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Abstract: The Bose-Hubbard model was introduced to describe the behaviour of ultracold bosons
trapped in an optical lattice. Such systems present a quantum phase transition of the ground state
between two phases: the Mott Insulator and the superfluid phase. We characterise the ground
state phases of one-dimensional systems for different lattice sizes with the unit filling. To do so,
we use the Exact Diagonalisation method. The computation of the exact ground state energy and
eigenvectors enable the study of different relevant physical quantities that will help us portrait such
phase transition.

I. INTRODUCTION

The study of many-body quantum physics has an im-
portant legacy on fundamental discoveries such as novel
states of matter or the observation of unseen phase tran-
sitions [1]. Since the experimental discovery of the Bose-
Einstein condensation in 1995, a lot of effort has been put
into understanding the physics beyond ultra-cold quan-
tum many-body systems [1].

Remarkably, ultra-cold dilute atomic gases offer an un-
precedented degree of experimental control [2]. Optical
lattices allow us to tune effective parameters of the sys-
tem, such as the potential depth or its geometry. The
Bose-Hubbard model provides an accurate description
of the physics on ultra-cold atomic systems in optical
lattices [3], first introduced for model studies related to
4He liquids in porous media and granular superconduc-
tors [13].

The experimentation with Bose-Einstein condensates
in optical lattices give access to new regimes dominated
by strong correlations, not reachable with magnetic traps
[13]. Such correlations bring to light quantum phase tran-
sitions (QPT) that could not be studied before.

The Bose-Hubbard model shows a quantum phase
transition between a Mott Insulator phase and a super-
fluid (SF) phase due to the interplay of kinetic energy
and interactions at zero temperature [4]. This transitions
are of great importance in understanding superconduc-
tivity. The system shifts from having all the atoms lo-
calized with no phase coherence, to a long-range phase
coherence, where each atom is spread out over the entire
lattice.

Many-body systems are numerically challenging, gen-
erally due to the scaling of the systems. Mean-field the-
ories are widely used to solve these problems, but the
introduction of such approximations can lead to loss of in-
formation about the system. Amongst the various meth-
ods used for the study of quantum many-body systems,
Exact Diagonalization (ED) offers a unique position. It
allows total access to the eigenstates and eigenvalues of
the Hamiltonain with no approximations, and thus an
exact calculation of different observables.

ED is used as a benchmark of state-of-the-art compu-

tational methods such as Tensor Networks, widely used
in recent years. It does not rely on any assumptions or
approximations, thus providing exact results. Such re-
sults are unlikely to be obtained via other analytical or
numerical approaches. The deep understanding of this
method is a first step towards the understanding of other
computational methods and the physics beyond the Bose-
Hubbard model.

II. THEORETICAL BACKGROUND

A. The Bose-Hubbard model

FIG. 1: Graphical representation of particles in the Bose-
Hubbard model considering hopping between adjacent sites
(J) and interaction between particles (U).

The one-dimensional Bose-Hubbard model can be
thought as interacting bosons trapped in a 1D optical
lattice by a periodic potential, assuming that the lattice
wells are deep enough (Fig. 1) [7]. It uses the tight bind-
ing model, which approximates the wave function to a
set of wave functions for isolated atoms in each lattice
site. The use of this approximation incorporates short-
range interactions and neglects the long-range ones on
Hubbard models. Optical lattices are prepared in a way
that they fulfil the tight-binding approximation.

The Bose-Hubbard model is a single band model, it
only includes the lowest band states. Therefore, this
model is only valid for low enough temperatures and tight
enough potentials. The Hamiltonian can be written in
terms of the particle creation and annihilation operators,
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a†i , ai, within second quantisation formalism [1] :

HBH = −J
∑
<ij>

(
a†iaj + a†jai

)
+
U

2

M∑
i=1

n̂j(n̂j − 1), (1)

where the system contains M sites labelled by the in-
dex i, and contains N particles. The particle creation

operator is defined as a†i |n + 1⟩ =
√
n+ 1|n + 1⟩ and

the particle annihilation operator is its adjoint. They
follow the basic commutation relations for bosons, i.e.[
âα, â

†
β

]
= δα,β , [âα, âβ ] = 0,

[
â†α, â

†
β

]
= 0, [8]. n̂i =

â†i âi is the atomic number operator and it is defined as
n̂i|n1, n2, ..., nM ⟩ = ni|n1, n2, ..., nM ⟩.

The basis used is the occupation number basis. It rep-
resents single particle orbitals occupied by an ni num-
ber of particles. It is defined as the set of Fock states
|{n1, n2, ..., nM}⟩ that contain all possible combinations
of bosons all over the lattice, following the constraint∑M

l=1 nl = N . In this basis, the eigenstates are expressed
as:

|ψν⟩ =

D∑
i=1

λνi |{n1, ..., nM}i⟩, (2)

Where (λi) are the corresponding eigenvector coefficients
and i = 1, ..., D labels the different basis Fock states.

The first term of the Hamiltonian (1) is the hopping
term. It quantifies the probability of a particle tunnel-
ing between two adjacent sites [1]. We set U > 0, as we
treat systems with repulsive interaction. For information
about the Bose-Hubbard model with attractive interac-
tions, check [6] . Long-range tunneling, which would
involve hopping over many lattice sites and long-range
interactions, is neglected in this model.

B. Analitical considerations

In the Bose-Hubbard model there is an ongoing ”com-
petition” between the on-site interactions U and the tun-
neling J which is nicely captured by the modification of
only one parameter: U/J . To do so, we study the be-

haviour of Ĥ′
BH = HBH/J . In order to characterise the

QPT between SF and MI, we study the following observ-
ables.

The first one, is the ground state energy, which is given
by the lowest eigenvalue resulting from the diagonaliza-
tion of the Hamiltonian.

The Single-Particle Density Matrix (SPDM) gives us
information on the probability of finding a particle in
each state of the system. It is defined as:

ρij =
⟨ψ|a†iaj |ψ⟩√

⟨ψ|a†iai|ψ⟩⟨ψ|a
†
jaj |ψ⟩

, (3)

The off-diagonal terms of the SPDM correspond to the
correlation values for two different sites. The diagonal

terms provide the mean occupation number for a given
site, which is the density, defined as ρii = ⟨ψ|n̂i|ψ⟩.

To study the fluctuations of the occupation number of
the i-th site, we study it’s variance, defined as:

σi =
√
⟨ψ|n̂2i |ψ⟩ − ⟨ψ|n̂i|ψ⟩2. (4)

If a state can be described with a single Fock state, the
fluctuations on the occupation number are small, or can
even disappear. Contrary to this, if a state needs sev-
eral Fock states to be described (2) it means that the
occupation number has large fluctuations.

Another interesting observable is the condensate frac-
tion. According to Penrose-Onstager definition [12], it
reads:

fc =
λ1
N
, (5)

where λ1 is the highest eigenvalue obtained from the diag-
onalization of the SPDM. If λ1 is macroscopic, fc is about
the order of the unity and it is considered a BEC [10],[12].
This means that if one of the natural orbitals is macro-
scopically occupied, a BEC is present. The term macro-
scopically occupied, strictly means the ratio between the
occupation number and the total particle number. This
ratio remains finite for any M , so we cannot determine
the absence of a BEC [10]. Note that a BEC and the
SF phase are not the same. The SF phase definition is
connected to flow properties. Macroscopcically, the SF
phase is defined as that flowing system that doesn’t move
in the presence of moving boundaries [13].

This observables help us to characterize the nature of
the ground state [13]. If the kinetic energy, i.e. the
hopping term, of the particles is much greater than the
interaction term, the particles become delocalized within
the lattice. So, in this limit (U/J → 0) the ground state
is stated as [3]:

|ψSF ⟩ =

(
1√
N

M∑
i=1

â†i

)N

|0⟩, (6)

which is the so called SF phase, with long-range coher-
ence and characterised by maximal correlations and vari-
ance, as the particles are completely delocalized in the
lattice. The condensate fraction of the SF phase is one,
so it is also considered as a BEC [10].

On the other hand, if the interaction term is much
greater than the hopping term (J/U → 0), the kinetic
energy drops. As a result, the atoms are totally localized
in the lattice sites. This results in the MI phase, ground
state of which is:

|ψMI⟩ =

M∏
i=1

(
â†i

)n
|0⟩. (7)

It presents no phase coherence across the lattice, which
results in a low correlation. Characterized by a zero en-
ergy and a small variance.
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FIG. 2: Graphic representation for the PBC (top) and the
PBC (bottom).

We consider two different sets of boundary conditions:
the open boundary conditions (OBC) and the periodic
boundary conditions (PBC). They indicate how to con-
sider the pairs < ij > of the first term of the Hamiltonian
(1. In the OPB the first and last lattice only interact
with the lattice neighbouring them and the wavefunction
is set to zero on the extremes. In the PBC these two
lattices can interact with each other and the lattice can
be pictured as a ring (see Fig. 2).

The Bose-Hubbard model presents three important
symmetries [9]:

• U(1) symmetry: Associated with the conservation

of the total atom number N̂ =
∑m

i=1 n̂i. The
Hamiltonian (1) is invariant under the transform

(a†i , ai) = (a†ie
iθ, aie

iθ).

• Reflection symmetry: The Hamiltonian is invariant

under transformations (â†i , âi) → (â†M−i, âM−i).
As a consequence all the observables, for both OBC
and PBC, are symmetric around the centre of the
lattice.

• Translation symmetry: Since the potential has a
periodicity of Vopt(x + a) = Vopt(x), the Hamil-
tonian has translational symmetry which means

it is invariant under the transform (a†i , ai) =

(a†i+1, ai+1), which is associated with the quasi-
momentum’s conservation. It only applies to PBC.
It makes the boson density constant all over the
lattice and the correlation is the same for each
site when keeping the same distance, i.e. ρ

(N)
ij =

ρ
(N)
i+k,j+k. That is also the main reason why the

boson density for OBC is not constant within U/J .

III. NUMERICAL METHOD - ED

We use the numerical ED. Its basic lies with the repre-
sentation of the Hamiltonian matrix, Hij = ⟨ni|Ĥ|nj⟩, in
a convenient and appropriated Fock space basis. Then,
we diagonalize it to obtain the eigenvalues and eigenvec-
tors. Note that the off-diagonal terms are given by the
hopping term and the diagonal terms by the interacting
term.

Solving systems through this method can be a chal-
lenge computationally, since the size of the many-body

systems scales exponentially. The number of possible
states scales as [9]:

D =
(N +M − 1)!

N ! (M − 1)!
, (8)

Where D is the number of basis’ states needed to de-
scribe the system. For larger systems, other methods
such as Tensor Networks appear, as they are computa-
tionally more favourable. Nevertheless, the validity of
their results is commonly compared with the ones ob-
tained from ED. The most valuable characteristic of the
ED is that it provides all the eigenstates and eigenval-
ues of the system, as the matrix is purely numerically
diagonalized.

We create the basis in lexicographic order, which sets
that a vector |n1, n2, ..., nM ⟩ is superior to |n′1, n′2, ..., n′

M ⟩
if nk > n′k, knowing that there is a certain index 1 ≤ k ≤
M − 1 for which nk ̸= n′k while ni = n′i for 1 ≤ i ≤ k− 1.
Using this order, the first vector of our basis is |N, 0, ..., 0⟩
and the last one |0, 0, ..., N⟩ [9].

Once the Hamiltonian is computed analitically, we use
the numpy.linalg library, based on LAPACK package [11]
to diagonalize it. Note that the result of this diagonal-
isation is exact, as no approximations are made at any
stage of the procedure.

IV. RESULTS AND DISCUSSION

In this section, we focus on the results obtained using
ED as explained before. We study the dependence of the
quantum phase transition between SF and MI phases as
a function of U/J for different system sizes. We consider
the systems with the unit filling, i.e. N/M = 1. This
choice is made for the sake of numerical simplicity to
show the two behaviours of our system: MI for smaller
U/J values, and SF for larger U/J ones.

All the quantities computed below refer to the ground
state solution of our system, given by equations (6) and
(7), using the eigenvectors related to the lowest eigenval-
ues and for a given U/J .

A. Ground state Energy

In Fig. 3, we compute the ground state energy per
particle for different system sizes as a function of U/J .
We can see that the system behaves in a similar way
for both open and PBC. For small values of U/J , the
hopping term on eq. (1) dominates over the interaction
on the system, hence the negative value of the energy.
Also, the presence of a superfluid phase increases the
total energy of the system [13]. This corresponds to the
SF phase.

As the interaction increases over the kinetic energy,
the bosons become more localised in the lattice sites.
For larger values, U → ∞, the ground state has zero
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FIG. 3: Ground state energy per particle (E/N) as a function
of the rate U/J for OBC (a) and PBC (b).

energy. The system corresponds to a MI phase, in which
the bosons are completely localised.

B. Single-particle density matrix

1. Correlation

In Fig. (4) we compute the correlation (Eq. (3)), eval-
uated for i = 0 and j = M/2 for both OBC and PBC
(for odd values of the site, M/2 is rounded up to the next
integer value). By computing ρ0,[M/2], we check the cor-
relation between the particles in the middle of the lattice
and the particles in the first one. As in the SF phase there

5

FIG. 4: ρ0,[M/2] as a function of U/J for OBC (a) and PBC
(b).

is long-range coherence, particles on the first site and in
the middle of the lattice are correlated. That is the rea-
son why ρ0,[M/2] → 1 as U/J → 0. On the other hand,

as the interaction decreases, this long-range coherence is
lost and as a consequence the correlation decays. In the
limit J/U → 0, the particles are completely uncorrelated
and the system is found in the MI phase.

2. Density

FIG. 5: Deviation from one boson/site (∆ρii = ρii − 1) of
the expected occupation number on each site for the system
N=M=7. OBC (squares) and PBC (dots) for U/J= 0.01 (a),
40.01 (b), 80.01 (c).

As we can see in Fig. (5), for PBC the density is con-
stant with ni = 1 on each site, as expected. The distri-
bution of bosons for the OBC decreases in the extremes,
as there the wavefuntion equals to zero. The density
changes as U/J increases. When there is no interaction,
the density has a peak in the middle of the lattice. As
it increases, the bosons repel themselves and the density
has several peaks.

This behaviour can also show the difference between
SF and MI phases. As for U/J → 0 the bosons are free
to move around the lattice, but as J/U → 0 they become
localised with different distributions.

C. Variance

FIG. 6: Variance on the first site of the lattice for both OBC
(a) and PBC (b) as a function of the rate between interaction
and hopping strengths.
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We study the fluctuations of the occupation number
through its variance. In Fig.(6) it is demonstrated as the
MI phase can be represented as a single Fock state, as the
variance tends to zero (the bosons are localized). On the
other hand, in the SF phase, many Fock states describe
the wave function, as the variance is high (the bosons are
spread all over the lattice).

D. Condensate fraction

As we can see in Fig.7, for any lattice size, when
U/J → 0, the system behaves as in a SF phase [9] as
fc → 1. As the interaction grows the correlation lowers
and tends to a finite value.

We observe an analogy to the Mermin-Wagner theorem
in our 1D system, except for U/J = 0. Namely, that the
condensate fraction decreases as we increase the system
size.

FIG. 7: Condensate fraction for both OBC (a) and PBC (b)
as a function of the rate between interaction and hopping
strengths.

V. CONCLUSIONS

We have studied the characterisation of the ground
state of the Bose-Hubbard model for different system
sizes and different values of rate between interaction and
hopping strengths (U/J).

The choice of exact diagonalisation has given us access
to the exact eigenstates and eigenvalues, and the differ-
ent observables we computed. Thanks to this, we have
differentiated both the MI and SF phases for the ground
state of the Bose Hubbard model.

In this study from few to many-body systems we faced
the difficulties of the size scaling of our systems and thus
the computational cost. Exact diagonalisation is a rather
simple method conceptually but it is never trivial in pro-
gramming. The results obtained are the result of pro-
gramming exact diagonalisation from scratch which has
allowed us to have a better understanding of the physics
and programming behind of this kind of simulations. Fac-
ing the limitation of working with a desktop computer,
we could reach systems up to N = M = 8, with a dimen-
sion of D = 6435.

This motivates us to continue studying the Bose-
Hubbard model or other many-body problems with other
computational methods, which will require approxima-
tions or truncation, and will let us study bigger systems.
Though, this results can always be bench-marked with
exact diagonalisation.
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