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Abstract: β decay is one of the most common processes in atomic nuclei. In this
work we obtain expressions for contribution to the β decay half life from nuclear radial
operators. Once the analytical expressions have been obtained, we evaluate them in the
three single-particle orbitals of the s-d shell, which is the relevant configuration space
for the 23Ne β decay into 23Na, and estimate the impact of nuclear radial operators in
this decay.

I. INTRODUCTION

The standard model of particle physics is an extremely
successful theory which can describe a wide range of phe-
nomena. Among them, β decay is a process that occurs in
those nuclei that can gain nuclear binding energy decay-
ing to other nuclei closer to stability. However, there are
some events that the standard model cannot describe,
such as gravity or the fact that neutrinos have mass.
That is why several experiments are being held in order to
test the predictions of the standard model. For instance,
[1] has measured very accurately the β decay of 23Ne
into 23Na in order to see if these very accurate results
agree with the theoretical predictions. For that compari-
son, more accurate theoretical values are required as well.
Thus, further corrections need to be taken into account.
Those corrections require the evaluation of some opera-
tors between the initial and final states of the transition.
The main goal of this project is to compute the analyt-
ical expression of some of these operators, which have a
radial contribution. We also estimate numerically those
contributions for the nuclear β decay of 23Ne into 23Na
in order to obtain a more precise theoretical half life.

II. β DECAY

β decay consists of charge changing transitions where
one nucleus decays into another. The most common nu-
clear β decays are the so called β−, β+ and electron cap-
ture (EC). The corresponding reactions are

β− : (Z,N) −→ (Z + 1, N − 1) + e− + ν̄e, (1)

β+ : (Z,N) −→ (Z − 1, N + 1) + e+ + νe, (2)

EC : (Z,N) + e− −→ (Z − 1, N + 1) + νe. (3)

The energy release as kinetic energy in the β− is posi-
tive and, therefore, this process can take place in vacuum.
However, in the processes β+ and EC, the energy release
in vacuum is negative, which means that a supply of ex-
tra energy is needed in order for the process to occur.

A. Leading Order

As shown in [2], β decays with no change in total an-
gular momentum are called Fermi transitions and those
where the angular momentum changes in one unit are
called Gamow-Teller transitions. Both of them are al-
lowed β decay processes which means that the final state
leptons are emitted with an angular quantum number
l = 0. The expression of the half-life of a nucleus is

t 1
2
=

κ

f0(BF +BGT )
, (4)

where κ = 6147s, f0 is a phase integral which depends
on the type of β decay process (β−, β+ or EC) and BF

and BGT are the reduced transition probabilities of the
Fermi and Gamow-Teller β decay respectively:

BF = |(f ||ĈV
0 (q)||i)|2, (5)

BGT = |(f ||L̂A
1 (q)||i)|2, (6)

where the elements (f ||ĈV
0 (q)||i) and (f ||L̂A

1 (q)||i) are

the reduced matrix elements of the operators ĈV
0 (q) and

L̂A
1 (q), respectively, between a final state |f⟩ and an ini-

tial state |i⟩. These operators are

ĈV
0 (q) ≃ gV

2
√
π

A∑
j=1

τ±j , (7)

L̂A
1 (q) ≃

igA

2
√
3π

A∑
j=1

σ⃗jτ
±
j , (8)

where gV = 1 is the vector coupling constant, gA = 1.27
is the axial vector coupling constant, σ⃗ is the spin op-
erator, τ⃗ the isospin and the subindex j means that the
summation extends over all nucleons.

B. Corrections

Recently, [3] has obtained the expressions for the cor-
rection of the half-life:

t−1
1
2

=
f0
κ

[
BF (1 + δF ) +BGT (1 + δGT )

]
, (9)
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where δF and δGT are the Fermi and Gamow-Teller shape
corrections, respectively. The shape corrections appear-
ing in (9), as shown in [3], have the following expression:

δGT ≃ 2

3

Qβ

q

[√
2
(f ||M̂V

1 (q)||i)
(f ||L̂A

1 ||i)
− (f ||ĈA

1 (q)||i)
(f ||L̂A

1 ||i)

]
, (10)

δF ≃ −2
Qβ

q

(f ||L̂V
0 (q)||i)

(f ||ĈV
0 ||i)

, (11)

where Qβ = ∆M −me with ∆M the difference between
the mass of the initial nuclei and the final one, and me is
the electron mass. The operators appearing in (10) and
(11) are defined in [3], as well as the ones in (7)-(8), for
any J . Taking J = 0 for Fermi processes, and J = 1 for
Gamow-Teller processes we end up with

L̂V
0 (q) ≃ − gV

12
√
π

q

mN

A∑
j=1

[
3− 2r⃗j∇⃗

]
τ±j , (12)

M̂V
1 (q) ≃ i

2
√
6π

q

mN

A∑
j=1

[
gV L⃗j + µσ⃗j

]
τ±j , (13)

ĈA
1 (q) ≃ − igA

2
√
3π

q

mN

A∑
j=1

[
r⃗j(σ⃗j∇⃗) +

1

2
σ⃗j

]
τ±j , (14)

where q is the transferred momentum, mN = 938.919
MeV is the mass of a nucleon, which is the average be-
tween the proton mass, mp = 938.272 MeV, and the
neutron mass, mn = 939.565 MeV and µ ≃ 4.7 is the
isovector magnetic moment. r⃗ is the radial operator and

∇⃗ the nabla operator, The products r⃗j∇⃗ and σ⃗j∇⃗ in
equations (12) and (14) are tensor products coupled to
J = 0.

C. Analytical evaluation of nuclear radial operators

From [2] we know the reduced matrix elements of the
operators appearing in (7),(8) and (13):

(n′l′
1

2
j′||I||nl1

2
j) = ĵδnn′δll′δjj′ , (15)

(n′l′
1

2
j′||σ⃗||nl1

2
j) = δnn′δll′(−1)l+j′+ 3

2

√
6ĵĵ′

{
1
2

1
2 1

j j′ l

}
,

(16)

(n′l′
1

2
j′||L⃗||nl1

2
j) = δnn′δll′(−1)l

′+j+ 3
2 ĵĵ′×

×
√
l(l + 1)(2l + 1)

{
l′ l 1
j j′ 1

2

}
, (17)

where ĵ =
√
2j + 1 and the brackets appearing in (16)

and (17) are the 6j symbols which are related to the
coupling of three angular momenta [2].

In order to compute analytically these operators
different theorems, properties and symmetries need to

be used.

Firstly, for the sake of separating the coordinate
space, which is formed by the radial and the angular
momentum spaces, and the spin space we use the
following theorem from [2]:

(n′l′
1

2
j′||TL||nl

1

2
j) = ĵĵ′L̂

 l′ 1
2 j′

l 1
2 j

L1 L2 L

×

×(n′l′||TL1
||nl)(1

2
||TL2

||1
2
), (18)

where the brackets appearing in (18) denote a 9j
symbol which, similarly to 6j symbols, are related to
the coupling of four angular momenta. TL1

and TL2
are

two tensors of rank L1 and L2, respectively, coupled
to a tensor operator of ranks L, so that TL = [TL1

, TL2
]L.

Besides, the radial space and the angular momen-
tum are independent, consequently, the reduced matrix
element is directly the product of the reduced matrix
elements of the radial space and the angular momentum
space:

(n′l′||TL||nl) = ⟨n′l′|TL|nl⟩ (l′||TL||l), (19)

where the quantum number l takes part in both spaces.

The operators appearing in (15)-(17) just operate in one
space (none, spin space and angular momentum space,
respectively) which implies the identity I operating in the
rest of spaces. None of them operates in the radial space.

Further, in the derivation of the nuclear matrix el-
ements of the operators that appear in (11) and (14),
we have used the relation between the scalar and cross
product with the tensorial product:

TL · SL = (−1)LL̂[TLSL]0, (20)

T × S = −i
√
2[T1S1]1, (21)

where TL and SL are two tensors of rank L.

Another important theorem that has been used
is

(n′l′
1

2
j′||TL||nl

1

2
j) = (−1)j+j′+LL̂

∑
n′′,l′′,j′′

{
L1 L2 L
j′ j j′′

}
×

×(n′l′
1

2
j′||TL1

||n′′l′′ 1
2
j′′)(n′′l′′

1

2
j′′||TL2

||nl1
2
j), (22)

where TL1
and TL2

are two tensors of rank L1 and L2

respectively coupled at rank L. This theorem allows us
to separate two tensors of the same operator where both
of them operate in some common space.

The reduced matrix elements of I, J (general an-
gular momentum operator), YL (spherical harmonic)
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and σ⃗ (spin operator), are given in [2]:

(j′||I||j) = ĵδjj′ , (23)

(j′||J ||j) = ĵδjj′
√
j(j + 1)(2j + 1, (24)

(l′||YL||l) = (−1)l
′ l̂l̂′L̂√

4π

(
l′ L l
0 0 0

)
(25)

(
1

2
||σ⃗||1

2
) =

√
6, (26)

where the element between parenthesis in (25) is a 3j
symbol, similarly to 6j and 9j, is a coefficient related to
the coupling of two angular momenta. They are closely
connected to the Clebsch-Gordan coefficients.

In this work, we have used the expressions(18)-(26)
to evaluate the analytical expression of the reduced
matrix elements of the operators appearing in (12) and
(14), in which a radial contribution appears. The results
we have obtained are

(n′l′
1

2
j′||r⃗ ∇⃗||nl1

2
j) = − 1√

3
δjj′δll′ ĵ ⟨n′l|r

∂

∂r
|nl⟩ , (27)

and

(n′l′
1

2
j′||r⃗(σ⃗∇⃗)||nl1

2
j)|j=l+ 1

2
=

√
2ĵ′

[
δll′(l + 1)×{

l j′ 1
2

l + 1
2 l + 1 1

}
(⟨n′l|r ∂

∂r
|nl⟩ − lδnn′)− δl′,l+2×

×
√
(l + 1)(l + 2)

{
l + 2 j′ 1

2
l + 1

2 l + 1 1

}
⟨n′l′|r

(
∂

∂r
− l

r

)
|nl⟩

]
,

(28)

(n′l′
1

2
j′||r⃗(σ⃗∇⃗)||nl1

2
j)|j=l− 1

2
=

√
2ĵ′

[
δll′ l×

×
{

l j′ 1
2

l − 1
2 l − 1 1

}
(⟨n′l|r ∂

∂r
|nl⟩+ (l + 1)δnn′)− δl′,l−2×

×
√
l(l − 1)

{
l − 2 j′ 1

2
l − 1

2 l − 1 1

}
⟨n′l′|r

(
∂

∂r
+
l + 1

r

)
|nl⟩

]
.

(29)

We have calculated these expressions for the nuclear ra-
dial contributions to β decay from the definition of each
operator. To check our results, we have compared them
to the more general expression in [4] with the appropriate
values for J and taking the limit q → 0.

III. EVALUATION OF THE OPERATORS IN
THE S-D SHELL

In order to compare the contribution of each operator
to the shape correction, in (10)-(11) we evaluate them
in the s-d shell of the nuclear shell model which is the
important one for 23Ne and 23Na. This is shown in
Fig. 1, as in the case of 23Na and 23Ne, the first two
shells, 0s and 0p, are fully occupied and the shell which

Fig 1: Harmonic oscillator single-particle levels.
Initially the energy levels are degenerated in j and,

depend only on n and l. After the spin-orbit coupling,
those levels split. Large energy gaps divide the

spectrum in shells, with the numbers of nucleons before
each gap, denoted as magic numbers. From [5].

contains the levels 1s and 0d, named s-d shell, is partially
occupied by nucleons. The goal is to compare between
them the evaluation of the matrix elements appearing in
(7) and (12) (Fermi transition operators) and the ones
in (8),(13) and (14) (Gamow-Teller transition operators)
in the s-d shell.

For that purpose, we identify q with Qβ which for
the β decay of 23Ne is

q ≃ Qβ =M(2310Ne)−M(2311Na)−M(e−)

= mn −mp +B(2311Na)−B(2310Ne)−me, (30)

where B(2311Na) and B(2310Ne) are the binding ener-
gies of the sodium and the neon respectively. From
[6], we get the values B(2311Na) = 186.564 MeV and
B(2310Ne) = 182.979 MeV, so that Qβ = 4.369 MeV.

Having all these values, we evaluate the matrix el-
ements with their corresponding relative factors as
shown in Table I.

The first noticeable feature is that, in the s-d shell, the

operator r⃗ ∇⃗ is proportional to I. This is also observable
comparing (27) with (15) where the relative factor is
− 1√

3
⟨n′l|r ∂

∂r |nl⟩. As in (27) there are two Kronecker’s

deltas in j and l, there are no levels in the s-d shell
of same j and l with different n, therefore, there will
be only diagonal elements. In addition, the radial
integral with the same n and l in both sides gives always

⟨nl|r ∂
∂r |nl⟩ = − 3

2 . As a result we can write r⃗ ∇⃗ as
√
3
2 I.

This implies that we can take 3I − 2r⃗ ∇⃗ = (3 −
√
3)I in

the s-d shell.

The zeros appearing in the 1s-0d matrix elements

of the operators σ⃗ and L⃗ are due to the Kronecker’s
deltas appearing in (16)-(17). The operator I is di-

agonal as we can see in (15) and also r⃗ ∇⃗ due to its
proportionality to the identity.
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I 0d 5
2

1s 1
2

0d 3
2

0d 5
2

2.44949 0 0

1s 1
2

0 1.41421 0

0d 3
2

0 0 2.00000

(a) Reduced matrix elements for the leading Fermi
operator in the s-d shell.

− Qβ

6mN
(3I− 2r⃗∇⃗) 0d 5

2
1s 1

2
0d 3

2

0d 5
2

-0.00241 0 0

1s 1
2

0 -0.00139 0

0d 3
2

0 0 -0.00197

(b) Reduced matrix elements for the correction to the
Fermi operator in the s-d shell.

gAσ⃗ 0d 5
2

1s 1
2

0d 3
2

0d 5
2

3.68082 0 -3.93495

1s 1
2

0 3.11085 0

0d 3
2

3.93495 0 -1.96747

(c) Reduced matrix elements for the leading
Gamow-Teller operator in the s-d shell.

Qβ√
2mN

(gV L⃗+ µσ⃗) 0d 5
2

1s 1
2

0d 3
2

0d 5
2

0.06395 0 -0.04288

1s 1
2

0 0.03793 0

0d 3
2

0.04288 0 -0.00869

(d) Reduced matrix elements for the non-radial
correction to the Gamow-Teller operator in the s-d shell.

−gA
Qβ

mN
(r⃗(σ⃗∇⃗) + 1

2
σ⃗) 0d 5

2
1s 1

2
0d 3

2

0d 5
2

0 0 0.00373

1s 1
2

0 0 0

0d 3
2

0.00373 0 0

(e) Reduced matrix elements for the radial correction to
the Gamow-Teller operator in the s-d shell.

Table I: Evaluation of the reduced matrix elements of the
Fermi and Gamow-Teller operators in (7)-(8) and (12)-
(14) for the three different orbitals of the s-d shell.

Another singular feature is that the diagonal matrix

elements of the operator (r⃗(σ⃗∇⃗) + 1
2 σ⃗) vanish. This is

CV
0 (q) LV

0 (q) LA
1 (q) MV

1 (q) CA
1 (q)

10 3

10 2

10 1

100

101

Fig 2: Absolute average value of the non-zero matrix
elements of the operators appearing in (10)-(14)
evaluated in the s-d shell. The first two operators
(Fermi) are represented in blue and the last three

(Gamow-Teller) in orange. The dominant operators are
represented with squares and the rest with circles. They

are all computed without the 1
2
√
π
common factor.

due to the symmetry property [4]

(nl
1

2
j||TJ(qr⃗)||n′l′

1

2
j′) = (−1)λ(n′l′

1

2
j′||TJ(qr⃗)||nl

1

2
j)

(31)

where λ = j′ + j for (r⃗(σ⃗∇⃗) + 1
2 σ⃗) and λ = j′ − j for

σ⃗. In the first case, the diagonal elements have the same
j′ and j, which summed gives an odd number, implying
that these elements must vanish. Also because of this
symmetry, in the same operator, the only two elements
different from zero are symmetric. This also explains
why the non-diagonal elements in σ⃗ different from zero
are antisymmetric.

For the Fermi transitions, from (11) we can estimate

that the order of magnitude of the ratio L̂V
0 (q)/Ĉ

V
0 (q) is

of the order of Qβ/mN ≃ 10−3 in agreement with the
results in tables (a)-(b) and in Fig. 2.

Furthermore, for the Gamow-Teller transitions, from
(10), there are two contributions: first, a non-radial op-

erator for which we can estimate the ratio M̂V
1 (q)/L̂A

1 (q)
to be of the order of (Qβµ)/mN ≃ 10−2; second, a

radial one with ĈA
1 (q)/L̂A

1 (q) that we can estimate as
Qβ/(2mN ) ≃ 10−3. These results are in good agreement
with the results in tables (c)-(e) and in figure 2. The only

exception is that, ĈA
1 (q) is somewhat more suppressed

than expected because of a cancellation between the

r⃗(σ⃗∇⃗) and 1
2 σ⃗ terms. On grounds of that, our results

suggest that it is reasonable to disregard the radial
contribution as it has been done in [1].
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23Ne 
 (J=5/2)

23Na 
 (J=3/2)GS

23Na 
 (J=5/2)

23Na 
 (J=7/2)

23Na 
 (J=3/2)
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(0d5/2)n

(0d5/2)p
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(0d3/2)n

(0d3/2)p

Fig 3: Percentage of the total nucleons in the s-d shell
that occupy the different orbitals for the ground state of

the 23Ne and the four lowest energy states states of
23Na. All states have positive parity.

IV. NUCLEAR SHELL MODEL CALCULATION
FOR 23Ne AND 23Na

In this section we compute the occupation of the dif-
ferent s-d shell orbitals for 23Ne and 23Na. In order to do
so, we use the code Antoine explained in [7]. The code
solves the Schrödingher’s equation for the nuclear shell
model

Heff |ψ⟩ = E |ψ⟩ , (32)

where |ψ⟩ is a nuclear state, Heff is the effective
Hamiltonian in the valence space and E is the energy of
the nuclear state.

In the nuclear shell model the valence space con-
sists of all single-particle orbitals actively involved in
the generation of configurations of the many-nucleon
system considered. In our case, this space is the s-d
shell orbitals. All the orbitals below are considered to
be inert and receive the name of core. The reason for
defining a core is that the computational effort increases
very rapidly with an increasing number of single-particle
orbitals included in the valence space.

Four different states of the 23Na can be the final

states of the beta decay of 23Ne: the ground state
(J = 3

2 ) and three excited states (J = 5
2 ,

7
2 ,

3
2 ) as shown

in Fig. 3. We calculate the initial and the four possible
final states using (32) and in all the nuclear states we
find that the most occupied orbital, by difference, is
the 0d 5

2
, the least energetic orbital according to Fig. 1,

regardless if they are protons are neutrons.

Therefore, between all the reduced matrix elements
in Table I, the most important one is (0d 5

2
||Ô||0d 5

2
),

where Ô is any of the five different operators. As a
consequence, in Fig. 2, where the average of the different
matrix elements of the different operators is represented,
the element 0d 5

2
− 0d 5

2
should have substantially more

weight than others. In particular, the radial Gamow-
Teller correction is additionally suppressed because its
only non-vanishing matrix element is the 0d 5

2
− 0d 3

2
one

involving the 0d 3
2
orbital, which is relatively empty in

23Ne and 23Na. This also supports the approximation in
[1] of neglecting this operator.

V. CONCLUSIONS

In this work we give analytical expressions for the re-
duced matrix elements of operators which contribute to β
decay, with particular emphasis on those with radial de-
pendence. The radial matrix elements reveal non-trivial
properties in the s-d shell such as a proportionality to
the reduced matrix element of the identity in the case
of the Fermi operator, and a symmetry property in the
Gamow-Teller operator. The non-radial contribution to
the Gamow-Teller shape correction is expected to be one
order of magnitude bigger than the radial contribution
because the first one is a correction of 2-3% while the
second one is a 0.1% correction. Finally, the occupa-
tion of the different orbitals of neon and sodium sug-
gests an additional suppression of the radial correction
to Gamow-Teller transitions. This is because only the
0d 5

2
− 0d 3

2
matrix element is not vanishing for this op-

erator, and the orbital 0d 3
2
is mostly empty in 23Ne and

23Na. Therefore, this work indicates that the 23Ne decay
receives contributions from nuclear radial operators only
below the 0.1% level.
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