rule.

In other words, given an initial point x0, the dynamical system T evolves with
each iteration following x1 = T(x0), x2 = T2(x0), . . . , xn = Tn(x0), . . .. The se-
quence O(x0) = {x0, x1, x2, . . . , xn, . . .} is the orbit of the system associated to
starting condition x0. In the context of billiards, an orbit will be the ordered
sequence of collision points with the boundary of the billiard table, each point
having associated the a position−direction, (q, v), in the phase space Λ.

An interesting type of orbit are periodic orbits:

Definition 1.8. A periodic orbit is an orbit in which the billiard ball returns to its initial
position with the same initial angle.

Therefore, a periodic orbit is a type of solution of the dynamical system that
repeats itself as time evolves. In our initial example of a billiard in a square table,
a periodic orbit is encountered when the billiard strikes the boundary at an angle
equal to π/2. If the billiard strikes at point A perpendicular to the boundary,
it will move to point B and, without friction, it will move between these points
infinitely, as shown in Figure 1.4. The points A and B are known as periodic points.

A

B

Figure 1.4: Periodic orbit of a billiard in a square

As stated in [7], billiard models are Hamiltonian systems with a potential V
defined by:

V(q) =

{
0 , if q ∈ Ω

∞ , if q ∈ ∂Ω
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Because the dynamics of billiards are defined by the shape of their boundary,
they enable the replication of a large variety of possible behaviours of Hamilto-
nian systems from regular to completely chaotic ones. If the Hamiltonian system
is conservative, then the billiard also satisfies the energy and momentum conser-
vation laws.

Billiards have been largely studied in connection to ergodic theory. To arrive
at the ergodicity of a dynamical system first we need to acquaint ourselves with
measure theory.

Definition 1.9. [8] Let X be a set and F a σ−algebra on X. A measure µ on (X,F ) is a
function µ : F → R ∪ {+∞} that satisfies the following properties:

• non-negativity: µ(A) ≥ 0 for all A ∈ F

• null empty set: µ(∅) = 0

• countable additivity: if {Ai}∞
i=1 ∈ F and Ai ∩ Aj = ∅ for i ̸= j, then µ (∪∞

i=1Ai) =

∑∞
i=1 µ(Ai)

(X,F ) is called a measurable space.

If we require that a measure µ return values in the unit interval [0, 1] such that
µ(X) = 1 and µ(∅) = 0, then it is called a probability measure.

Let (X,F ) be a measurable space and T a transformation T : X → X.

Definition 1.10. We say that T is a measurable transformation if T−1(A) ∈ F for every
A ∈ F .

Definition 1.11. A measurable transformation T preserves the measure µ if for all A ∈ F ,
µ(T−1(A)) = µ(A). We can also say that µ is T−invariant.

These elements conform a measure-preserving dynamical system (X,F , µ, T).
Finally, we are equipped to provide a formal definition of ergodicity.

Definition 1.12. Let (X,F ) be a measurable space and µ a probability measure on
(X,F ). Consider T : X → X a measurable transformation. We say that T is µ−ergodic
if:

• T preserves µ, and

• for any A ∈ F such that T−1(A) ⊂ A, either µ(A) = 0 or µ(A) = 1.
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That is, a dynamical system is ergodic if all its invariant subsets are non-trivial.

In the context of billiards [18], ergodicity means that, given any initial condi-
tion, the consecutive iterations of the billiard ball map T will completely cover the
phase space and that the only subsets that are invariant under T will have either
zero or full measure.

Billiards in rational polygons1 are non-ergodic because there is a finite number
of possible directions for their orbits. However, a billiard in a typical polygon is
ergodic. Nevertheless, all these billiards are non-chaotic, since all their boundary
components are flat.

1.3 Chaotic billiards

It has been observed that most billiards show a chaotic behaviour. This means
that dynamical billiards are characterised by uncertainty in their motion and a
high sensitivity to initial conditions. Therefore, slight changes in the initial posi-
tion or direction lead to large future deviations. This fact primarily stems from
the characteristics of the boundary components.

Although there are many possible definitions of chaos and, scientifically, there
is no agreement on it, we will follow the interpretation from [9]. According to
Devaney, a chaotic dynamical system is characterised by three properties, namely,
sensitivity to initial conditions, dense periodic orbits and transitivity. We will now
briefly analysed each of these requisites.

Definition 1.13. A dynamical system F is sensitive to initial conditions if there exists
β > 0 such that for any initial condition x and any ε > 0, there exists y ∈ Bε(x) and
an iteration k such that |Fk(x)− Fk(y)| ≥ β. Usually β grows exponentially with time,
β ∼ exp(t).

Sensitive dependence on initial conditions is an important phenomenon in
scientific research, as a result small initial differences originating from noise or
round-offs are continuously magnified and can dramatically change the solution
of the system.

The second property that a dynamical system has to satisfy to qualify as chaotic
is that the set of periodic points must be dense in the phase space Λ. Following

1A polygon is rational if all its angles are rational multiples of π.
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[16], this means that, any point p ∈ Λ is either a periodic point or there is a
periodic point sufficiently close to it. Formally,

Definition 1.14. Given any point p ∈ Λ and ε > 0, the set of periodic points is dense in
Λ if there exists a periodic point qε ∈ Λ such that |p − qε| < ε.

The third and final concept involved in a chaotic dynamical system is transi-
tivity:

Definition 1.15. A dynamical system is transitive if for any points x, y ∈ Λ and any
ε > 0, there exists z ∈ Bε(x) whose orbit includes points of Bε(y).

That is (as stated in [9]), given any two points of the dynamical system, this will
be transitive if there exists an orbit that passes arbitrarily close to both. A dynam-
ical system whose periodic points are dense is transitive. The converse is also true.

Finally, we can synthesise the definition of chaos as follows:

Definition 1.16. A dynamical system is chaotic if:

• it is sensitive to initial conditions

• its periodic points are dense

• it is transitive

The Bunimovich stadium billiard is one of the most famous mathematical ob-
jects in the research of dynamical systems and has been studied as a paradigm for
chaotic billiards since it was introduced by Bunimovich in the mid-70s, [6]. A Buni-
movich stadium is a rectangle capped by semi-circles at each end, as shown in Fig-
ure. 1.5. Its boundary is the union of the four components ∂Ω = Γ1 ∪ Γ2 ∪ Γ3 ∪ Γ4.

Both Γ1 and Γ3 are convex to the interior of the stadium, thus are called focus-
ing; while both Γ2 and Γ4 are flat since they correspond to line segments. There-
fore, the boundary amounts to a differentiable curve but with a discontinuous
curvature at the points where Γ1 and Γ2 meet the arched components Γ3 and Γ4.
Inside the boundary, we assume that there is no friction, so the billiard moves
freely in straight paths with a constant velocity, meaning that its norm remains
unchanged. When the billiard collides with the boundary, it bounces off with an
angle equal to the angle of incidence.

As stated in [16] and mentioned in the previous section the phase space of the
Bunimovich stadium dynamical system is the set of all ordered pairs (q, v) where
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Γ1

Γ2

Γ3

Γ4

Figure 1.5: Bunimovich stadium

the first coordinate, q, refers to the position of the billiard within the billiard table
and where we have taken the second coordinate to be the direction of the billiard,
v, since its speed remains unchanged.

Figure 1.6: Sensitivity dependence to initial conditions in the Bunimovich stadium

Theorem 1.17. [6] The Bunimovich stadium billiard is chaotic.

The chaos in the Bunimovich dynamical system arises from the rectangular
components of the boundary that counteract the focusing effect of the rounded
convex semicircle ends. Figure 1.6 shows the trajectories of two billiards that
initially move in the same direction although from slightly different positions. Af-
ter each collision with the boundary of the stadium, the trajectories diverge and
end up being very different only after six iterations. Therefore, the Bunimovich
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stadium satisfies the first condition in definition 1.16 and shows dependency to
starting conditions.

It also satisfies the second requisite of the definition of chaos 1.16. As in [16],
we take any point in the boundary of the Bunivomich stadium, such as the point
P in Figure 1.7, with an arbitrary direction. In a neighbourhood of P, there exists
a point such as Q that is periodic, hence satisfying the second requirement.

Q
P

Figure 1.7: Set of periodic points in the Bunimovich stadium is dense

Finally we see that the Bunimovich stadium satisfies the transitivity property,
following [16]. Let’s consider, in Figure 1.8, two points x, y ∈ Λ that correspond
to the collision points AB and CD, respectively, that is, the first point x starts at
point A and collides at point B while the second point y starts at point C and ends
at D.

A

B
D

C

B1D1

Figure 1.8: The Bunimovich stadium is transitive
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According to the definition of transitivity, there must exist a third point z ∈ Λ
whose orbit passes arbitrarily close to x and y. We see diagrammatically that there
exists a billiard that starts at A and collides with point B1 at the boundary of the
stadium that subsequently collides with C and finally strikes again at D1. Thus,
choosing as the third point z = AB1, we can see that its orbit satisfies the property
of transitivity.

Finally, an important property of the Bunimovich stadium is that it constitutes
an ergodic dynamical system, that is, given an starting point, x0, its orbit O(x0)

tends to eventually contain all points (q, v) of the phase space. This can be seen
also as a manifestation of chaos.

Theorem 1.18. [6] The Bunimovich stadium billiard is ergodic.

As can be seen in Figure 1.9, after only 100 iterations, the orbit of a billiard
in the Bunimovich stadium passes through a large number of point-pairs (q, v) of
the phase space.

Figure 1.9: The Bunimovich stadium after 100 iterations

After 500 iterations, it is shown in Figure 1.10 that almost all the phase space
associated to the Bunimovich stadium is covered and the billiard trajectory is al-
most uniformly distributed over the table.

Note that the set of non-ergodic (periodic) orbits has a zero measure.
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Figure 1.10: The Bunimovich stadium after 500 iterations



Chapter 2

The Schrödinger equation

Classical mechanics is governed by determinism. It is possible to establish a
set of differential equations satisfying classical laws whose solution, given starting
conditions, dictates a deterministic evolution of the system under study. How-
ever, several phenomena such as the photoelectric effect, the black-body radiation
or the Compton radiation discovered at the beginning of the twentieth century
challenged the laws of classical mechanics which ultimately showed themselves
insufficient to explain these experiments. From Planck’s theory of electromagnetic
radiation by which energy is emitted and absorbed in discrete packets, called
quanta,1 to 1924, when De Broglie postulated that the wave-particle duality was
applicable to all particles and, in general, to any body in motion, all these theories
prompted the search for a procedure to describe the behaviour of any system of
particles. The formalism in which it resulted is what is known as Quantum Me-
chanics (QM).

The basic essence of QM is the (time-dependent) Schrödinger equation, eq.
(2.1), which is the wave equation whose solution corresponds to the wave function
Ψ(⃗r, t) that governs the behaviour of a quantum physical system:

ih̄
∂Ψ
∂t

(⃗r, t) = ĤΨ(⃗r, t) (2.1)

where h̄ is Planck’s constant, Ψ(⃗r, t) is the wave function which depends on
spatial coordinates r⃗ and time t, and Ĥ is the Hamiltonian operator of the system,
yet to be quantified.

Unlike classical mechanics, it is not possible to determine both the position, r⃗
and momentum, p⃗, of a particle simultaneously due to Heisenberg’s uncertainty

1The energy of a quantum is given by: E = hω, where ω is the frequency of radiation

15
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principle. Therefore the state of a particle is described by a wave function whose
interpretation under Schrödinger’s theory is a probability density: despite the
possible results of an experiment being unambiguously known, this formalism
only provides the probability of these results. It is a generalization of Newton’s
second law that includes Newton’s theory as a particular case in the classical limit.

The total energy of a non-relativistic particle is given by

E =
p2

2m
+ V (⃗r, t), (2.2)

where m is the mass of the particle. The first term corresponds to the kinetic
energy of the particle and V is the potential energy acting on the particle.

Rewriting equation (2.2) in terms of the canonical substitution p⃗ ↔ −ih̄∇⃗ (be-
ing ∇⃗ the nabla operator) and E ↔ ih̄ ∂

∂t , we recover the time-dependent Schrödinger
equation and the Hamiltonian operator corresponds to the expression

Ĥ = − h̄2

2m
∇2 + V (⃗r, t), (2.3)

where ∇2 is the Laplacian operator. This makes clear that the Hamiltonian op-
erator corresponds to the total energy of the system. Assuming that the potential
V (⃗r) does not depend on time, then the Hamiltonian in the Schrödinger equation
is also time independent and the equation can be solved by separation of variables.
Solutions will be the product of separate functions in r⃗ and t:

Ψ(⃗r, t) = ψ(⃗r) f (t) (2.4)

Substituting this previous expression in the time-dependent Schrödinger equa-
tion, we get

ih̄ψ(⃗r)
d f (t)

dt
=

[
− h̄2

2m
∇2ψ(⃗r) + V (⃗r)ψ(⃗r)

]
f (t) (2.5)

Dividing by ψ f , the equation reads:

ih̄
1

f (t)
d f
dt

=
1

ψ(⃗r)

[
− h̄2

2m
∇2ψ(⃗r) + V (⃗r)ψ(⃗r)

]
(2.6)

For this equation to be true, both sides have to be equal to a constant value,
which must have units of energy, so it is conveniently denoted by E. Thus, the
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time-dependent Schrödinger equation can be separated into two ordinary differ-
ential equations: 

ih̄
d f (t)

dt
= E f (t)[

− h̄2

2m
∇2 + V (⃗r)

]
ψ(⃗r) = Eψ(⃗r)

(2.7)

The first of these equations can be immediately solved to get

f (t) = e−iEt/h̄. (2.8)

The second equation is known as the time-independent Schrödinger equa-
tion: [

− h̄2

2m
∇2 + V (⃗r)

]
ψ(⃗r) = Eψ(⃗r) (2.9)

In a more compact way, equation (2.9) can be rewritten as

Ĥψn (⃗r) = Enψn (⃗r) (2.10)

which is the equation of eigenvalues for the Hamiltonian operator. This result
also proves that the chosen separation constant E is, in fact, the total energy of the
physical system.

Therefore, the formal solution of the time-dependent Schrödinger equation is
a wave function of the form:

Ψ(⃗r, t) = ψ(⃗r)e−iEt/h̄ (2.11)

These solutions represent stationary states of the system since the probability
density does not depend on time

|Ψ(⃗r, t)|2 = ψ∗eiEt/h̄ψe−iEt/h̄ = |ψ(⃗r)|2 (2.12)

and are also states of definite total energy. The time-independent Schrödinger
equation, eq.(2.9), leads to energy quantization: only the values of E whose eigen-
function ψ(⃗r) is solution of Ĥψ = Eψ are allowed. The eigenvalues of the Hamil-
tonian operator correspond to possible values of the spectrum of total energy.

Consequently, the general solution of the time-dependent Schrödinger equa-
tion can be written as a linear combination of stationary states of the form

Ψ(⃗r, t) =
∞

∑
n=1

cnψn (⃗r)e−iEt/h̄ (2.13)
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To go any further with the Schrödinger equation, one has to specify a potential
V (⃗r). One of the paradigms amongst potential energy functions in Physics is that
of the harmonic oscillator

V(r) =
1
2

kr2 (2.14)

where k = mω2 is the force constant and ω its angular frequency. It is impor-
tant because it describes the behaviour of a great variety of physical systems and
it is also able to approximate almost any potential in the neighbourhood of a local
minimum.

For this particular potential, the time-independent Schrödinger equation be-
comes

− h̄2

2m
∇2ψ(⃗r) +

1
2

kr2ψ(⃗r) = Eψ(⃗r) (2.15)

In the next sections of this chapter, we will analyse the solution to equation
(2.15) in one and two dimensions.

2.1 1D harmonic oscillator

The time-independent Schrödinger equation for the unidimensional harmonic
oscillator takes the following form:

− h̄2

2m
d2ψ(x)

dx2 +
1
2

kx2ψ(x) = Eψ(x). (2.16)

To solve this equation, firstly, we make it dimensionless dividing by h̄ω:

− h̄
2mω

d2ψ(x)
dx2 +

mω

2h̄
x2ψ(x) =

E
h̄ω

ψ(x) (2.17)

We will rename the variables x and E by the following expressions:

ξ =

√
mω

h̄
x , ε =

E
h̄ω

, (2.18)

respectively. Using these changes, the Schrödinger equation reads:

−1
2

d2ψ(ξ)

dξ2 +
1
2

ξ2ψ(ξ) = εψ(ξ) (2.19)

or, equivalently,
d2ψ(ξ)

dξ2 + (2ε − ξ2)ψ(ξ) = 0 (2.20)
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The asymptotic behaviour of the last equation when |ξ| → ∞ is completely
dominated by ξ2 over 2ε, so it also has to be true that

d2ψ(ξ)

dξ2 − ξ2ψ(ξ) = 0 (2.21)

The previous equation has a solution that is a linear combination such that
ψ(ξ) = Ae−ξ2/2 + Be+ξ2/2. However, as noted in [10], the B term diverges, render-
ing it not normalizable and leading to a physically unacceptable solution. So it
must be B = 0 and, hence, the solution must have the following form:

ψ(ξ) = H(ξ)e−ξ2/2 (2.22)

Substituting this expression in equation (2.20) we get what is known as Her-
mite’s equation:

d2H
dξ2 − 2ξ

dH
dξ

+ (2ε − 1)H = 0 (2.23)

As in [10], we propose that the solution to equation (2.23) is in the form of a
power series in ξ:

H(ξ) =
∞

∑
k=0

ckξk (2.24)

Substituting the corresponding terms in equation (2.23), we get

∞

∑
k=0

(k − 1)kckξk−2 −
∞

∑
k=0

2kξckξk−1 + (2ε − 1)
∞

∑
k=0

ckξk =

=
∞

∑
k=0

(k − 1)kckξk−2 + (2ε − 1 − 2k)
∞

∑
k=0

ckξk

=
∞

∑
k=0

[(k + 1)(k + 2)ck+2 + (2ε − 1 − 2k)ck] ξk = 0

(2.25)

Following [10], from the uniqueness of power series expansions, the coeffi-
cients of ξ must be null for all k. Hence, we get the following recursion formula:

ck+2 =
2k + 1 − 2ε

(k + 1)(k + 2)
ck (2.26)

When k tends to infinity, ck+2
ck

behaves similarly to 2
k which has ck = C

k/2)! as
solution, with C as a constant. Adding over all values of k, we get a solution
of the form H(ξ) ∼ Ceξ2

, which in turn will give ψ(ξ) ∼ Ceξ2/2. However, as
said before, the asymptotic behaviour of this solution is not physically possible;
therefore, there has to occur a maximum value for k, say n, and H(ξ) has to be a
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polynomial. To find this value, we equate cn+2 = 0 which is equivalent to making
the numerator of the recursion formula zero, to get:

2n + 1 = 2ε, n = 0, 1, 2, . . .

Replacing ε by its expression in equation (2.18) we arrive to the condition of
the quantization of energy:

En =

(
n +

1
2

)
h̄ω, n = 0, 1, 2, . . . (2.27)

As mentioned previously, H(ξ) are polynomials of degree n in ξ, called Her-
mite polynomials. Given that the potential of the harmonic oscillator has even
parity, the solutions associated to equation (2.23) will also have a defined parity.
Therefore, H(ξ) will contain only even powers if n is even and odd powers if n is
odd.

Finally, gathering together all of our results and undoing the variable changes,
we get that the solutions of the Schrödinger equation for the one-dimensional
harmonic oscillator are of the form:

ψn(x) = Cn exp
(
−mω

2h̄
x2
)

Hn

(√
mω

h̄
x
)

(2.28)

The constant Cn is obtained imposing the normalization condition, that is,

1 =
∫ ∞

−∞
|ψn(x)|2dx = C2

n2nn!

√
πh̄
mω

⇒ Cn =
1√
2nn!

(mω

πh̄

)1/4
(2.29)

Figure 2.1 shows the first four stationary states for the harmonic oscillator.
It can be observed that there is a fundamental state whose associated energy is
E0 = 1

2 h̄ω which is different from zero.

Numerical solution

After solving the Schrödinger equation analytically, we will solve it numeri-
cally through diagonalization and using the finite-differences method. We start
from the time-independent Schrödinger equation2:

−1
2

d2ψ(x)
dx2 + V(x)ψ(x) = Eψ(x) (2.30)

2We will use throughout this discussion the convention that h̄ = m = ω = 1 in the numerical
resolution
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x

Figure 2.1: First four energy states for the 1D harmonic oscillator. The dashed
black line corresponds to the harmonic oscillator potential.

To solve it numerically, we discretise the problem defining the spatial coordi-
nate as an equidistant discrete set of points with spacing ∆x = 2L

N−1 ; hence, we
get a mesh from −L to L that has N intervals and N + 1 points. For each of the
discrete values, we denote the solutions by fi = fi(xi) = ψ(xi).

As noted in [4], the finite difference method expands the function f as a Taylor
series around every point of the mesh grid. The value of the function at the
neighbouring points of xi is written as:

f (xi−1) = f (xi)− ∆x f
′
(xi) +

∆x2

2
f
′′
(xi) +O(∆x3)

f (xi) = f (xi)

f (xi+1) = f (xi) + ∆x f
′
(xi) +

∆x2

2
f
′′
(xi) +O(∆x3)

(2.31)

Using the first and third expressions, we get the first derivative at xi

f
′
(xi) =

f (xi+1)− f (xi−1)

2∆x
+O(∆x2) (2.32)

And, finally, in order to approximate the second derivative of f needed in our
problem, we use equation (2.32) to get

d2 fi

dx2
i
=

fi+1 − 2 fi + fi−1

∆x2 (2.33)
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Substituting this expression in equation (2.30), we get

−1
2

d2 fi

dx2
i
+ Vi fi = Ei fi

⇒ − 1
2∆x2 ( fi+1 − 2 fi + fi−1) + Vi fi = Ei fi

(2.34)

We obtain a tridiagonal matrix and, then we generate the Hamiltonian in ma-
trix form, so the problem to be resolved numerically becomes

1
∆x2 + V1 − 1

2∆x2 0 . . . . . . 0

− 1
2∆x2

1
∆x2 + V2 − 1

2∆x2 . . . . . .
...

0 − 1
2∆x2

1
∆x2 + V3 − 1

2∆x2 . . .
...

...
...

...
...

...
...

... − 1
2∆x2

0 . . . . . . 0 − 1
2∆x2

1
∆x2 + VN





f1

f2

f3
...

...
fN


= E



f1

f2

f3
...

...
fN


(2.35)

After implementing the program in Matlab code with this numerical method,
we obtain the eigenvalues and eigenfunctions of the Schrödinger equation for the
harmonic oscillator potential. Figure 2.2 shows the first four resulting eigenfunc-
tions.

The numerical resolution of the Schrödinger equation for the harmonic oscilla-
tor potential gives eigenfunctions that are in agreement with the expected results.
We also found the expected eigenvalues, as shown in Figure 2.3.

2.2 2D harmonic oscillator

The time-independent Schrödinger equation for the harmonic oscillator ex-
tended to Cartesian coordinates (x, y) is the following

− h̄2

2m

(
∂2ψ(x, y)

∂x2 +
∂2ψ(x, y)

∂y2

)
+ V(x, y)ψ(x, y) = Eψ(x, y) (2.36)

where the harmonic oscillator potential takes now the form

V(x, y) =
1
2

k(x2 + y2), (2.37)

and is shown in Figure 2.4.
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Figure 2.2: First four eigenfunctions for the harmonic oscillator by numerical
method.
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Figure 2.3: Ten first eigenvalues obtained numerically against the analytical solu-
tion E = n + 1/2 in red.

We use separation of variables to solve the equation, that is, we assume solu-
tions take the form ψ(x, y) = X(x)Y(y). Substituting this expression in equation
(2.36), we get

− h̄2

2m

(
Y

∂2X
∂x2 + X

∂2Y
∂y2

)
+ V(x, y)XY = EXY (2.38)
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Figure 2.4: Two-dimensional harmonic oscillator potential.

Next, dividing by XY:(
− 1

X
h̄2

2m
∂2X
∂x2 +

1
2

kx2

)
+

(
− 1

Y
h̄2

2m
∂2Y
∂y2 +

1
2

ky2

)
= E (2.39)

We observe that the Hamiltonian of the two-dimensional system can be sep-
arated into two one-dimensional harmonic oscillator Hamiltonians Ĥ = Ĥx + Ĥy

whose sum equals a constant; hence, suggesting that each term must be a constant,
which we will denote with Ex and Ey(

− h̄2

2m
∂2

∂x2 +
1
2

kx2

)
X(x) = ExX(

− h̄2

2m
∂2

∂y2 +
1
2

ky2

)
Y(y) = EyY

(2.40)

such that Ex + Ey = E.

In the previous section we have already solved the one-dimensional harmonic
oscillator problem; therefore, by analogy the energy states are

Ex =

(
nx +

1
2

)
h̄ω , Ey =

(
ny +

1
2

)
h̄ω , nx, ny = 0, 1, 2, . . . (2.41)
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and the same happens for the eigenfunctions:

Xnx(x) =
1√

2nx nx!

(mω

πh̄

)1/4
exp

(
−mω

2h̄
x2
)

Hnx

(√
mω

h̄
x
)

Yny(y) =
1√

2ny ny!

(mω

πh̄

)1/4
exp

(
−mω

2h̄
y2
)

Hny

(√
mω

h̄
y
) (2.42)

Consequently, the general analytical solution for eigenfunctions and eigenval-
ues of the two-dimensional harmonic oscillator Schrödinger equation can be writ-
ten as follows

ψ(x, y) =
1√

2nx+ny nx!ny!

√
mω

πh̄
exp

(
−mω

2h̄
(x2 + y2)

)
Hnx

(√
mω

h̄
x
)

Hny

(√
mω

h̄
y
)

E = (1 + nx + ny)h̄ω = (1 + n)h̄ω , nx, ny = 0, 1, 2, . . .
(2.43)

As we can see from the analytical solutions the energy states of the harmonic
oscillator are degenerate, with a degeneracy equal to n+ 1. This is shown in Figure
2.5 where we have plotted the probability density |ψ(x, y)|2. The fundamental
state (0, 0), that corresponds to energy E0 = h̄ω, has no degeneracy; however, the
energy state E1 = 2h̄ω has a degeneracy of 2, (1, 0) and (0, 1). The second row
shows the degeneracy of 3 for the energy state E2 = 3h̄ω: (1, 1), (2, 0) and (0, 2).
And so on.

Numerical solution

The two-dimensional harmonic oscillator problem is analogous to the previous
one, we start from the two-dimensional time-independent Schrödinger equation:

−1
2

(
∂2

∂x2 +
∂2

∂y2

)
ψ(x, y) + V(x, y)ψ(x, y) = Eψ(x, y) (2.44)

Now the solutions are discretised over a grid of N2 points with ∆x = 2L
N−1 and

∆y = 2L
N−1 as the lattice spacing for each of the Cartesian coordinates. The solution

eigenfunctions will be denoted by fi,j = ψi,j for i, j = 1, . . . , N. Therefore, the state
representation of wave functions will now be a matrix of size N × N which will
take the form: 

f1,1 f1,2 . . . . . . f1,N

f2,1 f2,2 . . . . . . f2,N
...

...
. . .

...
fN,1 fN,2 . . . . . . fN,N

 (2.45)
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Figure 2.5: Two-dimensional harmonic oscillator probability densities |ψ(x, y)|2
for states (nx, ny) obtained analytically.

However, to be read by Matlab we will arrange it in the form of a N2 vector:

f1,1
...

f1,N
...

fN,1
...

fN,N


As with the one-dimensional harmonic oscillator, we use the finite-difference

method to approximate the Laplacian and, hence, we will use the analogue to
equation (2.33) in the (x, y) plane:

∂ fi,j

∂x2 =
fi+1,j − 2 fi,j + fi−1,j

∆x2 ,
∂2 fi,j

∂y2 =
fi,j+1 − 2 fi,j + fi,j−1

∆y2 (2.46)

Applying this approximation and taking the same spacing step in both coordi-
nates, ∆x = ∆y ≡ ∆, equation (2.44) becomes

−1
2

(
fi+1,j − 2 fi,j + fi−1,j

∆2 +
fi,j+1 − 2 fi,j + fi,j−1

∆2

)
+ Vi,j fi,j = E fi,j (2.47)
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Arranging terms we get:

− 1
2∆2

(
fi+1,j + fi−1,j − 4 fi,j + fi,j+1 + fi,j−1

)
+ Vi,j fi,j = E fi,j (2.48)

Finally, the problem to be solved numerically in matrix notation becomes:

1
∆2



2 + V1,1 −1/2 0 −1/2 0 0 . . . . . . 0
−1/2 2 + V1,2 −1/2 0 −1/2 0 . . . . . . 0

0 −1/2 2 + V1,3 0 0 −1/2 0 . . . 0
...

...
...

. . . . . . 0
...

...
...

. . . . . . 0
0 0 . . . . . . −1/2 0 −1/2 2 + VN,N−1 −1/2
0 0 . . . . . . . . . −1/2 0 −1/2 2 + VN,N





f1,1

f1,2
...

f1,N
...

fN,1
...

fN,N


= E



f1,1

f1,2
...

f1,N
...

fN,1
...

fN,N


(2.49)

To obtain the eigenvalues and eigenfunctions, we first create a sparse N × N
matrix L of the form:

L =
1

∆2



−2 1 0 . . . . . . 0
1 −2 1 0 . . . 0
0 1 −2 1 . . . 0
...

...
. . .

...
...

...
. . . 0

0 0 . . . 1 −2 1
0 0 . . . 0 1 −2


(2.50)

We calculate the N2 × N2 matrix representing the two-dimensional Laplacian
L2 as the sum of two sparse matrices which are obtained as the Kronecker tensor
product of L and I, where I is the identity matrix. That is,

L2 = L ⊗ I + I ⊗ L (2.51)

After constructing a sparse N2 × N2 matrix for the harmonic oscillator poten-
tial

V =


V1,1 0 . . . . . . 0

0 V1,2 0 . . . 0
...

...
... . . . 0

0 0 . . . . . . VN,N

 ,

we finally obtain the two-dimensional Hamiltonian as:

H = −1
2

L2 + V (2.52)

We diagonalize the resulting matrix for the Hamiltonian to obtain the eigenval-
ues and eigenfunctions. Figure 2.6 shows the probability densities obtained from



28 The Schrödinger equation

numerically solving the two-dimensional Schrödinger equation for the harmonic
oscillator potential. The numerical results are in agreement with the theoretical
wave functions and accurately capture their characteristics.
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Figure 2.6: Two-dimensional harmonic oscillator probability densities |ψ(x, y)|2
for states (nx, ny) obtained numerically.



Chapter 3

Quantum scars

Determinism is at the essence of classical mechanics, it establishes that, given
the precise initial conditions of a particular system, Newton’s laws govern its mo-
tion evolution through a set of ordinary differential equations and, hence, the
future state of the system can be predicted. It is also possible to prove that the
solutions to Newton’s equations exist and are unique, hence providing a "‘clock-
work"’ understanding of the future evolution of the system.

In practice, however, determinism is not guaranteed, except maybe for the
simplest of systems. Albeit the motion of a system can be strictly calculated, the
presence of chaos makes it highly sensitive to the surrounding conditions, sub-
sequently making it impossible to produce accurate predictions. We would need
to know with infinite accuracy the conditions of the system to be able to trace its
evolution.

In the previous chapter, we have solved the Schrödinger equation and have
obtained as a solution a wave function ψ(⃗r, t) which, when squared, gives us the
likelihood |ψ(⃗r, t)|2 of finding our particle at a certain location at a certain moment
in time. This stems from Born’s statistical interpretation of the wave function and,
with it, introduces the indeterminism in quantum mechanics. Consequently, one
could argue that quantum physics is probabilistic, but not chaotic.

Chaos in the classical world, as described in the first chapter, arises when a
system is highly sensitive to its initial conditions so that a small perturbation al-
ters its future behaviour in an exponentially growing manner. In contrast, chaos
should not exist in the quantum world since small perturbations generally lead
to small changes in future states. At this point, one could wonder how chaos can
exist in the world when macroscopic systems are ultimately made out of atoms

29
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which are quantum in essence, why does not quantum regularity triumph on the
larger scale? There are two confronting answers to this question. Some argue that
the quantum break time −the time-scale after which quantum mechanics diverges
from the classical evolution and chaos can no longer be suppressed by quantum
regularity− gets longer and longer. Others, as Berry in [1], find that the domi-
nance of chaos comes from the inability of isolating large quantum systems from
their surrounding universe.

A quantum system is undetermined in the sense that the Heisenberg uncer-
tainty principle establishes, namely, that we cannot know at the same time and
with total precision the position and momentum of our particle when measuring
them. This uncertainty is quantized by Planck’s constant h̄. Therefore, we can only
predict the probabilities of the different known outcomes. In quantum mechanics,
the indeterminism does not come from the Schrödinger equation, but from the act
of measuring.

The probabilistic interpretation is one of the most notable differences between
classical and quantum mechanics. Furthermore, unlike its counterpart, classical
mechanics is able to measure simultaneously all its observables, delivering trajec-
tories that may be distinguishable from one another. Classical physics also has
the observer of the system play a passive role, whereas in quantum mechanics the
observer is a source of disturbance whose effects on the system under analysis are
not trivial.

The question of what quantum chaos is still prompts a debate. However, at-
tempts have been made to answer some of the questions that the presence of chaos
raises, such as how chaos moves from the classical scale to the smooth quantum
world, how the two distinct worlds can be reconciled or whether even chaos exists
in the quantum world. As Bohr correspondence principle is the bridge that con-
nects quantum and classical mechanics in the sense that the behaviour description
of a system made by quantum theory recovers, in the limit of large quantum num-
bers, the classical characterization; quantum chaos is the link between classical
chaotic systems and quantum physics.

It is largely accepted that, as mentioned in [5], there are three different types
of quantum chaos: "‘quantized chaos"’, "‘semiquantum chaos"’ and proper "‘quan-
tum chaos"’. The first type of quantum chaos has been the most studied one and
it concerns the quantization of classically chaotic systems in the semiclassical limit
(h̄ → 0). Semiquantum chaos studies quantum-classical coupled systems such as
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the ones that can be found in molecular physics or billiards that have vibrating
boundaries. Lastly, the "‘true"’ quantum chaos deals with fully quantized systems
that show an exponential sensitive dependence on initial conditions. In this chap-
ter, we will focus on the first type, quantized chaos, also referred to as "‘quantum
chaology"’.

Quantized chaos looks for trademarks of classically chaotic systems on the
quantum level. A large number of systems such as atoms in excited high-energy
states or the double pendulum, to name a few of the simplest ones, manifest
chaotic properties when analysed through the classical lens. Although the quan-
tized system does not exhibit sensitivity to small changes in the initial conditions,
the underlying chaos bleeds to the quantum level where the corresponding wave
functions and energies get strongly influenced by it. Actually, this has been one of
the most surprising discoveries, the fact that quantum systems feel whether their
classical counterparts display a chaotic behaviour or not: chaos in the classical sys-
tem manifests itself in the associated quantum dynamics that, albeit not chaotic,
"‘register"’ the chaos manifested in the macro-scale.

Usually, the study of quantum chaos starts with a classically chaotic system
which is not isolated from its surrounding environment and where the quantum
regularity is not present. Then, the system gets quantized (a challenging process
and not straightforward whatsoever) and analysed in the semiclassical limit so as
to identify its classical chaotic characteristics. These quantum systems manifest
classical chaos in several ways, as for instance, quantum "‘scars"’.

The term quantum "‘scars"’ was first coined by Heller in his paper [13] where
he examined the effects of unstable periodic orbits on the eigenfunctions of the
classically chaotic stadium billiard. From a classical viewpoint and as mentioned
in [11], a conventional trajectory in the stadium billiard evenly covers the sta-
dium space, suggesting that the stationary states might look random. Nonetheless,
Heller’s work found that, at the quantum level, unstable, periodic orbits induced
an enhancement along their trajectories in the sense that a larger than expected
density surrounded some of these wave functions. As [11] points out, these orbits
that do not stand out in the classical world become predominant in the quantum
scale.

Let’s go back to the Bunimovich stadium since this has been one of the simplest
and most used billiards to study quantum chaos. From the classical perspective,
the particle inside the Bunimovich stadium evolves following the billiard ball map
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in equation (1.9), while the quantum evolution is described by the Schrödinger
equation. Following [19], the Laplacian of this problem has a countable sequence
of eigenfunctions ψ1, ψ2, . . . associated to an increasing sequence of eigenvalues
E1, E2, . . . which are normalised so that

∫
billiard |ψk|2 = 1, ∀k. The conjecture associ-

ated with this problem in the physical space reads as follows:

Conjecture 3.1. Scarring conjecture. There exists a subset A ⊂ Ω and a sequence ψk j

of eigenfunctions with Ek j → ∞ such that
∫

A |ψk j |2 does not converge to |A|/|Ω|. That
is, the eigenfunctions "‘scar"’ in A or on the complement of A.

In the Bunimovich stadium, the set A corresponds to the union of all verti-
cal trajectories in which the billiard bounces orthogonally off the flat edges of
the stadium infinitely. This conjecture establishes that the eigenfunctions fk are
not equally distributed in the physical space when k → ∞, that is, the quantum
unique ergodicity fails as the energy becomes larger.

Closely following the numerical method use in the two-dimensional harmonic
oscillator case, we solve the Schrödinger equation so as to obtain the eigenfunc-
tions for the Bunimovich stadium. We consider a rectangle of length L = 2 and
the semicircles capping it have radius R = 1, thus obtaining a mesh-grid of points
such that −(L/2 + R) ≤ x ≤ L/2 + R and −R ≤ y ≤ R. With these characteris-
tics, the minimal energy obtained is approximately E0 ∼ h̄2

mL2 ∼ 1
L2 , therefore, we

choose a potential barrier of V0 = 103 so that V0 >> En, ∀n.

We arrange all the elements of the array in a N2 × 2 matrix A where the first
column corresponds to values of x and the second column to values of y. Since
the potential function in this system is taken to be V = 0 if the considered point is
inside the billiard and V = ∞ if it is on the boundary, we write an indicator func-
tion to help us find these points. The function ind is built to satisfy the following
conditions with a tolerance tol = 10−4

• (x − L/2)2 + y2 > R2 and x > L/2 − tol

• (x + L/2)2 + y2 > R2 and x < −L/2 + tol

• |y2 − R| < tol

• |y2 + R| < tol

and reports those points in A that satisfy them. These points have an assigned
potential of V = V0 in the corresponding potential matrix V.
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Using the lattice spacing for each coordinate ∆x and ∆y, we write two sparse
tridiagonal matrices that correspond to the 1D finite difference Laplacians, LapX
and LapY, equally to what was done in the previous section in matrix (2.50). We
again calculate the N2 × N2 matrix representing the two-dimensional Laplacian
L2 as the sum of two sparse matrices which are obtained as the Kronecker tensor
product of LapX/LapY and I, where I is the identity matrix. That is,

L2 = LapX ⊗ I + I ⊗ LapY (3.1)

Finally, the two-dimensional Hamiltonian for the Bunimovich stadium billiard
is

H = −1
2

L2 + V (3.2)

Figure 3.1 presents the familiar diagrams for the density functions, similar to
the ones we have obtained for the case of the two-dimensional harmonic oscillator.

The following figure 3.2 shows the presence of quantum "‘scars"’ on the Buni-
movich stadium, when starting from a higher energy value n = 81, since it is
from larger quantum numbers that the classical chaos starts to become apparent
at the quantum level. Some of the scars in this diagram are associated to unstable
periodic orbits that leave their imprint on the quantum world.



Figure 3.1: Probability densities in the Bunimovich stadium associated with the
first eight eigenvalues.
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Figure 3.2: Consecutive density functions in the Bunimovich stadium, starting at
E = 74.9.
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Conclusions

In this work we have studied, in the first place, billiards as dynamical systems
that have such a versatile character that are able to model very different situations.
As we have shown, one of the most important features of a billiard is its boundary,
given that its geometry strongly influences the dynamics of the particle within. We
started our study with circular and square billiard tables which display a regular
behaviour, and later introduced the ones that interest us which are able to gener-
ate completely chaotic patterns.

In this light, we have presented a particularly special type of billiard, the Buni-
movich stadium. This billiard is famously chaotic since the trajectories of a billiard
in motion inside its domain are highly difficult to predict: given two marginally
different initial conditions, the trajectories followed by the two billiards differ ex-
ponentially as time goes by. Another important result is its ergodicity which Buni-
movich proved in [6], hence, we know that the position of a billiard with a given
initial position and velocity will uniformly and randomly be distributed over the
whole stadium.

In Chapter 2, we have also explored the Schrödinger equation. We have intro-
duced the steps for its resolution in the case of conservative physical systems, that
is, where the potential does not depend on time. In the special case of the simple
harmonic oscillator potential, we have studied the analytical solution for the one
and two-dimensional cases in Cartesian coordinates. Additionally, we have also
used a finite-differences method to obtain a numerical solution to the Schrödinger
equation. In doing so, we have found that the probability densities obtained from
the numerical analysis are in completely agreement with the theoretical ones as
can be observed in the corresponding Figures 2.1 and 2.2 for the one-dimensional
case and Figures 2.5 and 2.6 for the two-dimensional.

Finally, in Chapter 3, we have ventured inside quantum chaotic billiards by
solving the Schrödinger equation numerically for the Bunimovich stadium. Our

37
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results are able to replicate quantum "‘scars"’ in this billiard, a term coined by
Heller in [13] and that has no analogue in the classical framework. As shown in
Figure 3.2, the density functions associated to classical unstable periodic orbits
manifest as enhanced probability density regions around their classical trajecto-
ries.

Since this work touches upon a very active research field, there are still ar-
eas to improve and to expand upon in possible future research. On one hand, it
would be important to translate the numerical analysis from the Matlab program-
ming to a C language or similar and develop optimal methods to find eigenvalues
and eigenvectors of huge sparse matrices which we obtain at discretization of the
Schrödinger equation. On the other hand, there is still more to contribute in the
area of chaotic dynamics, a possible extension of this work would include an anal-
ysis of the quantum behaviour in other known chaotic billiards such as mushroom
billiards and heart or lemon-shaped billiards.
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Appendix

Code for solving the 2D Schrödinger equation with simple
harmonic oscillator potential

1 c l e a r a l l
2 L=3;
3 g = 5 0 ; g2 = g ^2;
4 p = l i n s p a c e ( −L , L , g ) ; % one dimensiton space

l a t t i c e
5 [X , Y] = meshgrid ( p , p ) ; % two dimension space l a t t i c e
6 h = p ( 2 ) − p ( 1 ) ; % l a t i c e spacing
7 X = X ( : ) ; Y = Y ( : ) ; % a l l elements of a r r a t y as a s i n g l e

column
8 R = 0 . 5 * ( X.^2 + Y. ^ 2 ) ; % d i s t a n c e from the c e n t e r
9 Vext = R ; % p o t e n t i a l energy

10 e = ones ( g , 1 ) ;
11 L = spdiags ( [ e −2*e e ] , −1 :1 , g , g ) / h^2; % 1D f i n i t e

d i f f e r e n c e Laplacian
12 I = speye ( g ) ;
13 L2 = kron ( L , I ) + kron ( I , L ) ; % extend Laplacian to 2 D
14 H = −0.5 * L2 + spdiags ( Vext , 0 , g2 , g2 ) ; % Hamiltonian of

H atom
15 [ PSI , E ] = e i g s (H, 10 , ’ sa ’ ) ; % Smal les t e igenvalues

of H
16 i =1 ;
17 X1=reshape (X , g , g ) ;
18 Y1=reshape (Y , g , g ) ;
19 PSI1=reshape ( PSI ( : , i ) , g , g ) ;
20 contourf ( X1 , Y1 , PSI1 , 10 , ’ L i n e S t y l e ’ , ’ none ’ ) ;
21 c o l or ba r % shows the bar with the c o l o r s c a l e
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Code for solving the 2D Schrödinger equation in the Buni-
movich stadium

1 c l e a r a l l ;
2 L=2; R=1; V0=1000; t o l =1e −4;
3 g = 5 0 ; g2 = g ^2;
4 px = l i n s p a c e ( −(L/2+R) , ( L/2+R) , g ) ;
5 py = l i n s p a c e ( −R , R , g ) ; % one dimensiton space

l a t t i c e
6 [X , Y] = meshgrid ( px , py ) ; % two dimension space l a t t i c e
7 hx = px ( 2 ) − px ( 1 )
8 hy = py ( 2 ) − py ( 1 ) ; % l a t i c e spacing
9 A = [X ( : ) , Y ( : ) ] ; % a l l elements of array as two columns

10

11 Vext = zeros ( g2 , 1 ) ; % p o t e n t i a l energy
12 ind=f ind ( ( (A( : , 1 ) −L/2) .^2+A( : , 2 ) .^2 >R^2)&(A( : , 1 ) >L/2− t o l ) ) ;
13 ind =[ ind ; f ind ( ( (A( : , 1 ) +L/2) .^2+A( : , 2 ) .^2 >R^2)&(A( : , 1 ) <−L/2+

t o l ) ) ] ;
14 ind =[ ind ; f ind ( abs (A( : , 2 ) −R) < t o l ) ] ;
15 ind =[ ind ; f ind ( abs (A( : , 2 ) +R) < t o l ) ] ;
16 ind=unique ( ind ) ;
17 Vext ( ind , : ) =V0 ;
18

19 %D i s c r e t i z a t i o n of Schrodinger Equation
20 e = ones ( g , 1 ) ;
21 LapX = spdiags ( [ e −2*e e ] , −1 :1 , g , g ) / hx ^2; % 1D f i n i t e

d i f f e r e n c e Laplacian
22 LapY = spdiags ( [ e −2*e e ] , −1 :1 , g , g ) / hy ^2;
23 I = speye ( g ) ;
24 L2 = kron ( LapX , I ) + kron ( I , LapY ) ; % extend Laplacian to 2

D
25 H = −0.5 * L2 + spdiags ( Vext , 0 , g2 , g2 ) ; % Hamiltonian of

H atom
26 [ PSI , E ] = e i g s (H, 200 , ’ sa ’ ) ; % Smal les t e igenvalues of H
27

28 i =81; E ( i , i )
29

30 %Represent dens i ty of p r o b a b i l i t y of e igenfunct ion
31 hold on ;
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32 t i t l e ( [ ’n= ’ , num2str ( i ) , ’ , E= ’ , num2str ( E ( i , i ) ) ] ) ;
33 PSI2=reshape ( PSI ( : , i ) , g , g ) ;
34 Dens=PSI2 . * PSI2 ;
35 contourf (X , Y , Dens , 10 , ’ L i n e S t y l e ’ , ’ none ’ ) ;
36

37 c o l or ba r % shows the bar with the c o l o r s c a l e
38

39 %Represent b i l i a r d
40 p l o t ( [ −L/2 , L/2] , [R , R] , ’ r ’ , ’ LineWidth ’ , 3 ) ;
41 p l o t ( [ −L/2 , L/2] , [ −R , −R] , ’ r ’ , ’ LineWidth ’ , 3 ) ;
42 x1=−L/2−R: 0 . 0 1 : − L/2;
43 y1= s q r t (R^2−(x1+L/2) . ^ 2 ) ;
44 p l o t ( x1 , y1 , ’ r ’ , ’ LineWidth ’ , 3 ) ;
45 p l o t ( x1 , −y1 , ’ r ’ , ’ LineWidth ’ , 3 ) ;
46 p l o t ( −x1 , y1 , ’ r ’ , ’ LineWidth ’ , 3 ) ;
47 p l o t ( −x1 , −y1 , ’ r ’ , ’ LineWidth ’ , 3 ) ;
48

49 hold o f f ;


